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Abstract
Portable chest radiographs (CXRs) are commonly used in the intensive care 
unit (ICU) to detect subtle pathological changes. However, exposure settings 
or patient and apparatus positioning deteriorate image quality in the ICU. 
Chest x-rays of patients in the ICU are often hazy and show low contrast and 
increased noise. To aid clinicians in detecting subtle pathological changes, we 
proposed a consistent processing and bone structure suppression method to 
decrease variations in image appearance and improve the diagnostic quality 
of images. We applied a region of interest-based look-up table  to process 
original ICU CXRs such that they appeared consistent with each other and 
the standard CXRs. Then, an artificial neural network was trained by standard 
CXRs and the corresponding dual-energy bone images for the generation 
of a bone image. Once the neural network was trained, the real dual-energy 
image was no longer necessary, and the trained neural network was applied 
to the consistent processed ICU CXR to output the bone image. Finally,  
a gray level-based morphological method was applied to enhance the bone 
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image by smoothing other structures on this image. This enhanced image was 
subtracted from the consistent, processed ICU CXR to produce a soft tissue 
image. This method was tested for 20 patients with a total of 87 CXRs. The 
findings indicated that our method suppressed bone structures on ICU CXRs 
and standard CXRs, simultaneously maintaining subtle pathological changes.

Keywords: Intensive care unit, bone suppression, artificial neural network

(Some figures may appear in colour only in the online journal)

1. Introduction

Chest radiographs (CXRs) are by far the most commonly used diagnostic imaging modalities 
for the identification of chest diseases such as lung cancer, tuberculosis, pneumonia, pneumo-
coniosis, and pulmonary emphysema. CXR is the most cost-effective, routinely available, and 
dose-effective diagnostic tool. It even has the ability to reveal certain unsuspected pathologic 
alterations (Murphy et al 1995). In the intensive care unit (ICU), routine CXRs are somewhat 
valuable in the treatment decision-making process (Chahine-Malus et al 2001). Clinical evalua-
tion strongly relies on portable CXRs (Strain et al 1985, Wandtke 1994). Successive diagnostic 
images obtained using a portable computed radiography (CR) system or a digital radiography 
(DR) system are helpful tools for detecting significant pathological changes (Ely et al 2001, 
Amorosa et al 2013) such as a collapsed lung, pneumothorax, congestive heart failure, and 
improper tube placement within the patient (Reyes et al 2001, Mercan and Celebi 2014).

Although portable CXRs are widely used in the ICU to detect pathological changes, the 
incidence of overlooks is relatively high (Hammon et al 2014). Exposure settings or patient 
and apparatus positioning limit the accuracy of image comparison in the ICU, even for those 
images obtained from the same patient over short treatment intervals. This restricts the ability 
of clinicians to identify subtle changes that can be highly significant. Figure 1 shows some 
CXRs obtained for a typical ICU patient. A study of these images revealed that original ICU 
CXRs show low contrast and are different from each other even if they are obtained from the 
same patient. The image in figure 1(a) shows no congestive heart failure (CHF), while those 
in figures 1(b) and (c) show mild and moderate CHF, respectively. Therefore, clinicians can 
barely detect subtle changes on original ICU CXRs. A consistent processing method for such 
images is thus required such that the normal tissues in the processed image have similar inten-
sity, contrast, and frequency signal to each other and to the standard CXR, and the abnormal 
tissue and pathological changes are signalized.

Currently, one of the primary methods used for processing portable CXRs is the alloca-
tion of output dynamic ranges and the display of clinically important input pixel values. The 
process of selecting the relevant sub-range of input pixel values and constructing an appro-
priate mapping function from the input pixel values to the output display media is referred 
to as tone-scale adjustment. Using a tone-scale method for CR images provides an optimal 
processing result. Some other methods also lead to improved contrast enhancement on diag-
nostic images(Chen and Zou 2009). However, because these methods are based on a single 
image, they cannot address the problem of inconsistency between images of the same patient 
obtained at different time points and between these images and standard CXRs. Furthermore, 
the application of such tone-scale techniques is not likely to provide consistent processing 
results, which makes it difficult for the ICU clinician to access changes accurately.

