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Purpose: To develop a computer-aided detection �CADe� scheme for nodules in chest radiographs
�CXRs� with a high sensitivity and a low false-positive �FP� rate.
Methods: The authors developed a CADe scheme consisting of five major steps, which were
developed for improving the overall performance of CADe schemes. First, to segment the lung
fields accurately, the authors developed a multisegment active shape model. Then, a two-stage
nodule-enhancement technique was developed for improving the conspicuity of nodules. Initial
nodule candidates were detected and segmented by using the clustering watershed algorithm.
Thirty-one shape-, gray-level-, surface-, and gradient-based features were extracted from each
segmented candidate for determining the feature space, including one of the new features based on
the Canny edge detector to eliminate a major FP source caused by rib crossings. Finally, a nonlinear
support vector machine �SVM� with a Gaussian kernel was employed for classification of the
nodule candidates.
Results: To evaluate and compare the scheme to other published CADe schemes, the authors used
a publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs. The
CADe scheme based on the SVM classifier achieved sensitivities of 78.6% �110/140� and 71.4%
�100/140� with averages of 5.0 �1165/233� FPs/image and 2.0 �466/233� FPs/image, respectively, in
a leave-one-out cross-validation test, whereas the CADe scheme based on a linear discriminant
analysis classifier had a sensitivity of 60.7% �85/140� at an FP rate of 5.0 FPs/image. For nodules
classified as “very subtle” and “extremely subtle,” a sensitivity of 57.1% �24/42� was achieved at an
FP rate of 5.0 FPs/image. When the authors used a database developed at the University of Chicago,
the sensitivities was 83.3% �40/48� and 77.1% �37/48� at an FP rate of 5.0 �240/48� FPs/image and
2.0 �96/48� FPs /image, respectively.
Conclusions: These results compare favorably to those described for other commercial and non-
commercial CADe nodule detection systems. © 2011 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.3561504�
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I. INTRODUCTION
Lung cancer accounts for about 28% of all cancer diagnoses
in 2009.1 The overall 5-year-survival rate for lung cancer
patients is only 14%. Early detection and treatment of lung
cancers are very important because the 5-year-survival rate
can increase to up to 50% if the tumor is detected accurately
and diagnosed at stage 1, where there is a solitary, circum-
scribed lung nodule.2

For detection of lung cancer at an early stage, computed
tomography �CT� is considered to be a sensitive imaging
modality.3 However, chest radiographs �CXRs� are used far
more commonly for chest diseases because they are the most
cost-effective, the most routinely available, and the most
dose-effective diagnostic tool, and they are able to reveal
some unsuspected pathologic alterations.4 Because CXRs are
so widely used, improvements in the detection of lung nod-
ules in CXRs could have a significant impact on early detec-

tion of lung cancer.
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Although CXRs are the most widely used modality for
lung diseases, it has been well demonstrated that detection of
lung cancer at an early stage in CXRs is a very difficult task
for radiologists. The difficulties in detecting lung nodules in
CXRs are threefold: �1� There is a wide range of nodule
sizes, �2� nodules exhibit a large variation in density in CXR,
and �3� nodules can be obscured by other anatomic struc-
tures. The reasons for misdetection may be due to differences
in decision techniques, lack of clinical data, and structured
noise in CXRs.5–7 Studies have shown that up to 30% of
nodules in CXRs were missed by radiologists, but nodules
were visible in retrospect.8,9

Therefore, a computer-aided diagnostic �CADe�
scheme10,11 for nodule detection in CXRs has been investi-
gated for assisting radiologists in improving their sensitivity
in the detection of lung nodules. Detection of nodules by a
CADe scheme is used as a “second opinion” for assisting

radiologists’ decision-making to avoid their overlooking of
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subtle nodules. The feasibility and efficiency of CADe
schemes were proved by Kobayashi et al.12 and MacMahon
et al.13 They showed that a CADe scheme could help radi-
ologists improve their performance in the detection of pul-
monary nodules. De Boo et al.14 provided a detailed review
of clinical studies with CADe schemes. They reported that
multiple studies had shown improvement in the detection
performance of radiologists, especially of less experienced
readers, with the use of CADe schemes, and that there were
currently two FDA-approved systems �OnGuard, Riverain
Medical and IQQA-chest, EDDA Technology� available in
the market.

A wide variety of approaches in CADe schemes for nod-
ule detection in CXRs have been developed. Giger et al.10,15

developed a difference-image technique to reduce complex
anatomic background structures while enhancing nodulelike
structures for initial nodule candidate detection. Lo et al.16,17

used a technique similar to the difference-image technique to
create nodule-enhanced images, which were then processed
by a feature extraction technique based on edge detection,
gray-level thresholding, and sphere profile matching. Then, a
convolution neural network was employed in a classification
step. The CADe scheme developed by Xu et al. also em-
ployed a difference-image process, followed by feature ex-
traction and classification processes.18 To improve the perfor-
mance of the initial nodule candidate detection, Yoshida et
al.19 employed the wavelet transform for detection of subtle
nodules that were missed in the difference-image technique.
The partial wavelet reconstruction method was used to re-
place the difference-image technique in the first step of the
CADe scheme for enhancement of nodules while normal
anatomic structures were suppressed. Vittitoe et al.20 devel-
oped fractal texture characterization to improve the detection
accuracy for solitary pulmonary nodules in a CADe scheme.

More recently, Carreira et al.21 proposed a CADe scheme
based on the detection of nodule candidates with normalized
cross-correlation images and classification of the candidates
in curvature space. Penedo et al.22 then improved the perfor-
mance of the scheme by incorporating two-level ANNs that
employed cross-correlation teaching images and input im-
ages in the curvature peak space. Coppini et al.23 developed
a CADe scheme based on biologically inspired ANNs with
fuzzy coding. Shiraishi et al.24 incorporated a localized
searching method based on anatomical classification and au-
tomated techniques for the parameter setting of three types of
ANNs into a CADe scheme. Schilham et al.25 proposed a
new initial nodule candidate detection method based on mul-
tiscale techniques. Candidates were found by looking for lo-
cal intensity maxima in the Gaussian scale space; and nodule
boundaries were detected by tracing of edge points found
from large scales down to the pixel scale. Campadelli et al.26

improved the performance of a CADe scheme by introducing
a new lung segmentation method. Hardie et al.27 proposed a
CADe scheme based on a weighted-multiscale convergence-
index filter for initial nodule candidate detection and an
adaptive distance-based threshold algorithm for candidate

segmentation. Other researchers, including Mao et al., Li et
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al., Wei et al., and Freedman et al., reported on CADe
schemes in which they incorporated various techniques for
improving the performance.28–31

