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Two Efficient Label-Equivalence-Based
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for 3-D Binary Images
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Abstract—Whenever one wants to distinguish, recognize,
and/or measure objects (connected components) in binary images,
labeling is required. This paper presents two efficient label-equiv-
alence-based connected-component labeling algorithms for 3-D
binary images. One is voxel based and the other is run based. For
the voxel-based one, we present an efficient method of deciding
the order for checking voxels in the mask. For the run-based one,
instead of assigning each foreground voxel, we assign each run a
provisional label. Moreover, we use run data to label foreground
voxels without scanning any background voxel in the second scan.
Experimental results have demonstrated that our voxel-based
algorithm is efficient for 3-D binary images with complicated
connected components, that our run-based one is efficient for
those with simple connected components, and that both are much
more efficient than conventional 3-D labeling algorithms.

Index Terms—Connected component, label equivalence, labeling
algorithm, run, 3-D binary image.

I. INTRODUCTION

L ABELING connected components in a binary image is
one of the most fundamental operations in pattern anal-

ysis and recognition, computer vision, image understanding,
and machine intelligence [7]. A connected component (an ob-
ject) in a binary image is a set of foreground elements such
that for any two elements and in the set, there is at least
a connected path between and such that ,

, and for all , and are neighboring
foreground elements belonging to the set.

This notion can be extended to nonbinary images by changing
the property of elements that consist of the set, for example, a
gray level, a color, a group of gray levels, or a group of colors.
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Connected-component labeling is defined as assigning to all el-
ements of each connected component a unique label, i.e., the
value of each element of a connected component is the same
and is unique to that of any other connected component.

Many algorithms have been proposed for labeling 2-D im-
ages. For ordinary computer architectures and pixel-based rep-
resentation images, there are two classes of labeling algorithms.

1) Label-equivalence-based algorithms: These algorithms
process an image in the raster-scan direction more than
once. In the first scan, a provisional label is assigned to
each foreground pixel. All provisional labels assigned
to the same connected component are called equivalent
labels, and the relationships between equivalent labels
are called label equivalences. Any label equivalence is
recorded as soon as it is found. After the first scan and
resolving of all label equivalences, which means finding
a representative label for each group of equivalent labels,
each foreground pixel is relabeled by the representative
label for the provisional label assigned to the pixel in the
first scan. There are multiscan algorithms [8], a four-scan
algorithm [20], and two-scan algorithms [9], [10], [12],
[16], [17] in this class.

2) Searching-and-propagation-based algorithms: These al-
gorithms first search an unlabeled foreground pixel, assign
a new label to it, and then propagate the label to all fore-
ground pixels connected to the pixel in later processing
[2], [4].

As image acquisition and manipulation technologies have ad-
vanced, 3-D images have been widely used in various image-
processing and analysis fields [15], [28], such as medical image
analysis and computer-aided diagnosis of medical images [5],
[6], [18], [21], [22], [27], as well as computer graphics. Labeling
of connected components in 3-D binary images is demanded in
many cases, for example, for calculating the volume of an organ,
and the volume or shape of a lesion, such as a cancer, polyp, or
nodule.

Labeling of connected components in 3-D binary images
has been studied from the 1980s. Lumia et al. [12] and Shirai
[19] proposed label-equivalence-based two-scan labeling algo-
rithms by using an equivalent-label table for recording label
equivalences and that for resolving label equivalences, respec-
tively. Thurfjell et al. [23] proposed a label-equivalence-based
multiscan algorithm, where label equivalences are recorded
and resolved through a translation table. On the other hand,
Udupa and Ajjanagadde [25] and Borgefors et al. [3] proposed
searching-and-propagation-based algorithms for 3-D images.
Recently, Hu et al. [11] proposed two iterative-recursion-based
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labeling algorithms. The experimental results demonstrated in
the paper show that the two algorithms were more efficient than
other conventional algorithms. The authors claimed that their
algorithms were more efficient than label-equivalence-based
algorithms.

This paper presents two label-equivalence-based labeling
algorithms for 3-D binary images. One is voxel based, extended
from the two-scan algorithm proposed in [10] for labeling
2-D binary images, where an efficient method for deciding the
order for checking voxels in the mask is proposed. The other
is run based, extended from the run-based two-scan algorithm
proposed in [9] for labeling 2-D binary images, and improved
by assigning provisional labels to runs (rather than foreground
voxels) and also using run data for only labeling (processing)
foreground voxels in the second scan (thus, no background
voxel is processed in the second scan). The experimental re-
sults demonstrated that our voxel-based algorithm is efficient
for images with complicated connected components, and the
run-based one is efficient for images with simple connected
components.

