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Abstract Labeling connected components and holes and computing the Euler number in a binary image are necessary
for image analysis, pattern recognition, and computer (robot) vision, and are usually made independently of each other in
conventional methods. This paper proposes a two-scan algorithm for labeling connected components and holes simultaneously
in a binary image by use of the same data structure. With our algorithm, besides labeling, we can also easily calculate
the number and the area of connected components and holes, as well as the Euler number. Our method is very simple
in principle, and experimental results demonstrate that our method is much more efficient than conventional methods for
various kinds of images in cases where both labeling and Euler number computing are necessary.
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1 Introduction

Labeling of connected components and calculating
the Euler number in a binary image are two fundamen-
tal operations in image analysis, pattern recognition,
computer (robot) vision, and machine intelligence[1-2].
Labeling is necessary whenever independent objects
(connected components) are to be recognized in a bi-
nary image. On the other hand, the Euler number,
which is defined as the difference between the num-
ber of connected components and that of holes in a
binary image, is a basic topologic property of a binary
image and is used for processing cell images in medi-
cal diagnosis[3], document image processing[4], shadow
detection[5], reflectance-based object recognition[6], and
robot vision[7].

Many algorithms have been proposed for the two
operations. For labeling, there are mainly two classes
of algorithms: 1) raster-scan algorithms[8-15] and 2) la-
bel propagation algorithms[16-19]. According to experi-
mental results for various types of images, the algorithm

proposed by He, Chao, and Suzuki[15], which is an im-
provement of their two-scan algorithm proposed in [14],
is the most efficient one, and has been used for various
applications[20-21]. For convenience, we denote this al-
gorithm as HCS algorithm.

There are also many algorithms proposed for calcu-
lating the Euler number in a binary image[22-24]. One
of the most famous algorithms is based on counting cer-
tain 2 × 2 pixel patterns called bit-quads[25-26] and is
used in the MATLAB image-processing tool box①. For
convenience, we denote this algorithm as ML algorithm.

Although the Euler number and the number of con-
nected components in a binary image are closely re-
lated, they are usually calculated separately by differ-
ent algorithms in conventional methods.

This paper proposes an algorithm for labeling con-
nected components and holes simultaneously; thus, the
Euler number can also be calculated easily. Our al-
gorithm is especially efficient when both labeling and
Euler number computing are necessary.
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The rest of this paper is organized as follows: We re-
view the HCS labeling algorithm and the ML algorithm
for Euler number computing. Section 3 introduces our
algorithm. We provide experimental results in Section
4, and make a discussion in Section 5. Lastly, we give
our concluding remarks in Section 6.

2 Review of the HCS Algorithm and ML
Algorithm

For an N ×M -size binary image, we use b(x, y) to
denote the pixel as well as its value at (x, y) in the im-
age, where 0 6 x 6 N − 1 and 0 6 y 6 M − 1. We
assume that the foreground pixels and background pix-
els in a given binary image are represented by 1 and 0,
respectively. As in most labeling algorithms, we assume
that all pixels on the border of an image are background
pixels.

A pixel is a 4-neighbor of pixel b(x, y) if it shares
an edge with b(x, y). The 4-neighbors of pixel b(x, y),
namely P2, P4, P6 and P8, are shown in Fig.1. On the
other hand, a pixel is an 8-neighbor of pixel b(x, y) if it
shares an edge or a vertex with b(x, y). The 8-neighbors
of pixel b(x, y), namely P1 ∼ P8, are shown in Fig.1.

Fig.1. Neighbors of a pixel.

Two foreground (background) pixels, p and q, are
said to be 8-connected (4 -connected) if there is a path
of foreground pixels (background pixels) a1, . . . , an

where a1 = p and an = q, such that ai and ai+1 are
8-neighbor (4-neighbor) for all 1 6 i 6 n − 1. For
example, in Fig.2, pixels A and B are 8-connected fore-
ground pixels, and pixels C and D are 4-connected
background pixels. Usually, we consider 8-connectivity
for connected components (foreground pixels) and 4-
connectivity for holes (background pixels)②.

A connected component in a binary image is a maxi-
mum set of foreground pixels such that any two pixels
in the set are 8-connected. On the other hand, a hole

is a maximum set of background pixels such that they
are enclosed by foreground pixels, and any two pixels
in the set are 4-connected. For example, in Fig.2, there
are two connected components and three holes; thus,
the Euler number is 2− 3 = −1.