Although a great deal of work has been done by research-
ers to improve the performance of CADe schemes for nodule
detection in CXRs, CADe schemes still produce a relatively
large number of FPs. This would distract radiologists in their
detection and reduce radiologists’ efficiency. A high rate of
FPs would confuse radiologists by marking normal areas as
suspicious, which may decrease radiologists’ specificity. In
addition, radiologists may lose their confidence in the CADe
scheme as a useful tool, which may result in a less improved
performance by radiologists. Matsumoto et al.32 conducted
an observer performance study to investigate the effect of the
number of FPs on the accuracy of radiologists in detecting
nodules. The study showed that if a CADe scheme had a
high false-positive �FP� rate of 11/image, radiologists’ accu-
racy in detecting pulmonary nodules was not improved with
CADe, even though the scheme had a high sensitivity of
80%. Radiologists’ accuracy, however, was significantly im-
proved if the CADe scheme had a simulated one FP rate with
the same sensitivity. Therefore, having a low FP rate is criti-
cal for a CADe scheme to be useful. Investigators have de-
veloped various FP reduction methods. Yoshida and Keserci
applied an edge-guided wavelet snake model to the extrac-
tion of a feature called a weighted overlap between the snake
and the multiscale edges.33,34 At the final step in their CADe
scheme, the weighted overlap and morphologic features were
combined by using an ANN for efficient reduction of FPs.
Yoshida35 proposed a method called local contralateral sub-
traction to remove normal anatomic structures in CXRs
based on the symmetry between the left and right lung re-
gions for FP reduction. Suzuki et al.36 developed a multiple
massive-training ANN to reduce the number of FPs produced
by their CADe scheme.

In this research, we developed a novel CADe scheme for
the detection of pulmonary nodules by using our two-stage
nodule-enhancement technique combined with a support
vector machine �SVM� classifier to improve the sensitivity
for lung nodule detection and to reduce the FP rate. In the
first stage of our two-stage nodule enhancement, gray-level
morphologic nodule enhancement and a line-structure sup-
pression technique improve the detection of the nodules
overlapping ribs and clavicles in the initial nodule candidate
detection. In the second stage, our nodule likelihood map
improves the performance of the candidate detection further.
Then, our clustering watershed method segments the de-
tected nodule candidates accurately. Features are extracted
from these segmented candidates for effectively determining
the feature space, including one of the new features based on
the Canny edge detector to eliminate one of the major FP
sources, rib crossings. Finally, the SVM classifier with a
Gaussian kernel accurately classifies the nodule candidates

as nodules or non-nodules accurately.
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II. MATERIALS AND METHODS

II.A. Databases of CXRs with nodules

Table I summarizes the databases used in this study. To
train our CADe scheme, we collected 300 cases with nodules
and 100 “normal” cases �i.e., nodule-free cases� from six
medical institutions by using screen-film systems, computed
radiography systems, and digital radiography systems. All
nodules were confirmed by CT, and the locations of the nod-
ules were confirmed by one of the chest radiologists. The
nodule size ranged from 5 to 40 mm.

To facilitate future comparisons of our scheme with other
methods, we used the JSRT database,37 which is publicly
available. The posteroanterior CXRs in the database were
collected from 14 medical institutions by using screen-film
systems over a period of 3 yr. All nodules in the CXRs were
confirmed by CT, and the locations of the nodules were con-
firmed by three chest radiologists who were in complete
agreement. The images were digitized to yield 12-bit CXRs
with a resolution of 2048�2048 pixels. The size of a pixel
was 0.175�0.175 mm. The original database contained 93
normal cases and 154 cases with confirmed lung nodules.
The nodules were grouped into five categories, based on the
degree of subtlety for detection, which may be influenced by
the nodule size, occlusion by other structures, and nodule
density. The subtlety categories were characterized by the
average area under the receiver-operating-characteristic
�ROC� curves,38 determined by an observer performance
study with 20 radiologists.

We created a database �denoted as database BS� for evalu-
ating our CADe scheme by excluding from the full JSRT

TABLE I. Databases used for training and evaluating

Database
No. of nodule

cases
No. of normal

cases

A 300 100

BS 140 93

B 154 93
C 48 0

aThe 14 cases were excluded because the purpose of o
27� was to detect nodules in the lung fields; therefor

TABLE II. Characteristics of nodules in our evaluatio

Small �5–14.9� Me

Extremely subtle 14
Very subtle 10
Subtle 21
Relatively obvious 10
Obvious 3
Total 58 �41.4%�
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database �denoted as database B� the nodules in the opaque
portions of the CXR that correspond to the retrocardiac and
subdiaphramatic regions of the lung because the purpose of
using our CADe scheme was to detect nodules in the lung
fields. As a result, 140 nodule cases were selected and in-
cluded in the database �i.e., a subset of the JSRT database�
for our experiments. Please note that evaluations of CADe
schemes in the past studies24,27 were performed without nod-
ules in the opaque portions of CXRs for the same reason.

Table II shows the characteristics of the nodules in our
evaluation database �database BS�. The average size of the
nodules was 17.8 mm. The database contained 93 malignant
nodules and 47 benign nodules, which were confirmed by
histologic or cytologic examination or by follow-up imaging.
Note that the resolution of internal �working� images of our
CADe scheme was the same as that of the original images.

To evaluate the performance of our CADe scheme further,
we collected a database �denoted as database C� containing
48 CXRs with 48 nodules, acquired with a computed radiog-
raphy system �FCR 9501; Fujifilm Medical Systems, Stam-
ford, CT� at the University of Chicago �U of C� Medical
Center. These images have resolutions of 1760
�1760 pixels �n=16�, 2140�2140 pixels �n=8�, 1760
�2140 pixels �n=20�, and 2140�1760 pixels �n=4�, with
a grayscale of 10 bits and a pixel size of 0.2�0.2 mm. This
database contained 2 confirmed benign nodules, 6 suspicious
malignant nodules, and 40 confirmed malignant nodules. The
average size of the nodules was 31.9 mm �range: 12 mm–54
mm�.

ADe scheme.