For convenience, we assume that the foreground pixels
(voxels) and background pixels (voxels) in a given image
are represented by 1 and 0, respectively. As in most labeling
algorithms, we assume that all pixels (voxels) on the edges of
an image are background pixels (voxels).

II. LABEL-EQUIVALENCE-BASED TWO-SCAN LABELING

ALGORITHMS FOR 2-D BINARY IMAGES

For an -size 2-D binary image, we use to
denote the pixel at in the image, where
and . The label assigned to is denoted as

. Moreover, we only consider 8-connectivity for con-
nected components.

Label-equivalence-based two-scan labeling algorithms com-
plete labeling in two scans by processing pixels one by one
in the raster-scan direction. They need to perform three tasks:
1) assigning to each foreground pixel a provisional label and
recording label equivalences, where a data structure is used to
record each label equivalence whenever found; 2) resolving
label equivalences, which means to find a unique representative
label for every group of equivalent labels; and 3) relabeling
foreground pixels, i.e., replace the provisional label assigned to
each pixel by its representative label. These algorithms can be
divided into two classes: pixel- and run-based algorithms.

The first task in pixel-based algorithms is completed by use
of the mask shown in Fig. 1 in the first scan, which consists of
the four processed neighbor pixels of the current pixel. For each
current foreground pixel , if there is no foreground pixel
in the mask, this means that does not connect with any
processed foreground pixels, i.e., at this point, belongs
to a connected component consisting of itself only, is
assigned a new provisional label, and no label equivalence needs
to be recorded. Otherwise, i.e., if there are some foreground
pixels in the mask, it is obvious that all foreground pixels in
the mask belong to the same connected component; thus, all
provisional labels assigned to the foreground pixels in the mask
are equivalent labels. The algorithms proposed in [12], [16], and

Fig. 1. Mask for labeling 2-D binary images with 8-connectivity.

[17] check all pixels in the mask, assign the minimum label in
the mask to , and record all different labels in the mask
as equivalent labels. On the other hand, the algorithm presented
in [10] checks pixels in the mask in the optimal order derived by
case analysis, assigns the label first found in the mask to ,
and records different provisional labels in the mask as equivalent
labels only if they become equivalent due to the existence of

.
There are mainly three methods for the recording of label

equivalences and resolving label equivalences. One is using
a 2-D equivalent-label table [12], [16], [17],
which is initialized to be 0 for all and , to record label
equivalences. If provisional labels and are found to be
equivalent, then is set to 1. After the first scan,
all groups of equivalent labels can be found by analysis of the
equivalent-label table. The main problem of this method is that
the size of the equivalent table is very large, proportional to the
square of the number of provisional labels in an image; thus,
the square of the size of the image,1 and thus the complexity of
the analysis of the equivalent label, is also proportional to the
square of the size of the image.

Another method is using binary trees to record label equiv-
alences and using a union-find algorithm [14], [24] to resolve
label equivalences. Label equivalences can be resolved partially
during the first scan, but a final processing must be made to com-
plete the work after the first scan.

The third method is using equivalent-label sets and a repre-
sentative-label table to record and resolve label equivalences
[10]. In this method, at any point in the first scan, all equiva-
lent labels belonging to a connected component found so far are
combined in an equivalent-label set, where the smallest label
is referred to as the representative label. The corresponding re-
lationship of a provisional label and its representative label is
recorded in a representative table. For convenience, we use
for the set of provisional labels with as the representative label,
and to represent the representative label of provi-
sional label . In this way, for any provisional label in pro-
visional label set , we have . On the other
hand, if , then we know that provisional label
belongs to equivalent-label set .

As we have known, when the current foreground pixel is
assigned a new provisional label, say, , it means
that the current foreground pixel does not connect with any
foreground pixel that has been scanned before. In other words,

1For an � � � binary image, the largest number of provisional labels is
� ����.
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up to now, all we know is that the current foreground pixel
belongs to a connected component consisting of itself only.
Thus, the equivalent-label set corresponding to the connected
component is established as ,
and the representative label of is set to itself, i.e.,

. During the first scan,
whenever two different provisional labels, and , are found
to be equivalent, the label equivalence could be resolved as
follows: suppose that and belong to equivalent-label sets

and , respectively, where and
. Then, all provisional labels in and

are known to be equivalent. Therefore, and should
be considered to be combined together. If and are equal,
this means that and belong to the same equivalent-label set;
thus, nothing has to be done. On the other hand, if , then

is combined into , i.e., for each label in , we
set its representative label to by ; otherwise,
i.e., , is combined into , i.e., for each label
in , we set its representative label to by .
The pseudocode of this processing, denoted as ,
can be summarized as follows:

;

;

if

;

for each label

;

end of for

else if

;

for each label

;

end of for

end of if

With this method 1) we do not need to calculate the minimum
label in the mask, and the average time for checking the pixels
in the mask is 2.75, which is less than four times that are re-
quired by other pixel- and label-equivalence-based two-scan al-
gorithms (because all of these algorithms assign the minimum
label in the mask to the current foreground pixel, and they need
to check all 4 pixels in the mask) [10], and 2) any label equiv-
alence will be resolved as soon as it is found in the first scan;
therefore, when the first scan is finished, all label equivalences
are resolved, i.e., all label equivalences are combined into equiv-
alent-label sets with unique representative labels.