Fig.2. Binary image.

2.1 HCS Algorithm

The HCS algorithm is a two-scan labeling algorithm.
Similar to other two-scan labeling algorithms, it com-
pletes labeling in two raster scans by three processes:
1) provisional label assignment, i.e., assigning a pro-
visional label to each foreground pixel, and finding
equivalent labels (i.e., provisional labels assigned to a
connected component); 2) label equivalence record (i.e.,
using some data structures to record equivalent labels)
and label-equivalence resolving (i.e., finding a represen-
tative label for all equivalent provisional labels); 3) la-
bel replacement (i.e., replacing each provisional label
by its representative label). The first process is per-
formed in the first scan, the second process is usually
executed in the first scan or between the first scan and
the second scan, and the third process is carried out in
the second scan.

The HCS algorithm uses equivalent label sets and
a representative label table to record equivalent labels
and resolve the label equivalences. At any time, the
smallest label in an equivalent-label set is used as the
representative label for all labels in the set. For conve-
nience, an equivalent label set with the representative
label u is denoted as S(u), and the representative label
of a provisional label s is t, denoted as t = T [s].

In the first scan, this algorithm uses the mask shown
in Fig.3(a), which consists of four scanned neighbors of
the current foreground pixel, to assign a provisional la-
bel to each foreground pixel, and to record and resolve
label equivalences. At any moment, all equivalent pro-
visional labels are combined in an equivalent label set
with the same representative label.

②If we also use 8-connectivity for holes, all background pixels in Fig.2 will be 8-connected; thus, there will be no hole in Fig.2.
Therefore, we should use 4-connectivity for holes.
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Fig.3. Mask for the 8-connected connectivity.

For the case where the current foreground pixel fol-
lows a background pixel (Fig.3(b)), if there is no la-
bel (foreground pixel) in the mask, this means that
the current foreground pixel does not connect with any
scanned foreground pixel, and the current foreground
pixel belongs to a new connected component. The al-
gorithm assigns a new provisional label l, which is ini-
tialized to 1, to the current foreground pixel and estab-
lishes the equivalent label set S(l) = {l}; it sets the rep-
resentative label table as T [l] = l, and l = l+1 for later
processing. Otherwise, i.e., if there are some foreground
pixels in the mask, all of such foreground pixels and the
current foreground pixel belong to the same connected
component. Therefore, the current foreground pixel can
be assigned any of the labels in the mask. On the other
hand, for the case where the current foreground pixel
follows another foreground pixel (Fig.3(c)), the current
foreground pixel can be assigned the same label as that
of the foreground pixel.

In any case, if there are provisional labels belonging
to different equivalent label sets in the mask, all pro-
visional labels in those sets are equivalent labels, and
thus, all such sets should be combined together.

As introduced in [14], equivalent label sets and
the representative table for resolving label equivalences
can be implemented efficiently by use of three one-
dimensional arrays, where an equivalent label set is rep-
resented as a list. The first array, R, is for the represen-
tative label table. The fact that the representative label
of provisional label a is r is realized by R[a] = r. The
second array, next, is for expressing the next label of a
provisional label in an equivalent label set. next [d] = e
indicates that the label next to label d is e. Especially,
next [f ] = −1 means that there is no label next to label
f , i.e., f is the last label in the equivalent label set. The
third array, last, is used for expressing the last label of
an equivalent label set. last [p] = t means that the last
label in the equivalent label set S(p) is t.

When a new equivalent label set S(l) = {l} is es-
tablished, because there is only one label in the set, we
know that the representative label of label l is itself;
there is no label next to label l; and the last label in
the set is label l. Thus, the operations for establishing

a new equivalent label set S(l) = {l} can be made by
the following process:

R[l] = l;

next [l] = −1;

last [l] = l;

l = l + 1.

On the other hand, the procedure for combin-
ing two equivalent label sets S(u) and S(v), namely
combine(u, v), can be made as follows: if u is smaller
than v, the equivalent label set S(v) is merged into
equivalent label set S(u), where 1) for each label k in
S(v), changing its representative label from v to u; 2)
changing the next label of the last label in S(u) to v; 3)
changing the last label of S(u) to the last label of S(v).
Otherwise, i.e., if u is larger than v, the equivalent label
set S(u) is merged into equivalent label set S(v), where
1) for each label k in S(u), changing its representative
label from u to v; 2) changing the next label of the last
label in S(v) to u; 3) changing the last label of S(v) to
the last label of S(u).