In this paper, we present a region of interest (ROI) based look-up table (LUT) (Ryoo et al 2013) 
method to enhance original ICU CXRs. With this method, the normal tissue in the processed ICU 
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CXR appears consistent with that in the standard CXR, e.g. in terms of intensity and contrast. 
Furthermore, images obtained for the same patient are also consistent with each other and facilitate 
the detection of subtle pathological changes. To make diagnosis easier, the bone structures on the 
consistent processed image are suppressed. Some researchers have performed dedicated studies on 
bone suppression on CXRs. Suzuki et al first developed a supervised image-processing technique 
for separating the ribs from the soft tissue on CXRs using a multi-resolution massive-training arti-
ficial neural network (MTANN) (Suzuki et al 2004, 2006), a type of pixel-based machine learning 
(Suzuki 2012) that is considered as a supervised, highly nonlinear filter based on artificial neural 
network regression. Real dual-energy images were used as teaching images for training of the 
multi-resolution MTANN, following which the real dual-energy images were no longer neces-
sary. An observer performance study with 12 radiologists demonstrated that the suppression of 
bony structures on CXRs improved the diagnostic performance of radiologists with regard to the 
satisfactory detection of lung nodules (Oda et al 2009). Plourde et al proposed a semi-automated 
technique for detecting complete scoliotic rib borders from posterior-anterior chest radiographs 
using an edge-following approach with multiple-path branching and oriented filtering (Plourde et 
al 2012). Ahmed et al presented a technique based on independent component analysis for the sup-
pression of posterior ribs and clavicles in order to enhance the visibility of nodules and aid radiolo-
gists during the diagnosis process (Ahmed and Rasheed 2007). Loog et al proposed a supervised 
filter learning technique for the suppression of ribs (Loog et al 2006). The procedure is based on 
K-nearest neighbor regression, which incorporates knowledge obtained from a training set of dual-
energy radiographs with their corresponding subtraction images for the construction of a soft-tissue 
image from a previous, unseen, single, standard chest image. Hogeweg et al presented a method 
for translucent elongated structure suppression on CXRs. The focus is on elongated structures, 
which allows the extraction of an intensity model of a structure of interest using local information 
only. The model is created from profiles sampled perpendicular to the structure. Profiles containing 
other structures are detected and eliminated to decrease the influence on the model (Hogeweg et 
al 2013). In these methods, MTANN was able to separate the ribs from the soft tissue on CXRs; 
however, rib edges, ribs close to the lung wall, and the clavicles were not completely suppressed. 
Chen et al proposed a specific MTANN combined with total variation (TV) for bone suppression 
(Chen and Suzuki 2014). Soft tissue CXRs can aid ICU clinicians in detecting subtle pathological 
changes as well as for radiologists in detecting lung nodules (Chen and Suzuki 2013).

In this study, we developed a bone suppression technique (Chen and Suzuki 2014) and applied it 
to suppress the bones on ICU CXRs. However, the ICU CXRs were often hazy and showed low con-
trast and increased noise. They were different from the standard CXRs. Furthermore, there were dif-
ferent types of fusion area within the lung field on ICU CXRs, and the traditional histogram matching 

Figure 1. Some CXRs from a same patient in ICU: (a) no CHF; (b) mild CHF;  
(c) moderate CHF.
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method would make the intensity and contrast of normal tissues different between ICU CXRs and 
standard CXRs. The consistent processing method was applied to ICU CXRs to ensure their consist-
ency with training standard CXRs in terms of the separation between normal and abnormal tissues. 
The first step of this consistent processing method was background segmentation over all the images. 
Then, an ROI containing tissue regions that were critical for clinicians to achieve an accurate diagno-
sis was automatically located. Next, an LUT was constructed for each gray value in the ROI. Finally,  
a toe-shoulder construction step was employed to construct an LUT for very dark and light regions. In 
the LUT mapping step, the gray values of the pixels in the input images were mapped to the corresp-
onding gray values in the output images. After consistent, processed ICU CXRs were obtained, they 
were inputted to the trained MTANN to obtain the bone images. Although the improved MTANN can 
derive a bone image with a high signal noise ratio (SNR) for the consistent, processed ICU CXRs, 
some amount of noise remains in the output bone image, because the image quality of the origi-
nal ICU CXR is poor. A post-processing method based on gray-level morphological algorithm was 
applied to enhance the bone structure and decrease the noise in the bone image. Finally, the enhanced 
bone image was subtracted from the ICU CXR to obtain a consistent, processed, soft tissue image.

2. Materials and method

2.1. Database

The Kodak CR 400 system (Kodak Health Imaging Sciences, Rochester, NY) was used in our 
study conducted at Xinhua Hospital, Shanghai, China. In Kodak CR systems, the exposure 
index (EI) related to the logarithm of the incident exposure. In our study, the kVp, mAs and EI 
values were 80, 1.4, and 1770 respectively.

In our experiment, an anti-scatter grid was not used. Grid usage in portable radiography is 
often sporadic and inconsistent. From the perspective of the radiographic technologist, using grids 
for portable exams involves a variety of time-consuming workflow implications. These include 
attaching and detaching the add-on grids to the x-ray cassettes; the stringent requirements to prop-
erly position and align the x-ray source relative to the cassette behind the patient to avoid grid cut-
off; the increased probability that repeated exposures will be required due to grid-cutoff artifact; 
and more. In addition, there is the misperception that grids are not required in digital radiography 
because increasing the exposure can overcome the scatter-noise level, and that image processing 
adjustments, such as window and level manipulations, can sufficiently compensate for the quality 
losses that are introduced by scattered radiation. With all of these considerations in mind, there 
would seem to be little motivation for the technologists to use grids in portable DR.