After label equivalences are resolved, the task (3) can be com-
pleted by scanning of the image just once again. For example,
in the algorithm proposed in [10], this task can be finished as
follows:

Fig. 2. Range for checking the processed eight-connected runs of the current
run ���� ��.

for ( ; ; )

for ( ; ; )

;

end of for

end of for

According to the experimental results shown in [10], the third
method is superior to the other two methods for various types of
images. For convenience, we denote the algorithm proposed in
[10] as the fast connected-component labeling (FCL) algorithm.

On the other hand, the algorithm proposed in [9] is a run-
based labeling algorithm, where a means a block of con-
tiguous foreground pixels in a row. The run data can be obtained
easily in the first scan. Unlike pixel-based algorithms, which
resolve label equivalences between foreground pixels, this al-
gorithm resolves label equivalences between runs. For conve-
nience, we use to denote a run starting from and
ending at . Thus, for the current run being pro-
cessed in the raster scan, during the processed runs, a run
that lies in the row immediately above the current row such that
it contains one of (see
Fig. 2), i.e., and , is 8-neighbored
with the current run. The method for recording and resolving
the label equivalences used in this algorithm is exactly the same
as in the FCL algorithm.

In the first scan, from , this algorithm scans pixels one
by one in the given image in the raster-scan direction. When
a new run is found, the run data are recorded. At the
same time, the range eight-connected with the current run in
the row immediately above is detected. If there is no run eight-
neighbored with the current run, the current run belongs to a
new connected component not being found so far. All pixels in
the current run are assigned a new label , which is initialized
to be 1, the provisional label set corresponding to the connected
component, i.e., the current run, is established as ,
and the representative label of is set to itself, i.e., .
Then, increases by 1 for consecutive processing.

On the other hand, if there are runs, e.g., ,
eight-neighbored to in the range, then , and

belong to the same connected component. Suppose that
are the provisional labels assigned to ,

respectively, and are the equivalent-label
sets containing , respectively; then all provisional
labels in are equivalent labels. Therefore,
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are merged into , where is the min-
imum label among , and . Moreover, all foreground
pixels in the current run are assigned the provisional
label . Moreover, after processing of , all data of runs
that end before or at are removed because such runs
cannot be connected with any coming run and therefore are
useless for further connectivity detection.

Because this algorithm resolves connectivity between runs,
for an image, the number of provisional labels assigned by this
algorithm might be much smaller than that assigned by other
conventional label-equivalence-based labeling algorithms. This
will reduce the computation cost required for resolving label
equivalences. Therefore, it is very efficient for images with a
large average length of runs.

III. PROPOSED TWO LABELING ALGORITHMS FOR 3-D BINARY

IMAGES

For a -size 3-D binary image, we use
to denote the voxel at in the image, where ,

, and . The label assigned to
is denoted as .

For 3-D binary images, there are 6-connectivity (i.e., face
connectivity), 18-connectivity, (i.e., edge and face connec-
tivity), and 26-connectivity (vertex, edge, and face connec-
tivity). Because 6-connectivity and 18-connectivity are subcases
of 26-connectivity, we will consider only 26-connectivity in
this paper.

A. Proposed Voxel- and Label-Equivalence-Based Labeling
Algorithms

Similarly to the case for labeling 2-D binary images, when
using a label-equivalence-based labeling algorithm for labeling
3-D binary images, we need to do three tasks: 1) assign a provi-
sional label to each foreground voxel and find label equivalences
in the first scan; 2) record and resolve label equivalences; and
3) relabel foreground voxels.

The tasks of recording and resolving label equivalences, as
well as relabeling are not essentially different for any dimen-
sion of an image, but the task for assigning a provisional label
to each foreground voxel and finding label equivalences in the
first scan depends on the dimension of images. As introduced in
Section II, the method of using equivalent label sets and a rep-
resentative label table for recording and resolving label equiva-
lences proposed in [9] and [10] is the most efficient approach to
the best of our knowledge; therefore, we employ this method in
our algorithm. Thus, assigning a provisional label to each fore-
ground voxel, and finding and resolving label equivalences, will
be done simultaneously in the first scan. For convenience, we
call this task the assigning-finding--resolving task-.