The pseudo-code for combine(u, v) can be shown as
follows:

if u is smaller than v,

1) (∀k ∈ S(v))(R[k] = u);

2) next [last [u]] = v;

3) last [u] = last [v];

else if u is larger than v

1) (∀k ∈ S(u))(R[k] = v);

2) next [last [v]] = u;

3) last [v] = last [u];

end of if.

For an N×M -sized binary image, because the maxi-
mum number of provisional labels for labeling the image
is N × M/4, the sizes of the arrays R, next, and last
should be taken as N ×M/4.

As soon as the first scan is finished, all equivalent la-
bels of each connected component have been combined
into a corresponding equivalent label set with a unique
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representative label. In the second scan, by replacement
of each provisional label by its representative label, all
foreground pixels of each connected component will be
assigned a unique label.

2.2 Algorithm for Calculating the Euler
Number in a Binary Image

The ML algorithm for calculating the Euler num-
ber in a binary image[26] is based on counting certain
2×2 pixel patterns called bit-quads, which are shown in
Fig.4, in the image. Let N1, N2, and N3 be the number
of patterns P1, P2, and P3 in the image, respectively.
Then, the formula for calculating the Euler number,
namely E, for 8-connectivity is:

E = (N1 −N2 − 2N3)/4.

Fig.4. Bit-quads for calculating the Euler number in the ML

algorithm.

3 Our Proposed Algorithm

Our method is mainly aimed at the cases where both
connected component labeling and Euler number com-
puting are necessary. By conventional methods, in such
cases, we need either to run a labeling program and an
Euler number computing program separately or to run
a labeling program twice: one is for labeling connected
components, and the other is for labeling holes. We ex-
tend the HCS algorithm to be able to label connected
components and holes simultaneously in two raster-

scans; thus, the Euler number can also be calculated
easily.

In order to label connected components and holes
simultaneously with the same data structure, we use
the numbers between 0 and H as provisional labels for
labeling holes and those larger than H for labeling con-
nected components. For N × M -sized binary images,
the maximum number of both connected components
and holes is N ×M/4. Therefore, the size of R, next,
and last should be enlarged to N ×M/2, and the value
of H should be set to N ×M/4.

3.1 Labeling Connected Components and
mHoles

Except for initializing the variable l for provisional
labels to H + 1, labeling connected components in our
method is the same as that in the HCS algorithm. For
labeling holes, we initialize the variable, say, lH, for
provisional labels for holes to 0, which is for the back-
ground pixels 4-connected to the background pixels on
the border of the image. The mask for labeling holes
consists of the processed two neighbor pixels, as shown
in Fig.5(a).

For a background pixel b(x, y) following a foreground
pixel (Fig.5(b)), we check the other pixel in the mask,
i.e., b(x, y− 1). If b(x, y− 1) is a background pixel, i.e.,
b(x, y − 1) < H, we assign its label to b(x, y). Other-
wise, if b(x, y − 1) is a foreground pixel, we assign a
new provisional label to b(x, y). The pseudo-code of
the procedure for this case can be given as follows:

if b(x, y − 1) is smaller than H

let b(x, y) = b(x, y − 1);

else

assign b(x, y) a new label;

lH increases 1;

end of if.

On the other hand, for a background pixel b(x, y)
following another background pixel (Fig.5(c)), we as-
sign the label of b(x− 1, y) to b(x, y). If the other pixel
in the mask, i.e., b(x, y−1), is a background pixel, then
b(x− 1, y) and b(x, y − 1) belong to the same hole. If

Fig.5. Mask for labeling holes.
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the provisional labels of b(x−1, y) and b(x, y−1) belong
to different equivalent label sets, we should combine the
two sets. This task can also be completed by use of
combine(u, v) introduced above. The pseudo-code of
the procedure for this case can be given as follows:

b(x, y) = b(x− 1, y);

if b(x, y − 1) is smaller than H

let b(x− 1, y) belong to S(u) and

b(x, y − 1) to S(v), call combine(u, v);

end of if.