Direct exposed raw images were acquired without any gray-scale manipulation or preproc-
essing for optimization of the gray-scale processing algorithms. The results were compared to 
those obtained with Kodak’s tone-scale algorithm.

Eighty-seven portable CXRs were collected from 20 patients using the Kodak CR 400 sys-
tem. Two to nine images with a size of 2500  ×  2048 pixels were obtained for each patient. The 
gray scale was 12 bits and the pixel size was 0.171  ×  0.171 mm. Chest radiologists reviewed 
all the images and provided a diagnosis that included the type of disease, such as cardio-
megaly, CHF, endotracheal tube, feeding tube, nasogastric tube, and ventricular assist device. 
Table 1 summarizes the database used in this study.

Another database comprising nine posterior-anterior standard CXRs acquired using a CR 
system with a dual-energy subtraction unit were used for training the improved MTANN. The 
dual-energy subtraction unit employed a single-shot dual-energy subtraction technique, where 
a single exposure that is detected by two receptor plates separated by a filter is used for obtain-
ing images at two different energy levels (Ishigaki et al 1986, 1988, Stewart and Huang 1990).
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2.2. Scheme for original ICU CXR enhancement

Figure 2 shows our scheme for ICU CXR enhancement with bone suppression, which included 
four major steps. The first was consistent processing and enhancement for ICU CXRs from 
the same patient, which has two purposes: facilitate the easy detection of subtle pathological 
changes and achieve the efficiency pattern features for bone suppression, similar to those on 
the standard CXRs used for training. The second step involved bone image creation based 
on the trained MTANN, followed by bone image enhancement through the use of gray level-
based morphological algorithms as the third step and soft tissue CXR creation as the fourth.

2.3. Consistent processing for CXRs

We used an ROI-based LUT method to enhance original ICU CXRs, which ensured consis-
tency of the normal tissues in the processed ICU CXRs with those in the standard CXRs. 
Furthermore, images of the same patient are consistent with each other in terms of intensity 
and contrast. This aids clinicians in detecting subtle pathological changes. We first segmented 
the background, which typically corresponded to the highest signal levels in the image, where 
the unobstructed radiation hit the imaging plate.

For ICU CXRs, the position of the ROI, which is necessary for clinical diagnoses, varies. The 
basic principle of automated ROI selection is to simply identify the ROI in each image automati-
cally. ROI identification on an image on the basis of key features (lung line, spine line) allows 
the correlation of two or more images. Figures 3(a) and (b) show two original ICU CXRs of the 
same patient, with two automatically selected ROIs (blue trapezoid). These figures show that 
the position of the ROI is different among images, even though they belong to the same patient.

Table 1. Information of the study patients.

Patient ID
Number 
of images Cardiomegaly CHF

Endotracheal 
Tube

Feeding 
Tube

1 5 No Yes No Yes
2 2 Yes Yes No yes
3 4 No Yes Yes Yes
4 4 No Yes Yes Yes
5 4 Yes Yes Yes No
6 7 No No No Yes
7 9 No Yes Yes Yes
8 3 No No Yes no
9 3 No No Yes No
10 3 Yes No No No
11 4 Yes Yes No Yes
12 3 Yes Yes No No
13 3 No Yes Yes Yes
14 4 Yes Yes No Yes
15 2 No No Yes No
16 6 No Yes Yes Yes
17 3 No Yes no No
18 9 No Yes No Yes
19 4 No Yes No No
20 5 No No Yes Yes
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Figure 2. Main diagram of our ICU CXR enhancement scheme.

Figure 3. ROI is automatically identified by use of the key features (spine line identified 
by red line, lung line identified by green line, ROI identified by blue trapezoid).
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In this step, the image was resized smaller. The resized image was used only for ROI selec-
tion in order to improve the speed. The pixel value for each row was assessed to determine 
the local maximum near the mediastinum area, and these maximum points along each row 
were grouped together to form the spine line, shown in figure 3 (red line). The local minimum 
points on both sides of the spine line were identified as candidate points for the lung line. 
These candidate points were grouped together, and the longest groups in the middle were 
chosen as the initial lung lines. Removal of the points at both ends with high pixel values 
further cleaned the lines. The resulting lung lines are shown as the left and right green lines in 
Figure 3. Once the approximate lung line and spine line were determined, a spine-line-fitting 
step could be executed following which we could obtain a trapezoid ROI for all images of the 
same patient using the spine line and the distance from the spine line to the lung line.