Descriptions

Training cases collected for developing
our CADe scheme

ubset of JSRT �14 cases with nodules in the opaque
portions were excluded �Refs. 24 and 27��a

All nodule cases �154� and all normal cases �93�
in JSRT database
U of C database

ADe scheme and other CADe schemes �Refs. 24 and
outside of the lung fields is outside our scope.

abase �database BS� used for our experiments.

�mm�

Total�15–24.9� Large ��25�

5 0 19 �13.6%�
13 0 23 �16.4%�
19 8 48 �34.3%�
22 6 38 �27.1%�
3 6 12 �8.6%�

44.3%� 20 �14.3%� 140 �100%�
our C

S

ur C
n dat

Size

dium

62 �
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II.B. Scheme for nodule detection

Figure 1 shows our CADe scheme for detection of lung
nodules in CXRs, which consists of five major steps: �1�
Segmentation of lung fields based on our M-ASM, �2� our
two-stage enhancement of nodules and nodule candidate de-
tection, �3� segmentation of the nodule candidates by using
our clustering watershed algorithm, �4� feature analysis of
the segmented candidates, and �5� classification of the nodule
candidates into nodules or non-nodules by using a nonlinear
SVM classifier.

II.B.1. Segmentation of lung fields

Lung segmentation is a critical component of a CADe
scheme. It can prevent the occurrence of FPs outside the lung
fields. Many methods have been proposed for segmenting the
lungs in CXRs,39 such as �1� rule-based segmentation meth-
ods, �2� pixel-based methods, �3� hybrid methods, and �4�

FIG. 1. Main diagram for our CADe scheme.

FIG. 2. Lung segmentation by using an M-ASM. Each blue point represents
the transitional landmarks between two boundary types �e.g., the heart and

the diaphragm, the aorta, and the apex of the left lung�.
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deformable model-based methods. Because the prior infor-
mation can easily be incorporated into the segmentation pro-
cedure, an active shape model �ASM� has been used for lung
segmentation in CXR.40–42 Because a conventional ASM
cannot cover changes and variations in the entire boundaries
of the lungs accurately,39 we developed a multisegment ASM
�M-ASM� that is adaptive to each of multiple segments of
the lung boundaries �which we call a multisegment adapta-
tion approach�, as illustrated in Fig. 2. Because the nodes in
the conventional ASM are equally spaced along the entire
lung shape, they do not fit lung shape parts with high curva-
tures.

In our method, the model was improved by fixating of the
selected nodes at specific structural boundaries which we call
transitional landmarks. Transitional landmarks identified the
change from one boundary type �e.g., a boundary between
the lung field and the heart� to another �e.g., a boundary
between the lung field and the diaphragm�. This resulted in
multiple segmented lung-field boundaries where each seg-
ment is correlated with a specific boundary type �heart, aorta,
rib cage, diaphragm, etc.�. The node-specific ASM was built
by using a fixed set of equally spaced nodes for each bound-
ary segment.

Our lung M-ASM consisted of a total of 50 nodes for
each lung boundary. The nodes were not equally spaced
along the entire contour. A fixed number of nodes were as-
signed to each boundary segment, and they were equally
spaced along each boundary �as shown in Fig. 2�. For ex-
ample, the boundary between the left lung field and the heart
consisted of 11 points in every image, regardless of the ac-
tual extent of this boundary in the image �see Fig. 2�. This
allowed the local features of nodes to fit a specific boundary
segment rather than the whole lung, which resulted in a
marked improvement in the accuracy of boundary segmenta-
tion. In our experiment, 93 normal images from the public
JSRT database were used for training of the M-ASM. From
the training images, the relative spatial relationships among
the nodes in each boundary segment were learned in order to
form the shape model. The nodes were arranged into a vector
x and projected into the principal component shape space by
means of the following expression:

b = VT�x − x̄� , �1�

where V= �V1V2¯VM� is the matrix of the first M eigenvec-
tors for the shape covariance matrix and b= �b1b2¯bM�T is a
vector of shape coefficients for the primary axes. The shape
coefficients were constrained to lie in a range �m��i to
generate only a plausible shape and projected back to node
coordinates with the following expression:

x = x̄ + Vb . �2�

Here, m usually has value between 2 and 3,43 and it was 2.5
in our experiment.

The segmentation accuracy was computed by using the

overlap measure �,
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� =
TPseg

TPseg + FPseg + FNseg
, �3�

where TPseg was the area correctly classified as a lung field,
FPseg was the area incorrectly classified as a lung field, and
FNseg was the area incorrectly classified as the background.
The mean and standard deviation of the overlap measure for
all the 154 nodule images in the JSRT database were 0.913
and 0.023, respectively �including the 14 images in which
nodules are in the obscured lung fields�.

After the lungs were segmented, a background-trend-
correction technique was applied to the segmented lung
fields. A second-order bivariate polynomial function was fit-
ted to each of the left and right lung fields individually, as
illustrated in Fig. 3�a�, represented by

F�x,y� = ax2 + by2 + cxy + dx + ey + f , �4�

where a, b, c, d, e, and f are coefficients, which were calcu-
lated for each case. Subsequently, the fitted functions for the
left and right lung fields were subtracted from the original
image. In this way, the background trend in the lung fields as
a low-frequency surface was removed, as illustrated in Fig.
3�b�. We call this image a preprocessed image.

FIG. 4. Enhancement images by using gray-level morphologic filters with a
nodule template �a� and rib templates �b�. �a� Nodule-like-pattern-enhanced

FIG. 3. Background-trend-correction for the lung fields. �a� Lung fields fit-
ted by a second-order bivariate polynomial function. �b� Preprocessed image
�background-trend-corrected image�.
image. �b� Rib-like-pattern-enhanced image.
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II.B.2. Two-stage enhancement of nodules
and nodule candidate detection

We developed a two-stage nodule-enhancement technique
and applied it to the preprocessed image to obtain a nodule-
enhanced image and a nodule likelihood map. The first stage
of the technique was aimed at enhancing nodules and sup-
pressing ribs, which were a major source of FPs. Two differ-
ent types of gray-level morphologic opening operators44

were used for producing a “nodule-like-pattern-enhanced”
image and a “rib-like-pattern-enhanced” image.