The second scan for labeling connected components
and labeling holes can be finished by a single scan as
follows:

for each pixel b(x, y)

replace its value with R[b(x, y)];

end of for.

3.2 Calculating the Number of Connected
Components

According to the HCS algorithm, after the first scan,
all equivalent provisional labels (which belong to the
same connected component) will be combined in an
equivalent label set. Therefore, the number of con-
nected components in a binary image is equal to that
of the equivalent label sets. Because in each equivalent
label set S(r), only the label r’s representative label
is itself, we can calculate the number of the equivalent
label sets, i.e., the number of connected components,
by counting the times that R[i] is equal to i between
R[H + 1] and R[L − 1], where L is the terminal value
of the variable for provisional labels for labeling con-
nected components (i.e., l in the pseudo-code described
above). The pseudo-code for calculating the number of
connected components, namely NCC, can be shown as
follows:

initialize NCC to 0;

for i from H + 1 to L− 1

if R[i] is equal to i, NCC increases 1;

end of for.

3.3 Calculating the Number of Holes

Similar to the number of connected components, the
number of holes is equal to that of equivalent label sets
established during labeling holes. Therefore, we can
calculate the number of holes, namely NH, by counting
the times of R[i] == i between R[1]③ and R[LH − 1],
where LH is the terminal value of the variable for pro-
visional labels for holes (i.e., lH in the pseudo-code de-
scribed above).

initialize NH to 0;

for i from 1 to LH−1

if R[i] is equal to i, NH increases 1;

end of for.

3.4 Calculating the Euler Number

With the number of connected components NCC and
that of holes NH in a binary image in hand, according
to the definition of the Euler number, the Euler number
in the binary image, say, NE, can be calculated simply
by the following formula:

NE = NCC −NH.

4 Experimental Results

All algorithms used for our comparison were imple-
mented in the C language on a PC-based workstation
(Intel Pentium D 930 3.0 GHz + 3.0 GHz CPUs, 2GB
memory, Mandriva Linux OS), and compiled by the
GNU C complier (version 4.2.3) with the option −O3.
The source codes of our algorithm can be downloaded
from http://www.aichi-pu.ac.jp/ist/∼helifeng/.

All experimental results presented in this section
were obtained by averaging of the execution time for
5 000 runs by use of one CPU core. The results of the
number of connected components, that of holes, and
that of the Euler number are exactly the same for all
runs of each image.

Images used for testing are composed of four
types: artificial images, natural images, texture ima-
ges, and medical images. Artificial images contain
specialized patterns (stair-like, spiral-like, saw-tooth-
like, checker-board-like, and honey comb-like connected
components)[12] and noise images. Forty-one noise ima-
ges of each of five sizes (32 × 32, 64 × 64, 128 × 128,
256×256, and 512×512 pixels) were used for testing (a
total of 205 images). For each size, the 41 noise images
were generated by thresholding of the images containing
uniform random noise with 41 different threshold val-
ues from 0 to 1 000 in steps of 25. Because connected
components in such noise images have complicated geo-
metric shapes and complex connectivity, severe evalua-
tions of algorithms can be performed with these images.
Some of noise images with various densities are shown
in Fig.6.

On the other hand, 50 natural images, including
landscape, aerial, fingerprint, portrait, still-life, snap-
shot, and text images, obtained from the Standard Im-
age Database (SIDBA) developed by the University of
Tokyo④ and the image database of the University of

③Notice that the representative label 0 is used for labeling the block of background pixels connected to background pixels on the
image border, which is not a hole, we should not count the case of R[0] == 0.
④http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm, June 2010.
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Fig.6. Samples of noise images with various densities. (a) 0.1.

(b) 0.2. (c) 0.3. (d) 0.4. (e) 0.5. (f) 0.6. (g) 0.7. (h) 0.8. (i) 0.9.

Southern California⑤ were used for realistic testing of
related algorithms. In addition, seven texture images,
which were downloaded from the Columbia-Utrecht Re-
flectance and Texture Database⑥, and 25 medical ima-
ges obtained from a medical image database of The
University of Chicago were used for testing. All of
these images were 512 × 512 pixels in size, and they
were transformed into binary images by means of Otsu’s
threshold selection method[27].