Similar to label-equivalence-based labeling algorithms for
2-D binary images, when processing a foreground voxel to
complete the assigning--finding--resolving task, we need to
check the processed voxels neighboring the foreground voxel.
The mask for this purpose consists of the 13 processed voxels
neighboring the current foreground voxel, as shown in Fig. 3.

For the current foreground voxel, because all foreground
voxels in the mask and the foreground voxel belong to the
same connected component, and because all provisional labels

Fig. 3. Mask with 26-connectivity for 3-D binary images.

Fig. 4. Configuration in the mask for a foreground voxel.

assigned to voxels of a connected component will be replaced
by the same representative label after resolving equivalent
provisional labels, we can assign any provisional label in the
mask (if any) to the current foreground voxel. If we suppose
that the probability of a voxel being a foreground voxel is the
same for all voxels in the mask, then the order for checking
the voxels in the mask has no influence on the efficiency of
assigning provisional labels. On the other hand, the efficiency
of finding label equivalences in the mask depends substantially
on the order for checking the voxels in the mask.

Let us consider the configuration in the mask shown in Fig. 4
for the current foreground voxel , where , , and

are foreground voxels and , , and are
background voxels. For convenience, we use to denote the
provisional label assigned to , and if is a background
voxel.

If we check the voxels in the mask in the order
, denoted as Order 1, we will first check . Because

is a background voxel, we go to check . Because is a
foreground voxel, we assign the provisional label assigned to ,
i.e., , to . Then, we need to find all foreground voxels
in the mask that are not connected with each other without the
existence of , i.e., we should check those voxels in the
mask that are not 26 neighbors of , i.e., ,
and [see Fig. 4(b)]. Because , and are
background voxels, we need to do nothing. When we check
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Fig. 5. Status where � is a foreground voxel.

TABLE I
NUMBER OF NEIGHBORING VOXELS TO A VOXEL IN THE MASK

voxel , we find that it is a foreground voxel; therefore, we
should consider the label equivalence between and . The
condition that the label equivalence between and should
be recorded is that voxel is a background voxel. Because
is a foreground voxel, nothing further needs to be done.

On the other hand, if we check the voxels in the mask from ,
denoted as Order 2, we find that is a foreground voxel; then,
we assign provisional label to . Because connects
with all voxels in the mask as well as , all label equiva-
lences in the mask must have been resolved. Therefore, nothing
further needs to be done.

As discussed earlier, by Order 1, we should check nine
voxels in the mask, but by Order 2, we need to check only one
voxel. Therefore, for processing a foreground voxel, the order
for checking voxels in the mask is a key factor for efficiency.

For 2-D binary images, He et al.[10] proposed an efficient
checking order for the assigning--finding task by using the Kar-
naugh map to analyze the configurations in the mask.
However, for 3-D binary images, because there are
configurations in the mask, it is impossible to use the same
method for finding the optimal processing order. On the other
hand, there are possible orders for checking
voxels in the mask. Therefore, it is also impossible to test all
orders for finding the optimal one.

Because at any point in the first scan, all label equivalences
between the provisional labels assigned to the processed fore-
ground voxels have been recorded, when processing the current
foreground voxel, for finding the new label equivalences in the
mask caused by the occurrence of the current foreground voxel,
we need to consider only the label equivalences between dif-
ferent connected parts in the mask. In other words, we need not
consider the label equivalences between the provisional labels
assigned to each connected part in the mask. For this reason,
under the condition that the probability of each voxel in the mask
being a foreground voxel is the same, checking the voxels in the
mask in the order of the numbers of their neighbor voxels will be

efficient because the greater the number of the neighbor voxels
of a voxel in the mask, the less the number of the voxels that
need to be checked.

The number of the neighbor voxels of each voxel in the mask
is shown in Table I.

According to the earlier discussion and Table I, the order of
checking voxels in the mask should be , ,

, , , .
By the aforementioned order, for processing the current fore-

ground voxel , we first check voxel . If is a foreground
voxel, we assign to . Because connects with all
other voxels in the mask, no new label equivalence needs to be
recorded. The assigning--finding task can be terminated here.

Thus, when is a foreground voxel, the procedure for pro-
cessing the current foreground voxel, denoted as ,
is as follows:

On the other hand, if is a background voxel, we check voxel
. If is a foreground voxel, we assign provisional label to

, and then check whether there is any label equivalence
between the provisional labels assigned to the connected part
consisting of as well as its neighbor foreground voxels and
other foreground voxels in the mask caused by the existence of
the current foreground voxel. In other words, we do not need to
check the neighbor voxels of , i.e., , , , , , , ,
and , but we need to check voxels , , and .