First, a gray-level morphologic opening operator with a
nodule template was applied to the preprocessed image to
produce a nodule-like-pattern-enhanced image, as illustrated
in Fig. 4�a�. A nodule is defined as a round opacity less than
3 cm in diameter seen in a chest radiograph,45 and it is a
roughly spherical object with a density comparable to that of
water, which is higher than the surrounding lung
parenchyma.25 Therefore, we used a bivariate normal distri-
bution as a nodule model in the nodule template, as shown in
Fig. 5�a�. The standard deviation of the normal distribution
corresponded to the scale of the target object, i.e., the aver-
age nodule size in a database. Next, several gray-level mor-
phologic opening operators with rib templates were applied
to the preprocessed image to produce a rib-like-pattern-
enhanced image, as illustrated in Fig. 4�b�. Seven rib tem-
plates with seven different orientations, i.e., �68°, �45°,
�22°, 0°, +22°, +45°, and +68°, as shown in Fig. 5�b�, were
used for enhancing the riblike structures. The maximum
value among the output of the seven operators was stored in
each pixel in the rib-like-pattern-enhanced image. Finally,
the rib-like-pattern-enhanced image was subtracted from the

FIG. 5. Templates used for gray-level morphologic enhancement. �a� Nodule
template containing a bivariate normal distribution. �b� Rib templates con-
taining lines with seven different orientations.

FIG. 6. Nodule-enhanced image obtained by using our first-stage nodule

enhancement.
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nodule-like-pattern-enhanced image to produce a nodule-
enhanced image, as illustrated in Fig. 6. In the image, the
nodulelike patterns have larger pixel values; the riblike pat-
terns and other patterns have smaller pixel values. The gray-
level morphologic filter can enhance a nodule effectively, as
demonstrated in Fig. 7.

The purpose of the second stage of our nodule enhance-
ment was to convert the nodule-enhanced image into a nod-
ule likelihood map, as illustrated in Fig. 8. First, the nodule-
enhanced image was smoothed by using a Gaussian filter in
order to reduce noise. Next, the gradient magnitude Mij and
gradient direction Gij were calculated from the noise-reduced
image by using a modified Sobel operator, represented by

Mij = �Mxij + Myij, Gij = arctan�Myij/Mxij� ,

Mxij = �− 1 0 1

− 2 0 2

− 1 0 1
� � Inodule-enhanced, �5�

Myij = � 1 2 1

0 0 0

− 1 − 2 − 1
� � Inodule-enhanced,

where Inodule-enhanced is the nodule-enhanced image obtained
by using the first-stage nodule enhancement. A nodule like-
lihood value was calculated at every pixel in the lung fields,

FIG. 7. Nodule enhancement by using the gray-level morphologic filter. �a�
ROI with a nodule. �b� Enhancement of the nodule by using the gray-level
morphologic filter with the nodule �Gaussian� template. �c� Enhancement of
ribs by using the gray-level morphologic filter with the rib �line� templates.
�d� Nodule enhanced by subtracting �c� from �b�.

FIG. 8. Nodule likelihood map obtained by using our second-stage nodule

enhancement.
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as described below. A circle with its size related to the nodule
template size was placed at an object pixel �i , j�, as shown in
Fig. 9. The circle was divided into eight sectors numbered
from 0 to 7. A nodule likelihood value for section k at the
object pixel �i , j� is defined by the following equation:

Gij
k =

1

Nk
�

mn�sector k

cos �mn,

t1 � Mmn � t2, �6�

where � is an angle between the gradient direction at a cer-
tain pixel �m ,n� and a vector from the object pixel �i , j� to
the pixel �m ,n�, t1 and t2 are low and high gradient magni-
tude thresholds, respectively, and Nk is the number of pixels
in sector k. When a nodule candidate is located at the object
pixel �i , j� and a certain pixel �m ,n� is on the nodule candi-
date, cos � should be close to 1.0. Because the gradient di-
rection is unreliable when the gradient magnitude M is small,
t1 was utilized to prevent such an unreliable gradient direc-
tion from being used �in our experiment, t1=5�. t2 was uti-
lized because a pixel �m ,n� may be located at a bone edge
when the gradient magnitude M is large �in our experiment,
t2=150�. Although some nodules have irregular shapes, the
nodule likelihood values are still larger than those of ribs and
other anatomic structures.

The final nodule likelihood combining all sectors at the
object pixel �i , j� is defined by

Likehoodij =
Ḡij

	ij
, �7�

where Ḡij and 	ij are the mean and standard deviation, re-
spectively.

Once a nodule likelihood map was calculated, local peaks
in the map were detected. Because the smallest nodule in the
JSRT database and the U of C database was larger than 5
mm, if the distance between any two peaks was less than 5
mm, a candidate was created only from the peak with the

FIG. 9. Schematic diagram for our nodule likelihood calculation for a point
of interest O.
higher pixel value.
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II.B.3. Coarse-to-fine segmentation of nodule
candidates

After nodule candidates were detected, the boundaries of
the nodule candidates had to be identified for the subsequent
feature extraction. To segment the nodule candidates, we de-
veloped a “coarse-to-fine” segmentation technique based on
morphologic filtering and improved watershed segmentation.
First, a region of interest �ROI� in which a candidate was
located at the center was extracted from the nodule-enhanced
image, where the size of the ROI was larger than the largest
nodule to be detected �the largest nodules in the JSRT data-
base and the U of C database are 60 and 54 mm, respec-
tively; in our experiment, the ROI size was 88 mm�, as illus-
trated in Fig. 10�a�. Because positive values in the nodule-
enhanced image are likely to be nodules, thresholding with a
low positive threshold value �pixels with values less than 5
were removed� was applied to the nodule-enhanced image
for extraction of nodule candidate regions, as illustrated in
Fig. 10�c�. We applied a binary morphologic erosion operator
to the nodule candidate regions to break connections be-
tween the nodule and non-nodule regions, as illustrated in
Fig. 10�d�. The connected region that contained the nodule
candidate location �as a point� determined by the initial nod-
ule candidate detection step was retained, whereas non-
nodule regions were removed, as illustrated in Fig. 10�e�.
Next, a binary morphologic dilation operator dilated the con-
nected region. As a result, a single connected region repre-
senting a rough nodule candidate was obtained, as illustrated
in Fig. 10�f�.