We compared our algorithm with the ML algorithm
in the following two ways: 1) only calculating the Euler
number; 2) labeling and calculating the Euler number.
Notice that, in case 1, the second scan in our algorithm
is unnecessary; in case 2, the comparative algorithm
consists of the HCS algorithm (used for labeling) and
the ML algorithm (used for calculating the Euler num-
ber). For convenience, we use Ours1 and Ours2 to de-
note our algorithm in case 1 and case 2, and ML1 and
ML2 to denote the comparative algorithm in case 1 and
case 2, respectively.

4.1 Execution Time Versus the Size of an
Image

We used all noise images to test the linearity of the
execution time versus image size. As shown in Fig.7,
both the maximum execution time and the average exe-

cution time of all of the four algorithms have the ideal
linear characteristics versus the number of pixels in an
image. We can find that, if we calculate only the Euler
number, the ML1 algorithm is better than the Our1 al-
gorithm for the maximum execution time, but the two
algorithms are almost the same for the average exe-
cution time. When both labeling and Euler number
computing are necessary, Ours2 is much better than
ML2.

Fig.7. Execution time versus number of pixels in images.

4.2 Execution Time Versus the Density of an
Image

Noise images with a size of 512 × 512 pixels were
used for testing the execution time versus the density
of the foreground pixels in an image. The results are
shown in Fig.8. We can find that, in the cases where
only the Euler number is calculated, Ours1 is better

Fig.8. Execution time versus number of density in images.

⑤http://sipi.usc.edu/database/, September 2012.
⑥http://www1.cs.columbia.edu/CAVE/software/curet/, September 2012.
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than ML1 for images with low and high densities, but
is worse for images with middle densities. For the cases
where both labeling and Euler number computing are
necessary, Ours2 is much better than ML2 for all den-
sities.

4.3 Comparisons in Terms of Maximum,
Mean, and Minimum Execution Time

Natural images, medical images, texture images, and
artificial images with specialized shape patterns were
used for this test. The results of the comparisons are
shown in Table 1, where the artificial* images are those
artificial images introduced above except for the stair-
like image. From Table 1, except for the stair-like im-
age, for all kinds of images, both Ours1 and Ours2 are
much more efficient than ML1 and ML2, respectively.
In fact, except the stair-like image and a text image
(Fig.9(c)), for each image used in this test, Ours1 is
more efficient than ML1, and except for the stair-like
image, Ours2 is much more efficient than ML2. The
execution time (ms), the number of connected compo-
nents NCC, the number of holes NH, and the Euler
number NE for the selected six images are illustrated
in Fig.9, where the foreground pixels are displayed in
black.

Table 1. Maximum, Mean, and Minimum Execution

Time (ms) on Various Types of Images

Image Type Ours1 ML1 Ours2 ML2

Natural Max. 2.48 2.65 3.46 4.88

Mean 1.35 1.64 2.12 2.86

Min. 0.79 1.19 1.59 2.08

Medical Max. 1.52 1.83 2.23 3.26

Mean 1.17 1.47 1.89 2.60

Min. 0.84 1.29 1.73 2.36

Textural Max. 2.10 2.21 2.85 4.14

Mean 1.41 1.64 2.17 3.08

Min. 0.67 1.05 1.48 2.01

Artificial* Max. 0.84 1.16 1.60 2.14

Mean 0.47 0.59 0.80 1.14

Min. 0.26 0.29 0.33 0.60

Stair-like 2.23 1.07 3.13 2.62

5 Discussion

5.1 General Analysis of Ours1, Ours2,
ML1 and ML2

Both the HCS labeling algorithm and the ML al-
gorithm are sequential processing ones: they process
pixels one by one in the raster scan order. The major

ML1: 1.72 Ours1: 1.46

ML2: 3.19 Ours2: 2.24

NCC: 172 NH: 391

NE: −219

ML1: 1.50 Ours1: 1.14

ML2: 2.74 Ours2: 1.94

NCC: 271 NH: 447

NE: −176

ML1: 1.57 Ours1: 1.92

ML2: 3.23 Ours2: 2.81

NCC: 2 290 NH: 1 354

NE: 936

ML1: 1.39 Ours1: 0.90

ML2: 2.33 Ours2: 1.72

NCC: 49 NH: 54

NE: −5

ML1: 1.62 Ours1: 1.51

ML2: 2.90 Ours2: 2.07

NCC: 442 NH: 917

NE: −475

ML1: 2.16 Ours1: 1.98

ML2: 3.98 Ours2: 2.70

NCC: 35 NH: 2 272

NE: −2 237

Fig.9. Execution time (ms), the number of connected compo-

nents NCC, the number of holes NH, the Euler number NE for

the selected six images. (a) Fingerprint image. (b) Portrait im-

age. (c) Text image. (d) Snap shot image. (e) Medical image.