Then, the LUT was constructed for these ROIs. First, we identified the primary area on the 
image from the histogram that was calculated using the ROI only. lp and rp are gray values 
representing the left and right points of the histogram, respectively. The main range (5%–95%) 
in the ROI was achieved between the left and right points. The objective of the next few steps 
was to map the left point lp and the right point rp to the corresponding gray values Al and Ar.

Figure 4 shows an example of LUT construction. lp and rp are mapped to Al and Ar in the 
output image predefined for the same patient. However, the ROI contains the lung and spine, 
and the gray values of most pixels in the ROI are lower than those of the pixels in the bottom 
part of the image. On the other hand, the gray values of most pixels in the abdomen area are 
larger than Ar, and are mapped to the gray value between Ar and 4095. If Ar is too large, the 
range of [Ar, 4095] will be narrow. After mapping, the abdomen appears bright and the con-
trast is suppressed. During clinical examination, the portion of the abdomen in the image was 
generally different. For example, the diaphragm in figure 3(a) is higher than that in figure 3(b).  
If we set the same value of Ar for the two images, the abdomen’s contrast observed in  
figure 3(a) was suppressed after processing. To accommodate the differences in the images 
due to patient positioning, the value of Ar should be adjusted for each image based on the 
ROI’s position. This difference can be best expressed in terms of the ratio of the distance 
d to the column length Lc, as illustrated in figure 3. A larger d /Lc value represents a higher 

Figure 4. An example of lookup table construction, each image has a mapping curve.
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percentage of the abdomen in the image, while Ar should be lowered to provide a sufficient 
range to map the pixels with large gray values.

Based on these considerations, Ar was adjusted using the following equation:

( ) ( ) ⩽ ⩽= ⋅ + − ⋅Ar t Ar t Ar d d t1 / , 0 1,st st st (1)

where d is illustrated in figure 3 and dst is measured for the standard CXRs used for training. 
The parameter t can be adjusted depending on whether the focus is primarily on image pro-
cessing or on consistency. If t  =  1, Ar is the same for the standard CXRs. If t  =  0, each image 
has a different Ar value. For the images in our experiment, the gray value ranged from 0 to 
4095 and t was set to 0.5 for those ICU CXRs.

Because pixels with gray values of lp are usually in the lung field of the ROI, and because of 
inhalation and exhalation movements and the pathological impact on the lungs, the gray value 
of lp for different images should not be mapped to the same Al. For example, there are two 
images, one obtained during inhalation and the other during exhalation, for the same patient. 
The lung will look darker in the inhalation image than in the exhalation image. Therefore, we 
should identify criteria that will not vary after the image is mapped and use them to calibrate 
the gray value of Al for each image. The density of the spine will not vary when routine radio-
graphs are obtained. Therefore, Al was adjusted using the following equation:

( ( ( ) ))

=
−
−

= + ⋅ −

p
rp lp

spdv spuv
Al Al a a p a a

dark

max , min dark , ,st 1 2 0 4

 
(2)

where spdv and spuv represent the main gray-level range in the spinal region (10%–80%), 
which can be automatically detected, and do not depend on the patient’s status.

For the images in our experiment, Alst was used for the trained standard CXRs, with 
a1  =  −250, a2  =  −300, a0  =  1.8, and a4  =  250. These are empirical parameters determined 
from the nine training standard CXRs and validated by a radiologist. The value of Al can be justi-
fied by the pdark ratio for each image. For example, if the pdark of one image is larger than those 
of other images, the lung will appear darker on this image than on other images after mapping.

After we obtained lp, rp, Al, and Ar for each image, LUT construction between lp and rp to 
Al and Ar was applied. The mapping from [lp, rp] to [Al, Ar] was established on the basis of 
an active rate calculated using equation (3).
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where activity[k] is the activity at intensity k, and h[k] is the number of pixels at intensity k.  
In our experiment, hl and hr were thresholds and were set to 50 and 1000, respectively.

( )
( ) ( ) ( )( )

( )( )

⩽ ⩽

=
+ = + −

+
− −

−

⎛
⎝
⎜

⎞
⎠
⎟

lp Al
i i i Ar Al

Ar Al

rp lp

LUT
LUT 1 LUT ActNor ratio,

1 ratio

0 ratio 1

 

(4)

In equation (4), if ratio  =  0, the LUT is considered a linear mapping of [lp, rp] to [Al, Ar].  
If ratio  =  1, the active rate at each gray value is considered. Figure 5 shows an example of 
LUT construction using equation (4) considering the active rate by fixing ratio to be 0.5. This 
figure indicates that the slope is larger at the larger active rate point and that the image has 
higher contrast in the pixels with gray values having larger active rates.