There is also an order problem with checking , , and
(a group of voxels). For exactly the same reason given ear-

lier, we decide the order based on the number of the neighbor
voxels of each voxel in the group. Because the number of the
neighbor voxels of both and is 1 and that of is two,
we check first, and then and . As shown in Fig. 5(b),
the condition that becomes connected with only due to the
existence of the current foreground voxel is the situation, where

and are background voxels. Thus, if both and are
background voxels, we should record the label equivalence be-
tween and . If is a background voxel, we need to check
whether there is a label equivalence between and , as well
as between and , respectively. If is a background voxel,
nothing needs to be done. Otherwise, i.e., if is a foreground
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voxel, as shown in Fig. 5(c), the condition for recording a label
equivalence between and is that is a background voxel.
In a similar way, if is a background voxel, nothing needs to
be done. Otherwise, i.e., if is a foreground voxel, as shown in
Fig. 5(d), the condition for recording label equivalence between

and is that is a background voxel.
Based on the aforementioned discussion, when is a back-

ground voxel and is a foreground voxel, the processing pro-
cedure, denoted as , can be summarized as follows:

;

if ( & & )

;

else

if ( & )

;

end of if

if ( & )

;

end of if

end of if

where is 0 if is a background voxel.
Notice that, by , all label equivalences in the

mask will be found and resolved; therefore, after ,
the assigning--finding--resolving task can be terminated.

On the other hand, if is also a background voxel, we check
voxel and make an analysis similar to that described above.
For each being checked, if it is a foreground voxel, the pro-
cessing procedure can be derived in a similar way.

Lastly, if all voxels in the checking order are background
voxels, this means that the current foreground voxel does
not connect with any foreground voxel processed up to now,
i.e., the current foreground voxel belongs to a new connected
component consisting of itself only. The current foreground
voxel is assigned a new provisional label, say, ,
which is initialized by 0 at the beginning of the first scan.
The equivalent-label set for the new connected component
is established by , and
the representative label of is set to itself, i.e.,

. Then, in-
creases by 1 for consecutive processing. The process, denoted
to be , can be summarized as follows:

When the first scan is finished, all label equivalences have been
resolved, and all equivalent labels will have a unique representa-
tive label. Thus, similar to the label-equivalence-based labeling
algorithms for 2-D binary images, by setting in

advance, replacing each label with its representative label in our
algorithm, denoted as label-replacing, can be completed in the
second scan as follows:

;

for ( ; ; )

for ( ; ; )

for ( ; ; )

;

end of for

end of for

end of for

In the premise that the probability of each voxel in the mask
to be a foreground voxel is the same, the proposed order for
checking voxels in the mask is optimal.

For any case such that in the mask shown in Fig. 3 is a
foreground voxel, checking first as in our method makes us
only need to check one voxel ( itself), while checking any
other voxel first will make us check at least two voxels.

If is a background voxel, our method will then check .
We show that when and some other voxels in the mask are
foreground voxels simultaneously, checking first will be
more efficient than checking any of those voxels.

For example, we consider the case, where and are fore-
ground voxels. Our method checks first, then goes to check

. If is a foreground voxel, it terminates. Here, the number
of times for checking voxels is 2. Otherwise, i.e., is a back-
ground voxel, it will go to check and . The number of
times for checking voxels is 4. Thus, the average number of
times for checking voxels is .

On the other hand, if we check first, because is a
neighbor voxel of , , , , , , and , we need
not check any of them. The remains of voxels for checking
are , , , and . It is not difficult to find that among
them; checking first will be most efficient. If is a
foreground voxel, we terminate there. The number of times
for checking voxels is 2. Otherwise, we should check and

. The number of times for checking voxels is 4. Moreover,
if is a background voxel, we should further check . In
this case, the number of times for checking voxels is 5. Thus,
the average number of times for checking voxels is at least

.
Therefore, in the case, where and are foreground voxels,

checking first will be more efficient than checking first.
Other cases can be shown in a similar way. Thus, we showed

that our proposed order for checking voxels in the mask is op-
timal.

B. Proposed Run- and Label-Equivalence-Based Labeling
Algorithms

We extend and improve the run- and label-equivalence-based
two-scan labeling algorithms for 2-D binary images proposed
in [9] to label 3-D binary images.
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Fig. 6. Processed 26-connected range of the current run ���� �� �� ��.

For convenience, we use to denote a run starting
from and ending at . Moreover, we use

to denote the row with -coordinate and -co-
ordinate . For the current run , its processed
26-connected range is the area from to

, to ,
to , and

to , as shown in Fig. 6. A processed run
is a 26-connected run of the current run if it con-

tains at least a foreground voxel in the processed 26-connected
range of the current run.