To refine the rough segmentation provided by morpho-
logic filtering, we developed a clustering watershed segmen-
tation technique. Peaks within the rough nodule candidate
region in the nodule-enhanced image were obtained and used
for initializing the watershed segmentation algorithm.46 For
the application of watershed segmentation, the grayscale of
the ROI was first inverted so that the peaks became local

FIG. 10. Nodule candidate segmentation by using our clustering watershed
segmentation method. �a� ROI with a nodule. �b� First-stage nodule en-
hancement image by using background-trend correction and a gray-level
morphologic filter. �c� Regions obtained by thresholding of the image �b�
with a low positive threshold value. �d� Regions after erosion. �e� Connected
region representing a rough nodule candidate. �f� Candidate region after
dilation. �g� Inverted image. �h� Result with watershed segmentation alone.
One region was divided into multiple small segments �catchment basins�. �i�
Nodule candidate segmented by our clustering watershed segmentation. �j�
Nodule contour.
minima, as illustrated in Fig. 10�g�. With the watershed seg-
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mentation, the rough nodule candidate region was divided
into several catchment basins. Each minimum point was sur-
rounded by a catchment basin associated with it; thus, there
were one or more peaks, each of which was surrounded by a
cluster of connected pixels that constituted a catchment ba-
sin, as illustrated in Fig. 10�h�. From the multiple catchment
basins, a single nodule candidate region was determined by
using the following clustering method: First, a primary clus-
ter was defined as a cluster that contained the nodule candi-
date location �as a point� determined by the initial nodule
candidate detection step. Next, clusters connected to the pri-
mary cluster were added. The connected clusters were iden-
tified by using the criterion that the minimum value between
the peak in the primary cluster and each of the other peaks
was larger than a threshold value, as illustrated in Fig. 11.
Figure 10�j� illustrates a segmented nodule candidate ob-
tained by using the clustering watershed segmentation.

II.B.4. Feature analysis and classification

We extracted features from each of the segmented nodule
candidates after connected-component labeling.47 Features in
six categories �i.e., shape, gray-level, surface, gradient, tex-
ture, and a specific FP� were extracted from the segmented
candidates. The shape features were defined by the following
equations:

Shape1 = Aregion,

Shape2 =
Dmajor

Dminor
,

Shape3 =
Aregion

Aconvex hull
, �8�

Shape4 = 1 −
dcandidate-center

�Aregion




,

where Aregion is the area of a segmented nodule candidate,
Dmajor and Dminor are the long and short axes, respectively, of
an ellipse that is fitted to the segmented nodule candidate,
Aconvex hull is the area of the convex hull of the candidate, and
dcandidate-center is the distance between the centroid of the can-

FIG. 11. Criterion used for our cluster merging, where P1 and P2 are peak
values in the corresponding clusters and min is the minimum value between
the peaks.
didate and the center of the fitted ellipse. All features were



1851 Chen, Suzuki, and MacMahon: A computer-aided detection scheme for lung nodule 1851
normalized so as to be independent of the magnification and
resolution of the imaging system.

The gray-level features were calculated from the seg-
mented nodule candidates and their surrounding regions in
both the preprocessed image and the nodule-enhanced im-
age. A surrounding region was produced by subtracting a
candidate region from a dilated candidate region, as illus-
trated in Fig. 12. The gray-level features were defined as

Gray1 = �region − �surround,

Gray2 = 	region − 	surround, �9�

Gray3 = minregion − minsurround,

Gray4 = maxregion − maxsurround,

where �, 	, min, and max are the mean, the standard devia-
tion, the minimum, and the maximum of pixel values in the
preprocessed image, respectively, and the designation region
and surround indicate a candidate region and its surrounding
region, respectively. Gray5, Gray6, Gray7, and Gray8 were
features calculated based on the above equations, but in the
nodule-enhanced image �instead of the preprocessed image�.

The segmented candidate region in the nodule-enhanced
image was fitted to a fourth-order bivariate polynomial. The
principal curvatures were calculated at the point of the high-
est elevation in the region. Second-order derivatives of the
fitted polynomial were calculated and formed the elements of
a Hessian matrix. The maximum and minimum eigenvalues
of the Hessian matrix, �max and �min, were the principal cur-
vatures. The surface features were given by

Surface1 = �min,

Surface2 = �max, �10�

Surface3 = �min�max.

We used gradient in the segmented candidate region in the
nodule-enhanced image to calculate gradient features, which
are similar to the calculation of the nodule likelihood values

FIG. 12. �a� Nodule region. �b� Surrounding region.
in the two-stage nodule enhancement, represented by
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Grh =
1

Nh
�

mn�regionh

cos �mn,

t1 � Mmn � t2, �11�

where Nh is the number of pixels in the segmented nodule
region h. The gradient features for the segmented nodule
region were given by

Grad1 = Gr =
1

8�
k=0

7

Grh,

Grad2 = 	 =�1

8�
k=0

7

�Grh − Gr�2, �12�

Grad3 =
Gr

	
.

Texture features were calculated from the preprocessed
image, the gradient magnitude image, and the gradient direc-
tion image, which were calculated by Eq. �5�. The texture
features were given by the following equations:

Texture1 = �
ij

�C�i, j��2,

Texture2 = �
ij

�i − j�2C�i, j� , �13�

where C�i , j� is the co-occurrence matrix calculated over
neighboring pixels and a summation range from the mini-
mum to the maximum pixel value in the preprocessed image,

C�i, j� = �
m=−1

1

�
n=−1

1

#	f�x,y� = i, f�x + m,y + n� = j


− # 	f�x,y� = i, f�x,y� = j
 , �14�

where # is the number of elements in the set. Texture3,
Texture4, Texture5, and Texture6 are features calculated
based on the above equations, but in the gradient magnitude
image and the gradient direction image �instead of the pre-
processed image�, respectively.

We developed an FP reduction feature designed to elimi-
nate rib/clavicle crossings, which are a major FP source. We
used the Canny edge detector to find prominent edges within
the lung field in the preprocessed image. Connected edge
pixels then formed into chains which would correspond to
rib/clavicle edges in the image. The overlap feature was de-
fined by

FP =
Loverlap

Lregion
, �15�

where Lregion is the length of the boundary of a candidate
region and Loverlap is the number of pixels on the boundary
that overlap the edge chains.

In addition to the above six feature categories, segmented-
candidate-based features, Can.x, Can.y, Can.Cv1, Can.Grad1,

Can.Cv2, and Can.Grad2, were calculated. Can.x and Can.y
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are the coordinates of a nodule candidate. Can.Grad1 and
Can.Grad2 are the nodule likelihood values calculated by Eq.
�7� at the detected nodule candidate location in the nodule
candidate detection step in the nodule-enhanced image and
the preprocessed image, respectively. Can.Cv1 and Can.Cv2

were calculated by using the gray-level values instead of the
gradient values in Eq. �7�.