In addition to ROI mapping, for darker or brighter regions, a toe-shoulder LUT construc-
tion step was included for additional mapping, such as the toe region and the shoulder region 
in the LUT curve in figure 4. The toe region was constructed for mapping the dark area in the 
image, while the shoulder region was constructed for the bright area in the image.

2.4. MTANNs for bone image creation

For bone image creation, the MTANN (Suzuki et al 2006) comprised a machine-learning 
regression model such as a linear-output multilayer ANN regression model, which is capable 
of operating directly on pixel data. This model employs a linear function instead of a sigmoid 
function as the activation function of the unit in the output layer. This was used because the 

Figure 5. Active-rate considering in LUT construction, bigger slope for LUT at higher 
active-rate gray value.
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characteristics of an ANN have been shown to be significantly improved with a linear function 
when applied to the continuous mapping of values in image processing.

The MTANN involves training with massive sub-region-pixel pairs, which we call a mas-
sive-sub-region training scheme. For bone suppression, CXRs are divided pixel by pixel into 
a large number of overlapping sub-regions (or image patches). Single pixels corresponding to 
the input sub-regions are extracted from the teaching images as teaching values. The MTANN 
is massively trained by using each of a large number of input sub-regions (or patches) together 
with each of the corresponding teaching single pixels. The inputs to the MTANN are pixel 
values in a sub-region (or an image patch), R extracted from an input image. The output of 
the MTANN is a continuous scalar value, which is associated with the center pixel in the sub-
region, represented by

( ) { ( ) ( ) }= − − ∈O x y I x i y j i j R, ML , , , (5)

where ML(·) is the output of the machine-learning regression model and I(x,y) is a pixel value 
of the input image. The error to be minimized by training of the MTANN is represented by

{ ( ) ( )}
( )
∑ ∑= −

∈

E
P

T x y O x y
1

, , ,
c x y R

c c
,

2

T

 (6)

where c is the training case number, Oc is the output of the MTANN for the cth case, Tc is the 
teaching value for the MTANN for the cth case, and P is the number of total training pixels in 
the training region for the MTANN, RT.

Although an MTANN was able to suppress the ribs in CXRs (Suzuki et al 2006), a single 
MTANN did not efficiently suppress rib edges, ribs close to the lung wall, and the clavi-
cles, because the orientation, width, contrast, and density of bones differ among locations and 
because the capability of a single MTANN is limited. To improve the suppression of bones at 
different locations, we extended the capability of a single MTANN and developed an anatomi-
cally specific multiple-MTANN scheme that comprised eight MTANNs arranged in parallel. 
Each anatomically specific MTANN was trained independently using standard CXRs with the 
corresponding anatomic segments. The lung field was divided into eight anatomic segments: 
a left upper segment for suppression of the left clavicles and ribs, a left hilar segment for sup-
pression of the bone in the hilar area, a left middle segment for suppression of the ribs in the 
middle of the lung field, a left lower segment for suppression of the ribs in the left lower lobe,  
a right upper segment, a right hilar segment, a right middle segment, and a right lower segment. 
For each anatomically specific MTANN, the training samples were specifically extracted from 
the corresponding anatomic segment mask. After training, each of the segments in a non-
training ICU CXR was inputted into the corresponding trained anatomically specific MTANN 
for processing of the anatomic segment in the lung field. For example, MTANNs No.1 was 
trained to process the left-upper segment in the lung field, which contains the clavicle, and 
MTANNs No.2 was trained to process the left hilar segment. The eight segmental output sub-
images from the anatomically specific multiple MTANNs were then composited to an entire 
bone image using the eight anatomic segment masks. To blend the sub-images smoothly near 
their boundaries, anatomic segmentation masks smoothed by a Gaussian filter were used to 
composite the output sub-images, represented by

∑= ×
=

f x y O x y f M x y, , , ,
i

i ib
1

8

G( ) ( ) [ ( )] (7)

where fb(x,y) is the composite bone image, Oi is the ith trained anatomically specific MTANN, 
fG(.) is a Gaussian filter operator, and Mi is the ith anatomic segmentation mask. In our 
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experiment, the parameter of sigma for the Gaussian filter was determined to be 10.0, while 
the size of the template was 9  ×  9 pixels.

For training of overall features in each anatomic segment in the lung field, 10,000 pairs of 
training samples were extracted randomly from the anatomic segment for each anatomically 
specific MTANN. A three-layered MTANN was used, where the numbers of input, hidden, 
and output units were 81, 20, and 1, respectively. Once the MTANNs are trained, the dual-
energy imaging system is no longer necessary. The trained MTANNs can be applied to ICU 
CXRs for suppression of bones. The advantages of this technology over real dual-energy 
imaging are that there is no need for special equipment to produce dual-energy images, or no 
additional radiation dose to patients.