(f) Texture image.

operation of both the algorithms for processing a pixel
is checking the values of pixels.

According to the analysis results shown in [15], for
processing a foreground pixel in the first scan, the ave-
rage number of times for checking pixels by the HCS
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algorithm, namely NHCS1f , is 2.75 and that for process-
ing a background pixel, namely NHCS1b, is 1. Thus,
the average number of times for checking pixels by
the HCS algorithm in the first scan, namely NHCS1,
is (NHCS1f + NHCS1b)/2 = (2.75 + 1)/2 = 1.875⑦.

In our proposed algorithms, for processing a fore-
ground pixel in the first scan, the average number of
times for checking pixels, namely NOurs1f , is exactly
the same with the HCS algorithm, thus, NOurs1f =
NHCS1f = 2.75. For processing a background pixel
to labeling holes, from the explanation in Subsection
3.1, the average number of times for checking pixels,
namely NOurs1b, is 2. Moreover, if we equate the check-
ing operation and the rewriting operation, the average
number of times for checking pixels in the second scan in
the HCS algorithm and our proposed algorithm, namely
N2, is 1.

On the other hand, according to the ML algorithm
introduced in Subsection 2.2, the average number of
times for checking pixels for processing any pixel by
the ML algorithm, namely NML, is 4.

Thus, the average number of times for checking pix-
els for processing a pixel by Ours1, namely NOurs1, is
(NOurs1f + NOurs1b)/2 = (2.75 + 2)/2 = 2.375; that by
Ours2, namely NOurs2, is NOurs1 + 1 = 3.375; that by
ML1, namely, NML1, is 4; that by ML2, namely NML2,
is NML1 + NHCS1 + N2 = 4 + 1.875 + 1 = 6.875.

Although the average number of times for checking
pixels for processing a pixel by Ours1, i.e., NOurs1 =
2.375, is a little smaller than that by ML1, which is 4,
Ours1 also needs to initialize data structures and to re-
solve label equivalences, therefore, Our1 is hardly more
efficient than ML1.

However, in the cases where we not only calculate
the Euler number, but also label connected compo-
nents, the average number of times for checking pixels
for processing a pixel by Ours2 is NOurs2 = 3.375, which
is much smaller than that by ML2, i.e., NML2 = 6.875.
That is to say, Ours2 is much more efficient than ML2.

5.2 Analysis of Experimental Results

We first analyze the reason that Ours1 and Ours2 are
not so efficient as ML1 and ML2 for the stair-like images
used in our test. As shown in Fig.10(a), the stair-like
image consists of many oblique foreground-pixel lines
and background-pixel lines. By our algorithms, for each
such line, many provisional labels will be assigned to
the pixels of the line, which will finally be combined
into the same equivalent label set. In fact, for this im-
age, the number of the provisional labels assigned by
our algorithms for foreground-pixel lines in this image

is 32 577, and the number of the connected components
is 255, and the provisional labels for background-pixel
lines and the number of holes are 65 536 and 0, respec-
tively. That is, we need to initialize 32 577 equivalent
label sets and merge them to 255 equivalent label set
for foreground-pixel lines, and initialize 65 536 equiva-
lent label sets and merge them to one equivalent label
sets for background-pixel lines. Initializing so many
equivalent label sets and combining so many equivalent
label sets together require time-consuming work.

Fig.10. Stair-like images.

On the other hand, the 2× 2 pixel patterns in these
image are regular and are favor types for checking in
our implementation of the ML algorithm. If we change
the line direction as in Fig.10(b), the results will vary
considerably. By our algorithms, only 305 provisional
labels were generated for 305 foreground lines, and only
one provisional label was generated for background pix-
els. Therefore, the work for initializing equivalent label
sets is reduced greatly and we do not need to combine
any equivalent label set. Thus, our algorithms are very
efficient for this image. The results on the two images
are shown in Table 2.