For the current run, if there is no processed 26-connected run,
we assign a new provisional label to it. Otherwise, i.e., if there
are some 26-connected runs, . Let be
the provisional labels corresponding to , respec-
tively. Then, and the current run belong to the
same connected component; thus, are equivalent
labels. We assign to the current run, and we then resolve the
label equivalences between and , respectively.

Similar to the proposed voxel-based algorithm introduced
earlier, recording and resolving label equivalences can be done
in exactly the same way as in the algorithms proposed in [9]
and [10].

Because all foreground voxels of a run belong to the same
connected component, by labeling, they should be assigned the
same label finally. Therefore, instead of assigning a provisional
label to each voxel, as in the previous algorithm proposed in
[9], we can assign a provisional label to each run. After all
label equivalences between runs are resolved, all runs belonging
to a connected component will have the same representative
label. Then, by use of the recorded run data, we can assign to
each foreground voxel in a run the representative label corre-
sponding directly to the run. Thus, we improved the previous
algorithm proposed in [9] in two ways: 1) the previous algorithm
assigns a provisional label to each foreground pixel, while we
assign a provisional label to each run. For images with large
average length of runs, our algorithm will be very efficient.
2) In the second scan, the previous algorithm scans all pixels
for relabeling foreground pixels, whereas our algorithm scans
only foreground voxels (i.e., without scanning any background

voxel). Thus, for images with low densities, our algorithm will
be very efficient.

IV. COMPLEXITY OF OUR ALGORITHMS

To complete labeling, our voxel-based algorithm performs the
following procedures:

1) assigning provisional labels to foreground voxels during
the first scan;

2) creating equivalent-label sets and setting representative la-
bels for all new provisional labels;

3) resolving label equivalences;
4) replacing the provisional labels of foreground voxels with

their representative labels during the second scan.
For a -voxel image, both the maximum number

of provisional labels and the maximum number of connected
components have the order of . Accordingly, the
order of the maximum number of label equivalences among pro-
visional labels is also . By our voxel-based algo-
rithm, procedures 1 and 4 are proportional to the number of fore-
ground voxels, and procedure 2 is proportional to the number of
provisional labels, either has the order .

For procedure 3, when resolving a label equivalence between
two provisional labels, we need to combine an equivalent-label
set, say, , into another equivalent-label
set, say, , where denotes the equiva-
lent-label set with as its representative label and . To
realize this, for each , we need to set its rep-
resentative label to . The order of the operation is (m).

For a -voxel connected component with provisional la-
bels, we consider the following two special cases: 1) when the
maximum time of the operation happens; and 2) when the con-
nected component has the maximum number of provisional la-
bels, i.e., when is a maximum.

In case 1, the maximum time of the operation should be
, and the order is . A typical connected

component with five provisional labels for this case is shown in
Fig. 10(a). In such cases, the number of voxels of a connected
component has the order . Thus, .

In case 2, the maximum number of provisional labels for
a -voxel connected component has the order . A typ-
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Fig. 7. Two typical connected components.

ical nine-voxel connected component for this case is shown in
Fig. 7(b). In such cases, the time of the operation should be

, the order of which is .

In both cases 1 and 2, the order of the operation for a -voxel
connected component is . Therefore, the order of the oper-
ation for labeling a image should be .

Because the order of every procedure for labeling a
image is , the order of our voxel-based al-

gorithm is .
Our run-based algorithm also consists of four procedures:

1) finding runs, recording run data, and assigning provisional
labels to runs during the first scan;

2) creating equivalent-label sets and setting representative la-
bels for all new provisional labels;

3) resolving label equivalences;
4) assigning each foreground voxel the representative label of

the run containing the voxel.
For a -voxel image, the number of runs will

be smaller than or equal to the number of foreground voxels,
and the number of provisional labels assigned by our run-based
algorithm will be smaller than or equal to that assigned by our
voxel-based algorithm; thus, the number of label equivalences
in the case when we use our run-based algorithm will be smaller
than or equal to that when we use our voxel-based algorithm.

Accordingly, each of the procedures 1--4 has the order
. Thus, the order of our run-based algorithm should also

be .

V. EXPERIMENTAL RESULTS

Because recording and resolving label equivalences in our
proposed two algorithms can be done in exactly the same way
for those in the algorithm proposed in [9] and that proposed in
[10], our voxel-based algorithm, denoted as Ours-1 algorithm,
can easily be implemented in a similar way, as is done for the
two algorithms mentioned. Because the maximum provisional
labels for a -size 3-D binary image is ,
the data structure for equivalent-label sets and the representa-
tive label table in our algorithm can be realized by use of three

-size arrays, i.e., , ,
and , where indicates the next label
of in the equivalent-label set , and
means the last label in the equivalent-label set . Moreover,

means that there is no next label after label
, i.e., is the last label in the corresponding equivalent-label set.