2.5. Bone image processing and soft tissue image creation

In the improved bone suppression method, a total variation (TV) minimization smoothing 
method, which was first introduced into the context of image smoothing by Rudin (Rudin et al 
1992), was applied to the bone image, following which the smoothed bone image is subtracted 
from the original CXR to obtain a soft tissue image. For ICU CXRs, the bone image showed 
more noise and lower contrast of bones than for standard CXRs. A bone structure enhance-
ment method based on the gray-level morphology theory was applied in our scheme.

We applied five gray-level morphologic opening operators with line templates to post-
process the bone image. Five rib templates with five different orientations, i.e.,−45, −22, 0, 
+22, and  +45 degrees, as shown in figure 6, were used for enhancing rib-like structures and 
eliminating other structures. The size of each template is 17  ×  17 pixels. For each template 
image bi in figure 6, the enhanced image is expressed as following:

( ) { ( ) ( ) ( ) ( ) ( ) }= + + − + + ∈ ∈f s t f s x t y b x y s x t y D x y D, min , , , ; ,b i ftemp bib

 
(8)

( ) { ( ) ( ) ( ) ( ) ( ) }= − − + − − ∈ ∈−f s t f s x t y b x y s x t y D x y D, max , , , ; ,i i fen temp bitemp

 
(9)

where: fb(x,y) is the bone image. bi(x,y) is the rib template in figure 6. D fb, D ftemp
, and Dbi are 

the domains of fb, ftemp, and bi, respectively. Then the maximum value among the outputs of 
the five operators was stored in each pixel in the enhanced bone image.

( ) { ( )}=
=

−f x y f x y, max ,
i

ienhanced
1,2,3,4,5

en (10)

After the enhanced bone image was obtained, the soft tissue image could be acquired using 
the subtraction technique. We focused on suppression of the ribs and clavicles in the lung field 
regions. For processing only in the lungs, lung segmentation was used, and suppression was 
performed only in the segmented lungs using the subtraction technique. After segmentation, a 
Gaussian filter was applied for smoothing the edges of the segmented lung regions to create an 
image m(x,y) for masking the outside of the lung regions. The masking image was normalized 
to have values from 0 to 1. For suppression of the ribs in an ICU CXR, the bone image fb(x,y) 

Figure 6. Templates used for gray-level morphological enhancement.
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produced by the anatomically specific multiple MTANN was subtracted from the original 
CXR g(x,y) with the masking image m(x,y) as follows:

( ) ( ) ( ) ( )= − × ×f x y g x y w f x y m x y, , , , ,S C b (11)

where wC is a weighting parameter for determining the contrast of ribs. By changing the 
weighting parameter wC, one can obtain processed CXRs with different contrast of ribs and 
clavicles.

3. Results

In this section, we discuss the results of 87 portable CXRs taken from 20 patients. An evalua-
tion of all 20 patients was performed to compare the overall consistency in the image and the 
lung areas as well as the ability to detect changes in patients’ conditions against the clinician’s 
diagnosis.

3.1. Consistent processing

Consistent processing plays an important role in the detection of subtle changes as well as in 
bone suppression. Figure 7 shows some examples of consistent processing for four images of 
a single patient. Although the dose and brightness differ, the contrast is high and the brightness 

Figure 7. Consistent processing for 4 ICU CXRs from same patient, first column: 
the first image with the corresponding processed images; second column: the second 
image with the corresponding processed images; third column: the third image 
with the corresponding processed images; fourth column: the fourth image with the 
corresponding processed images; first row: original ICU CXRs from same patient; 
second row: tone-scale based processed images; third row: consistent processed 
images.
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is consistent after processing. Clinicians can easily detect cardiomegaly and CHF on these 
consistent, enhanced images (figure 7(c)).

3.2. Bone image creation

After the ICU CXRs were consistently enhanced by our method, they were inputted into the 
trained MTANN for the generation of an ICU bone image. Figure 8 shows a bone image pro-
cessed from an ICU CXR using the trained MTANN. Although the MTANN was trained by 
standard CXR and the original ICU CXR was totally different from the training image, the 
bone image still showed high contrast and low noise.

On the other hand, because there are several support devices and a large area of fusion 
within the lung field on the ICU CXR, and because we never use these patterns for training, 
the SNR of the bone image for the ICU CXR was lower than that for the standard CXR. For 
example, the contrast of bones in the upper lung field was lower because there was a large 
fusion area in the consistent, processed ICU CXR (figure 8). Furthermore, the signal of some 
support devices with a line structure was strong in the bone image. An orientation-based line 
structure enhancement method is necessary to enhance the bone structure and suppress noise 
and other structures on bone images.