Finally, a nonlinear SVM with a Gaussian kernel was em-
ployed for classification of the nodule candidates. We se-
lected this classifier because its generalization ability is rela-
tively high with a small number of training samples. We
selected the Gaussian kernel among several kernels, includ-
ing a polynomial kernel, because it achieved the best perfor-
mance. The Gaussian kernel is represented by

k�xi,xj� = exp�− ��xi − xj�2� , �16�

where � is a parameter. The parameter � in the kernel was
determined to be 1.0 by empirical analysis. Note that linear
SVMs were not selected because our problem is generally a
nonlinear classification problem.

Classification by an SVM is realized by the solution of the
following quadratic optimization problem:

Minimize:W�a� = − �
i=1

l

ai +
1

2�
i=1

l

�
j=1

l

yiyjaiajk�xi,xj� , �17�

Subject to �
i=1

l

yiai = 0, ∀ i:0 � ai � C , �18�

where l is the number of training samples and a is a vector of
l variables, each component of which, ai, corresponds to a
training sample �xi ,yj�. C was determined to be
��i=1

l xi ·xi / l−1.0 before training. The solution of Eq. �17� is
the vector a� for which Eq. �17� is minimized, while the
constraints in Eq. �18� are fulfilled.

The SVM classifier was trained/tested with a leave-one-
out cross-validation test. The performance of the SVM clas-

FIG. 13. FROC curves indicating the performance of the nodule candidate
detection part of our CADe scheme for the JSRT database and the U of C
database.
sifier was evaluated by using free-response receiver-
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operating characteristic �FROC� analysis48 and compared to
that of a linear discriminant analysis �LDA� classifier.49 Fea-
tures for the LDA were selected by using the stepwise feature
selection method.49 With the selection method, we deter-
mined a single set of features from M runs of a leave-one-out
cross-validation test �M is the number of features�. Each fea-
ture was selected at each run after we accumulated all N
results from the run �N is the number of samples�.

III. RESULTS

In this section, we present experimental results to demon-
strate the performance of our CADe scheme. We first present
the results of the initial nodule candidate detection. Then, we
present the overall performance of our CADe scheme for
databases BS �a subset of the JSRT database�, B �the JSRT
database�, and C �the U of C database�. Finally, we discuss
comparisons with other CADe schemes.

III.A. Nodule candidate detection

The criterion for determining a TP that we adopted was
that if the centroid of a detected candidate is located within
the “reference-standard” nodule area, which was drawn by a
radiologist, the candidate is considered as a TP. We shall call
this a “region” criterion. In Sec. IV, we compare the region
criterion to other criteria used in literature.

Figure 13 shows the performance of the nodule candidate
detection stage in our CADe scheme for the JSRT and U of C
databases. The sensitivity starts dropping when the number
of nodule candidates is less than 70/image.

The nodule candidate detection stage in our CADe
scheme achieved a sensitivity of 92.1% �129/140� with 70
candidates/image and a sensitivity of 97.9% �47/48� with 70
candidates/image for databases BS and C, respectively.

III.B. Overall performance of the CADe scheme

FROC curves showing the overall performance of our

FIG. 14. FROC curves indicating the performance of our CADe scheme
with SVM or LDA for the JSRT database.
CADe scheme for database BS �i.e., a subset of the JRST
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database� in a leave-one-out cross-validation test are shown
in Fig. 14. The stepwise feature selection method selected 11
features for the LDA, as listed in Table III. The performance
of our CADe scheme with the SVM was substantially higher
than that of our CADe scheme with the LDA, i.e., it achieved
a sensitivity of 76.4% �107/140� with the SVM and a sensi-
tivity of 60.7% with the LDA at an FP rate of 5.0 FPs/image
for nodule cases in database BS. It is interesting to note that
when all 31 features were used for the LDA classifier, the
sensitivity was 53.6% �75/140� at an FP rate of 5.0 FPs/
image for the JSRT database. It is also interesting to note that
if the features selected for the LDA were used for the SVM,
the performance �i.e., a sensitivity of 68.6% �96/140� with
5.0 �700/140� FPs/image for database BS� was lower than the
performance of the SVM with all 31 features. This would
indicate that features selected for a linear classifier are not
optimal for a nonlinear classifier. The SVM-based CADe
scheme marked 22 more nodules than did the LDA-based
CADe scheme at an FP rate of 5 FPs/image. Most of these
nodules were very subtle or extremely subtle in database BS.

Table IV summarizes the performance of our CADe
scheme for different databases. Figure 15 compares the per-
formance of our CADe scheme for database BS containing
all 93 normal cases and 140 nodule cases with that for the

TABLE III. Features selected for LDA in the two da
asterisks indicate a selected feature.�

Extracted
features JSRT U of C

Extracted
features

Can.x * Gray1

Can.y * Gray2

Can.Grad1 * Gray3

Can.Cv1 * Gray4

Can.Grad2 Gray5

Can.Cv2 Gray6

Shape1 * Gray7

Shape2 Gray8

Shape3 Grad1

Shape4 * * Grad2

TABLE IV. Performance of our CADe scheme for different databases for
which each a classifier was trained/tested with a leave-one-out cross-
validation scheme.

Databasesa Sensitivity FPs/image

BS 78.6% �110/140� 5.0 �1165/233�
80.0% �112/140�b 5.0 �1165/233�b

71.4% �100/140� 2.0 �466/233�
B 71.4% �110/154� 5.0 �1235/247�

64.9% �100/154� 2.0 �494/247�
C 83.3% �40/48� 5.0 �240/48�

77.1% �37/48� 2.0 �96/48�

aRefer to Table I for details.
bPerformance calculated with the distance criterion of 25 mm for a direct
comparison with the performance in Ref. 27. Reference 24 also used the

distance criterion.
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140 nodule cases alone. The performance for database BS

was slightly higher than that for nodule cases alone. A pos-
sible reason for the higher performance is that the pessimistic
bias with a leave-one-out cross-validation test was smaller
when the number of cases was larger.50,51 We also included
in the evaluation the 14 excluded nodules in the opaque por-
tions of the CXR that correspond to the retrocardiac and
subdiaphramatic regions of the lung, i.e., database B. The
sensitivity for all 154 nodule cases �i.e., database B� was
lower by 9.1% �14/154� than that for the 140 nodule cases
because all of the 14 excluded nodules were outside the seg-
mented lung fields; in other words, our CADe scheme did
not process those areas, as designed. Figure 16 shows the
performance of our CADe scheme for the U of C database
�database C�. The stepwise feature selection method selected
12 features for the LDA, as listed in Table III. At an FP rate
of 5.0 FPs/image, the sensitivity of the SVM-based CADe
scheme with all 31 features was 83.3% �40/48�, whereas that
of the LDA-based scheme with the 12 selected features was
75.0% �36/48�. At an FP rate of 2.0 FPs/image, the sensitiv-
ity of the SVM-based CADe scheme was 77.1% �37/48�.