Thus, when a new label, , is assigned to a fore-
ground voxel, a new equivalent-label set

is established, and the corresponding data in the
data structure are set as follows:

When an equivalent-label set is combined into another
equivalent-label set , where , the corresponding data
in the data structure, changes as follows:

;

while

;

;

end of while

;

;

For implementing our proposed run-based algorithm, denoted
as Ours-2 algorithm, except for the three -size
arrays for , , and , respec-
tively, we also need three -size arrays for recording
the starting points, end points, provisional labels of runs,2 and a

-size array for recording the number of runs.
Hu et al. proposed two iterative-recursion-based 3-D labeling

methods [11]: one uses iterative recursion to label all foreground
voxels directly, and the other uses iterative recursion to label
the boundary foreground voxels and a one-pass process to label
nonboundary foreground voxels, which is an extension of the
contour-tracing 2-D labeling algorithm proposed in [4].

Although, for labeling connected components, recursion
takes less time, it consumes more memory. Memory overflow
often takes place when a recursion-based algorithm is used for
labeling a 3-D binary image. Iteration is introduced to avoid
memory overflow for large images. Iteration and recursion
are combined as follows: Marking an unlabeled foreground
voxel found by the raster scan as selected by changing the
voxel’s label from 1 to 2; for each selected foreground voxel

, assigning to a label (which is initialized to be 3); then
iteration is executed for assigning label to the foreground
voxels connected with within a local cuboid with in the
center; each foreground voxel on the border of the local cuboid
is made as selected, and subsequent iterations on the selected
foreground voxels are recursively called. After all selected fore-
ground voxels are processed, increases by 1 for consecutive
processing, and then the raster scan continues to find the next
unlabeled foreground voxel (if any), which is processed in the
same way, and so on.

According to the experimental results shown in [11], the
larger the size of a local cuboid, the lesser the memory con-
sumed, but more execution time is needed. Moreover, with a
local cuboid of the same size, the second method runs faster
and uses less memory than does the first one. Therefore, we

2The maximum number of runs in an��� �� -size image is�������.
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Fig. 8. Execution time on different-sized noise images: (a) Maximum execu-
tion time. (b) Average execution time.

will only consider the second method in this section. For con-
venience, instead of using a local cuboid, we will use a local
cube. We denote the algorithm with a size of the local
cube as . Thus, the is the fastest one. Because
the experimental results also showed that the two algorithms
were much more efficient than other conventional 3-D labeling
algorithms, we will only compare our algorithms with the

in this section.
All three algorithms were implemented with the C language

on a PC-based workstation (Intel Pentium Duo 930 3.0 GHz
+ 3.0 GHz CPUs, 2-GB Memory, Mandriva Linux OS), and
compiled by the GNU C complier (version 4.2.3) with the option

. All execution times shown in this section were obtained
by use of one core.

We first compared the algorithms with uniform noise images.
Five sets of 41 uniform noise images with five different sizes
( , , ,

, and ) were generated by
thresholding of the images containing uniform random noise
ranging from 0 to 1000, with 41 different threshold values from
0 to 1000 in steps of 25. Because connected components in such
noise images have complicated geometrical shapes and complex
connectivity, severe evaluations of labeling algorithms can be
performed with these images.

We used all noise images for testing the linearity of the
computation of the algorithms. For each size of the noise
images, the maximum and average execution times are shown
in Fig. 8(a) and (b), respectively. As we can see from Fig. 8,
all three algorithms have the ideal linear characteristic against
image sizes.

Fig. 9. Execution time versus the density of images.

Fig. 10. Execution time on ���� ���� ��� noise images.

-sized noise images were used for testing
the execution time versus the density of images. The results are
shown in Fig. 9.

We also used noise images to compare voxel-
based algorithm with two natural extensions of the algorithm
proposed in [10], denoted as Ours- algorithm and Ours-
algorithm, respectively, and our run-based algorithm with the
natural extension of the one proposed in [9], denoted as Ours-
algorithm.

The Ours- algorithm checks voxels in the mask with a ran-
domly selected order

, the Ours- algo-
rithm does with another randomly selected order

.
The results are shown in Fig. 10.
From Fig. 10, we can find that, for all noise images, both of

our proposed algorithms are more efficient than the algorithms
naturally extended from the previous algorithms. On an average,
for all images, the Ours-1 algorithm is 24.2% faster than the
Ours- algorithm and 37.3% faster than the Ours- algo-
rithm, and the Ours-2 algorithm is 14.0% faster than the Ours-
algorithm. Especially, for the last ten high-density images, the
Ours-1 algorithm is 39.8% faster than the Ours- algorithm and
91.0% faster than the Ours- algorithm, and for the first five
and the last five images, Ours-2 algorithm is 37.3% faster than
the Ours- algorithm.
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Fig. 11. Execution time versus the cube size.