Table 2. Execution Time (ms) for Stair-Like Images

Image Ours1 ML1 Ours2 ML2

Fig.10(a) 2.23 1.07 3.13 2.62

Fig.10(b) 1.04 1.05 1.56 2.15

In all natural images, textual images, and medical
images, the only image that Ours1 is not as efficient as
ML1 is the text image shown in Fig.9(c). The reason
is similar to that in the case of the stair-like images.
The result indicates that Ours1 is not efficient for text
images for Euler number computing. However, when
labeling is also necessary, Ours2 is still more efficient
than ML2. Moreover, ML1 can only calculate the Euler
number, whereas Ours1, except for the Euler number,

⑦We assume that the probability that a pixel is a background pixel or a foreground pixel is the same.
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can also obtain the number of connected components
and the number of holes simultaneously, which is valu-
able in many cases.

5.3 Generating Consecutive Labels for
Connected Components and Holes

In many cases, we need consecutive labels for con-
nected components and holes. We use positive consec-
utive numbers for connected components and negative
consecutive numbers for holes. We need only to exe-
cute the following simple program after the first scan
and before the second scan:

k is initialized to −1;

for i from 1 to LH − 1

if R[i] is equal to i

set R[i] to k;

k decreases 1;

end of if

end of for

m is initialized to 1;

for i from H + 1 to L− 1

if R[i] is equal to i

set R[i] to m;

m increases 1;

end of if

end of for.

When the above processing terminates, |k|−1 is the
number of holes and m− 1 is that of connected compo-
nents.

By Ours2 with the above processing for generating
consecutive labels, the result for the image shown in
Fig.2 is shown in Fig.11.

5.4 Calculating Areas (Number of Pixels)
of Connected Components and Holes

After generating consecutive labels, we can modify
the second scan to calculate the area (i.e., the number
of pixels) of connected components and that of holes.
If we use SC [i] to denote the number of the connected
component with the representative label i, SH [j] to de-
note the number of the hole with the representative
label −j, the modified pseudo-code for the second scan
with calculation of the numbers of connected compo-
nents and holes can be shown as follows, where the size
of the array SC and the array SH should be the maxi-
mum possible number of the connected components and
holes in a binary image, respectively; thus, both are
N × M/4, and all of the elements of SC and SH are
initialized to 0:

for y from 0 to M − 1

for x from 0 to N − 1

set b(x, y) to R[b(x, y)];

if b(x, y) is bigger than 0

SC [b(x, y)] increases 1;

else

SH [|b(x, y)|] increases 1;

end of if

end of for

end of for.

Notice that SH [0] indicates the number of back-
ground pixels except for those belonging to holes.

5.5 Maximum Execution Time of Our
Algorithm

According to [14], for an N × M -sized image, the
order of the HCS algorithm for labeling connected com-
ponents is O(N×M). Because we use the same method

Fig.11. Output image of the input image shown in Fig.2 by Ours2 with consecutive-label processing.
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and data structure for labeling holes, the order for la-
beling holes should also be O(N ×M). Moreover, the
execution time for calculating the number of connected
components is propositional to the number of provi-
sional labels assigned to connected components, whose
order is also O(N ×M). In the same way, the order for
execution time for calculating the number of holes is
also O(N ×M). Therefore, the order of our algorithm
should also be O(N ×M), just as demonstrated in the
experimental results on the noise images of different
sizes shown in Fig.7.

6 Conclusions

Although the Euler number in a binary image is
closely related to the number of connected components
in the image, no algorithm was proposed for calculat-
ing the Euler number by a labeling algorithm alone for
pixel-based images. This paper supplies such a gap.
Our algorithm can label connected components and
holes in a binary image simultaneously in two raster
scans by use of the same data structures, and then the
number of connected components, the number of holes,
and the Euler number can easily be calculated by use
of the data in the data structure after labeling. The
experimental results demonstrated that, for almost all
real images, our algorithm is more efficient than the
algorithm used in the MATLAB image tool for calcu-
lating the Euler number in a binary image, and is much
more efficient than conventional methods if both label-
ing and the Euler number are necessary.

For future work, we plan to implement our algorithm
in hardware[28-29] to accelerate labeling speed, to ex-
tend it to include three-dimensional images[30-31], and
to develop algorithms for parallel architectures[32-33].
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