es, i.e., databases BS �JSRT� and C �U of C�. �The

U of C
Extracted
features JSRT U of C

Grad3 * *
Surface1 *

* Surface2 *
Surface3 *
Texture1 *
Texture2 *

* Texture3 *
* Texture4

Texture5

Texture6 FP

FIG. 15. FROC curves indicating the performance of our CADe scheme for
tabas

JSRT

*
*

*
*
*

the JSRT database.
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We analyzed the CADe performance according to nodule
subtlety, size, and pathology, as shown in Figs. 17–19 for
database BS. It should be noted that the sensitivity was cal-
culated in each category �i.e., the sensitivity was 100% if all
nodules in a particular category were marked.�. Our CADe
scheme marked 54.8% �23/42� of very subtle and extremely
subtle nodules with 5 FPs/image. All obvious nodules were
marked with 2.6 FPs/image, and 91.9% �35/38� of relatively
obvious nodules were detected with 2.2 FPs/image. Our
scheme has a high performance for large- and medium-sized
nodules and a relatively high performance �a sensitivity of
65.5% �38/58� with 5.0 FPs/image� for small nodules, as
shown in Fig. 18. The sensitivities for malignant and benign
nodules were comparable, as shown in Fig. 19.

Typical examples of our CADe detection results at oper-
ating points with FP rates of 4.5 and 4.0 FPs/image for da-
tabases BS �i.e., the JSRT database� and C �U of C database�
are shown in Figs. 20�a� and 20�b�, respectively. These ex-
amples show one TP and several FPs in each case. The FPs
include an anterior and posterior rib intersection, a clavicle,

FIG. 16. FROC curves indicating the performance of our CADe scheme for
the U of C database.

FIG. 17. FROC curves indicating the performance of our CADe scheme by

nodule subtlety for the JSRT database.
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and a rib intersection. Figure 21 illustrates several examples
of nodules missed by our CADe scheme. We found that the
missed nodules tended to be small and to have low contrast.
Most of them were rated as very or extremely subtle.

III.C. Performance comparison with other CADe
schemes

It is difficult to make definitive comparisons with the pre-
viously published CADe schemes because of different data-
bases, different TP criteria, different evaluation procedures,
different optimization parameters, and different operating
points.52 We, however, attempted to compare our perfor-
mance to the performance reported in literature. We found
four studies in which the publicly available JSRT database
was used. Table V summarizes the performance comparisons
among different CADe schemes in literature. Wei et al.30

reported that their CAD scheme achieved a sensitivity of
80% with 5.4 FPs/image for the JSR database. They did not
mention anything about training-testing separation. Because

FIG. 18. FROC curves indicating the performance of our CADe scheme by
nodule size for the JSRT database.

FIG. 19. FROC curves indicating the performance of our CADe scheme by

pathology for the JSRT database.
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more than 200 features �i.e., the number of freedoms� were
used for training and testing which were greater than the
number of nodules �i.e., the number of training samples� in
the database, the reported performance should be highly bi-
ased due to the overtraining. Hardie et al.27 reported that
their scheme marked 80% of nodules in a subset of the JSRT
database �i.e., database BS� with 5 FPs/image. Their perfor-
mance was calculated by using the distance criterion of 25
mm for determining TP detections. Training and testing
should be considered not to be independent because the au-
thors matched the characteristics of the testing database with
those of the training database. The performance �a sensitivity
of 71%� of our CADe scheme was substantially higher than
that �63%� of Hardie’s CADe scheme at a low FP setting
�2.0/image�, which is relevant in practical use in hospitals.

IV. DISCUSSION

Here, we have presented a novel lung nodule CADe
scheme for CXRs. A detailed performance analysis of the
scheme was conducted with the use of the publicly available
JSRT database �databases BS and B� and our own U of C

FIG. 20. Illustrations of true positives �arrows� and false positives of our CA
database.
database �database C�. We acknowledge that many experi-
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mental factors must be taken into account when comparisons
are interpreted. However, we believe that the current scheme
is certainly competitive and offers some useful innovations,
including the two-stage nodule detection method and the
watershed-segmentation-based feature extraction method.
We made an interesting observation related to the choice of a
classifier. We compared two classifiers and found that the
nonlinear SVM generalized from a relatively small number
of positive cases did better than did the LDA. For our CADe
scheme, the SVM with all 31 extracted features provided a
higher performance �a sensitivity of 76.4% with an FP rate of
5.0 FPs/image� than did the LDA with selected features by
the stepwise feature selection method. On the other hand, if
the features selected for the LDA were used for the SVM, the
performance was lower �a sensitivity of 68.6% at 5.0 FPs/
image�. Thus, how to select “effective” features for a particu-
lar nonlinear classifier is an important issue in CADe re-
search.

Different criteria for determining a TP have been used in
different published studies. Research in Ref. 24 used a “dis-
tance” criterion that counts a detected candidate to be a TP if

arks �circles�. �a� Cases from the U of C database. �b� Cases from the JSRT
De m
the distance between the centroid of the candidate and the
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reference-standard center of a nodule is less than 22 mm. A
problem with this criterion is that the same distance is ap-
plied to nodules of any size. A “TP” region can be away from
a small nodule. Research in Ref. 27 adopted a distance cri-
terion with 25 mm as a threshold value. Research in Ref. 25
used an “overlap” criterion: A nodule is considered to be

FIG. 21. Illustrations of false negatives �arrows� and false positives of our
CADe marks �circles�. �a� Cases from the JSRT database. �b� Cases from the
U of C database.