3.3. Bone image smoothing and enhancement

As mentioned above, there is a fair amount of noise on bone images. Although the Gaussian 
filter can smooth the noise, it can also smooth the bone edges. As a result, the bone edges are 
preserved in the soft image when subtracting the bone image from the corresponding ICU 
CXR. Here, we introduced the TV minimization noise smoothing method, which can smooth 
the noise in the bone image while preserving the edge information of bones. The primary 

Figure 8. (a) ICU CXR enhanced by use of consistent processing method; (b) the 
corresponding bone image created by use of trained MTANN.
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advantage of the TV formulation is the ability to preserve bone edges on the images, because 
of the piecewise smooth regularization property of the TV norm. Figure 9(b) shows the results 
of bone smoothing. The noise in the bone image was decreased while the bone edge was 
preserved.

In order to obtain a high SNR and a high-contrast bone image for ICU CXRs and to  
suppress bone efficiently, the bone contrast should be further enhanced. The gray-scale  
morphological opening method was used in this study. Because the direction of bones is close 
to horizontal, we only applied line templates with five different orientations, i.e.,−45, −22, 
0, +22, and  +45 degrees, for bone enhancement. As shown in figure 9(c), the bone contrast is 
enhanced using the gray-level morphological opening method, while the supporting device, 
which is close to the vertical direction, is suppressed in the bone image.

3.4. Performance of consistent processing and bone suppression

In order to prove the objective superiority of our proposed algorithm, we applied the mea-
surement of enhancement by entropy evaluation (EMEE) to evaluate our processed image 
(Agaian et al 2000). EMEE is the most commonly used image processing evaluation standard 
at present, and an effective measure to evaluate image enhancement quality. It is calculated 
by dividing an image I(i, j) into k1  ×  k2 blocks to obtain the local maximum I(I k lmax; , ) and 
minimum (I k lmin; , ) within each block. The following equation is then applied to calculate the 
EMEE value. For CXRs in our experiment databases, the intensity of pixels ranged from 0 to 
4095, with many pixels having an intensity of 0. Thus, the nonzero constant, c, was added to 
avoid obtaining a zero in the denominator in the following equation. In our experiment, c was 
set to 5, 20, and 40, and the results were compared.

Figure 9. Bone image smoothing and enhancement by use of total variation minimization 
algorithm and gray scale based morphological opening method, respectively: (a) bone 
image created from trained MTANN; (b) TV minimization smoothed bone image;  
(c) enhanced with gray scale morphological method.

S Chen et alPhys. Med. Biol. 61 (2016) 2283



2297

∑∑=
× + += =k k

I

I c

I

I c
EMEE

1

1 2
log

l

k

k

k
k l

k l

k l

k l1

2

1

1
max; ,

min; ,

max; ,

min; ,
 (12)

Table 2 shows the EMEE results for images processed by using our method as well as 
the original images and those processed by using tone-scale method. We chose block size 
40  ×  40, with c  =  5, c  =  20, and c  =  40, respectively. Larger EMEE values indicate better 
enhancement performance. From the results, we found that the proposed consistent process-
ing method performed significantly better in general than tone-scale method. For the bone 

Table 2. EMEE evaluation of the study database.

EMEE Original image Tone-scale
Consistent 
processing

Bone  
suppression

C  =  5 30.9 100.6 181.2 180.7

C  =  20 19.5 61.2 113.8 111.6

C  =  40 11.0 33.9 62.0 61.9

Table 3. The evaluation results.

Clinician 1 (score) Clinician 2 (score) Clinician 3 (score)

Processing  
method

Patient  
number T C C B T C C B T C C B

1 4 4 4 4 4 5 5 5 4 5 5 5
2 3 4 4 5 4 5 5 5 3 4 4 4
3 4 5 5 5 3 4 4 4 5 5 5 5
4 3 4 4 4 3 4 4 5 2 3 3 3
5 5 5 5 5 5 5 5 5 4 5 5 5
6 4 5 5 5 4 5 5 5 4 5 5 5
7 2 3 3 4 3 4 4 4 3 4 4 4
8 2 2 2 4 2 3 3 4 2 3 3 3
9 5 5 5 5 5 5 5 5 4 5 5 5
10 4 5 5 5 4 5 5 5 4 5 5 5
11 4 4 4 4 3 4 4 5 4 4 4 4
12 4 5 5 5 4 5 5 5 5 5 5 5
13 3 4 4 4 3 4 4 4 3 4 4 4
14 4 5 5 5 3 4 4 4 4 5 5 5
15 4 5 5 5 5 5 5 5 4 5 5 5
16 4 5 5 5 4 5 5 5 3 4 4 5
17 3 4 4 4 4 5 5 5 4 4 4 4
18 3 4 4 5 2 3 3 4 4 5 5 5
19 3 4 4 4 3 4 4 4 3 4 4 4
20 2 3 3 4 3 4 4 4 2 3 3 4

Non parametric test 
(Wilcoxon Signed Rank 
test) Sig.