TABLE V. Performance comparisons of CADe scheme

Sensitivity

Wei et al. �2002� �Ref. 30�a 80% �123/154�

Coppini et al. �2003� �Ref. 23� 60% �93/154�
Schilham et al. �2006� �Ref. 25� 51% �79/154�

67% �103/154�
Hardie et al. �2009� �Ref. 27�b 80% �112/140�

63% �88/140�

aThe authors did not discuss training-testing separatio
were used for training and testing, which were greate
samples� in the database.
b
Performance was calculated by using the distance criterio
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detected if there is any overlap between a detected candidate
and the reference-standard region of a nodule. A detected
candidate needs to be closer for being a TP for a smaller
nodule than it does for a larger nodule. A problem with this
criterion is that if a detected candidate region is large, the
candidate that is not close enough to a nodule can be counted
as a TP. The region criterion applied to our scheme evalua-
tion is stricter than the distance criterion and the overlap
criterion. We believe that the region criterion is more rel-
evant scientifically because it does not have the problem with
the distance criterion for small nodules or the problem with
the “overlapping” criterion for large detected candidates, as
described above. Because of the use of the stricter criterion,
the measured performance of our CADe scheme could be
lower than the performance measured with the other two
criteria used in published studies. Schilham et al.25 reported
a sensitivity of 96.4% with 134 candidates/image at the nod-
ule candidate detection stage. This sensitivity was calculated
based on the overlap criterion. Shiraishi et al.24 reported a
sensitivity of 92.5% with 60.2 candidates/image based on the
distance criterion. In our experiment, 3360 and 9800 nodule
candidates were detected for the U of C database �database
C� and the JSRT database �database BS�, respectively. By
using our region criterion, 47 and 129 true nodules were
labeled as TPs for the U of C database and the JSRT data-
base, respectively, whereas by using the distance criterion
with 25 mm, 48 and 135 nodules were labeled as TPs for the
U of C database and the JSRT database, respectively. Thus,
the same performance was counted as a higher performance
with the distance criterion than with our region criterion.
Therefore, the region criterion was a stricter criterion than
was the distance criterion in our experiment.

In our experiment, the size of the nodule template for the
two-stage nodule enhancement in the nodule candidate de-
tection was fixed. Because the size of nodules in the JSRT
database ranged from 5 to 60 mm, if we use nodule tem-
plates of different sizes adaptively for different-sized nod-
ules, the performance of the initial nodule candidate detec-
tion can be improved. The development of such a method is
planned for our future study.

We analyzed the false-negative nodules at the sensitivity
of 76% in the JSRT database. We found that they were lo-

t used the JSRT database for evaluation in literature.

FPs/image Database

.4 �1333/247� All nodule and normal
cases in JSRT �247�

4.3 �662/154� All nodules cases in JSRT �154�
2.0 �308/154� All nodule cases in JSRT �154�
4.0 �616/154�
5.0 �700/140� Nodule cases in JSRT �140�
2.0 �280/140�

ore than 200 features �i.e., the number of freedoms�
the number of nodules �i.e., the number of training
s tha

5

n. M
r than
n of 25 mm for determining TP detections.
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cated either in the pulmonary trunk and artery areas or be-
hind ribs and/or clavicles. Because of these complex back-
grounds, our scheme was not able to produce accurate
segmentation of the nodules. As a result, the features com-
puted in the subsequent step were less accurate, and this
made the classification task more difficult.

In the evaluation of our CADe scheme, we used the pub-
licly available JSRT database. A good feature of this database
is that the observer performance study results for radiologists
are available. The study showed that radiologists detected
only 44% of the extremely and very subtle cases. At an FP
rate of 5.0 FPs/image, our CADe scheme correctly detected
55% of these cases in the same category, whereas a conven-
tional CADe scheme, reported in Ref. 25, detected 41% of
the cases. This is encouraging because our CADe scheme has
a desirable characteristic, which is a high sensitivity for
subtle cases. Therefore, we expect that our CADe scheme
will potentially be useful for improving radiologists’ perfor-
mance in the detection of subtle nodules.

The performance of our CADe scheme was higher for the
U of C database than for the JSRT database. The reasons for
this are threefold: �1� Nodules in the JSRT database were
more subtle than those in the U of C database. There were 42
very subtle and extremely subtle nodules out of 140 nodules
in the JSRT database. There are “nonactionable” nodules
where all of 6 expert radiologists did not detect even when
they were marked by a hypothetical CADe scheme with
100% sensitivity in an observer performance study.53 �2� The
average size of the nodules in the U of C database was larger
than that in the JSRT database. �3� The images in the U of C
database were digital images acquired with a computed radi-
ography system, whereas the images in the JSRT database
were digitized images scanned from films. Thus, the quality
of images in the U of C database was better than that of the
images in the JSRT database. Therefore, the “difficulty” of
databases was substantially different. This substantial differ-
ence in database characteristics may have caused the differ-
ent feature sets selected for LDA with the stepwise feature
selection method.

How much a CADe scheme is able to improve the perfor-
mance of a radiologist depends on the following factors: Ra-
diologist’s experience, “stand-alone” performance of the
CADe scheme, and the ability of the reader to distinguish a
TP marking from a FP marking.14 We have developed a
CADe scheme that achieved a relatively high performance.
We expect that the higher stand-alone performance will be
beneficial to the improvement of radiologist’s performance.
We will need to carry out an observer performance study
with radiologists to prove this.

The time for processing one case with our CADe scheme
was about 70 s �including 25 s for nodule candidate detection
and 45 s for candidate segmentation, feature extraction, and
classification� on a PC-based workstation �Intel Pentium 2.4
GHz processor with a 3 GB memory�. The candidate seg-
mentation consumed about half of the entire processing time.

Thus, CADe results will be obtained 70 s after the acquisi-
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tion of a CXR. Therefore, at the time of the radiologist’s
reading, CADe results will already be available on a viewing
workstation for his/her review.

V. CONCLUSION

We have developed a CADe scheme for the detection of
lung nodules in CXRs. Our CADe scheme consists of an
accurate lung segmentation based on the multisegment ASM,
a new two-stage nodule-enhancement technique, nodule seg-
mentation by using an improved watershed segmentation,
and an SVM classifier. Our CADe scheme achieved sensi-
tivities of 76% �107/140� and 77% �37/48� with 5.0 �700/
140� FPs/image and 2.0 �96/48� FPs/image for a publicly
available database �JSRT� and our database �U of C�, respec-
tively, in a leave-one-out cross-validation test. Therefore, we
expect that our CADe scheme will be potentially useful for
improving radiologist’s sensitivity in the detection of lung
nodules in chest radiographs.
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