0.000 0.034 0.000 0.046 0.000 0.157

T: Tone-scale based method.
C: Consistent processing without bone suppression.
B: Consistent processing with bone suppression.
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suppression images, the EMEE value was comparable to those before bone suppression.  
It proved that our bone suppression technique did not import noise or reduce the quality of 
the image.

A subjective evaluation method was also proposed by three expert ICU clinicians. They 
provided ratings on a 5-point acceptability scale, where ‘1’ is not acceptable and ‘5’ is out-
standing in terms of the enhancement effect among the images presented for diagnostic 
purposes. Three methods for the enhancement of ICU CXRs were compared (traditional tone-
scale method, our consistent processing method without bone suppression, and our consistent 
processing method with bone suppression). Table  3 shows the evaluation results. The test 
values tell us that the consistent processing without bone suppression method substantially 
improved the 5-point score for all three clinicians comparing to the tone-scale based method. 
Furthermore, the consistent processing with bone suppression method improved the 5-point 
score for both clinician 1 and clinician 2. The consistent, processed image with bone sup-
pression improved the confidence of clinicians’ and aided in the interpretation of ICU CXRs 
with more effectiveness and efficiency. All three clinicians provided scores for each of the  
20 patients using the consistent, processed images with bone suppression.

Figure 10. Chest Radiographs enhancement in ICU for same patient, first column: 
tone-scale processed CXRs in ICU; second column: consistent processing results; third 
column: bone suppression; first row: the first image with the corresponding processed 
images; second row: the second image with the corresponding processed images; third 
row: the third image with the corresponding processed images.
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Figure 10 shows a patient’s ICU CXRs. For this patient, clinicians were required to evaluate 
the working status of a pacemaker and determine whether abnormalities could arise after the 
removal of a peripherally inserted central catheter. The evaluation scores for our method with 
regard to this patient were 5. Using the enhanced images, clinicians could easily observe that 
the tube at the top of the patient is external to the patient and that there is a pacemaker with 
short wires. CHF decreased for this patient. Figure 11 shows a patient with a chest tube intro-
duced on the right side for the drainage of pneumothorax. The radiologist gave a score of 5 for 
the processing results because it was easier to evaluate the status. Using this consistent method, 
the differences in the lungs were decreased, and it was easier to evaluate CHF (figure 11).

4. Conclusion and discussion

We have developed a consistent processing and bone suppression method to decrease varia-
tions in image appearance and improve the diagnostic quality of images. With our new tech-
nique, clinicians can improve their ability to characterize the lung parenchyma and subtle 
pathological changes and increase their confidence in making diagnosis regarding the pres-
ence or absence of an abnormality on ICU CXRs.

The interpretation of chest radiographs is very challenging. The appearances or character-
istics of various lung diseases vary dramatically in terms of size, shape and contrast. It is criti-
cal that a bone suppression method is capable of preserving the image details so that the SNR 
can be improved for a range of lung diseases after bone suppression. We expect this method to 

Figure 11. Chest radiographs enhancement in ICU for same patient, first column: 
the first image with the corresponding processed images; second column: the second 
image with the corresponding processed images; third column: the third image 
with the corresponding processed images; fourth column: the fourth image with the 
corresponding processed images; first row: tone-scale processed CXRs in ICU; second 
row: consistent processing results; third row: bone suppression.
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provide ICU clinicians with a means to enhance their interpretation of CXRs with improved 
effectiveness and efficiency.

In this study, the bone suppression parameters were fixed. However, we can optimize the 
suppression by use of different parameters for CXRs obtained using different exposure set-
tings. The parameters used for consistent processing were determined from the nine training 
standard CXRs and validated by an empirical radiologist. In the future, we will work towards 
optimizing these parameters.

The bones were not satisfactorily suppressed in some images, probably because the pro-
posed method only suppressed the bone in the segmented lung field. Segmentation on ICU 
CXRs is a difficult task. Although we have introduced the improved active shape model 
(ASM) for lung segmentation, it failed for some images with large fusion areas in the lung 
field because the local features used for matching with lung boundaries were totally different 
from those on standard CXRs. Furthermore, the lung shape on ICU CXRs may be largely 
deviated from the shape model trained by the standard CXR. The performance of lung seg-
mentation has the potential to be improved in our future work.

The time for processing one image with our enhancement method was 7.1 s (including 5.5 s 
for image consistent processing and 1.6 s for bone suppression) on a PC-based workstation 
(Intel Pentium 2.4 GHz processor with a 3 GB memory). Consistent processing consumed 
most of the processing time because there are background segmentation and ROI automatic 
selection steps in consistent processing. Bone suppression is almost real time and software 
can be applied prior to interpretation for every image without any delay, thus satisfying the 
clinical requirement.
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