The reason that the Ours-1 algorithm is much better than the
Ours- algorithm and the Ours- algorithm for high-den-
sity images is that, for a high-density image, the possibility that
the voxel is a foreground voxel will be large. In this case,
the Ours-1 algorithm only need to check the voxel , but the
Ours- algorithm might need to check , , , and , and
the Ours- algorithm might need to check , , , , ,

, etc, where the Ours- algorithm might check more voxels
than does the Ours- algorithm.

On the other hand, for high-density images, the average
length of runs in the image will be large, i.e., the number
of runs will be much smaller than the number of foreground
voxels. Because the Ours-2 algorithm assigns to each run a
provisional label, whereas the Ours- algorithm assigns to
each foreground voxel a provisional label, the number of oper-
ations for assigning provisional labels by the Ours-2 algorithm
will be much smaller than that by the Ours- algorithm. For
low-density images, the number of foreground voxels will be
small. Because, in the second scan, the Ours-2 algorithm only
scans foreground voxels, whereas the Ours- algorithm scans
all voxels, the number of operations for scanning voxels in the
second scan by the Ours-2 algorithm will be much smaller than
that by the Ours- algorithm. Therefore, the Ours-2 algorithm
is much better than the Ours- algorithm for high-density and
low-density images.

Second, we compared the algorithms on overlapped-cube
image set. This set is composed of images with a random distri-
bution of 50 square cubes of foreground voxels, where overlap
of cubes is allowed, with cube size ranging from to

in steps of 5, 10 000 different images for each
cube size. The densities of these images range from 0.46% to
80.01%.

The overlapped-cube images were used for testing the execu-
tion time versus the cube size. The results are shown in Fig. 11,
where the running time for each cube size is the average of the
running times on the 10 000 different images corresponding to
that size. Notice that there are two vertical axes in Fig. 11: the

Fig. 12. Sagittal slice of a 3-D MR image (a) and its corresponding binary
image (b).

TABLE II
EXECUTION TIMES (in Seconds) OF DIFFERENT METHODS ON 3-D MR IMAGES

T: threshold; D: density; AL: average length of runs; #CC: number of
connected components.

left one is for the Ours-1 algorithm and the Ours-2 algorithm,
and the right one for the algorithm.

Moreover, similarly, as in [11], a 3-D magnetic resonance
(MR) image was downloaded from the Montreal Neurological
Institute website (http://www.bic.mni.mcgill.ca/brainweb) with
a noise level of 5%, and an intensity inhomogeneity level of
20%. The size of the image was , and the gray-
level range from 0 to 255. Twenty-four binary images were de-
rived by thresholding the image with a threshold changing from
10 to 120 in steps of 10. A sagittal slice of the image and its bi-
nary image with a threshold of 45 is shown in Fig. 12(a) and (b),
respectively. The testing results are shown in Table II.

Lastly, a size 3-D binary image of abdominal
CT was used for testing. An axial slice of the 3-D binary image
is shown in Fig. 13. The running times of the Ours-1 algorithm,
the Ours-2 algorithm, and the Hu-algorithm were 0.344, 0.571,
and 2.893 s, respectively.

VI. COMPARISON OF OURS-1 ALGORITHM, OURS-2
ALGORITHM, AND ALGORITHM

The original algorithm proposed in [4] for the labeling
of 2-D binary images is a one-scan algorithm. However, the

algorithm for 3-D binary images is a two-scan algorithm.
1) In the first scan, the algorithm differentiates contour

voxels from other foreground voxels (i.e., inner foreground
voxels) by setting each contour voxel to 2.

2) In the second scan, for each unlabeled foreground voxel
, if and
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Fig. 13. Axial slice of a 3-D binary image of abdominal CT.

, i.e., is an outside contour voxel, it assigns
a new label, i.e., ,

where is initialized to be 3, and then propa-
gates the label to all outside contour voxels that are con-
nected to by use of recursive operation; else, if

and , i.e., is
an inside contour voxel, it assigns to the label of

, i.e., ,
and then propagates the label to all inside contour voxels
that are connected to by using the recursive op-
eration; else, if , i.e., is an inner
foreground voxel, it merely assigns to the label of

, i.e., .
Because all labeling algorithms do nothing for background

voxels, the performance of an algorithm will depend on the
methods for processing foreground voxels.

For Ours-1 algorithm, for a foreground voxel with all of its
neighbor voxels being background voxels, it checks 13 voxels
in the mask. For a foreground voxel with all of its neighbour
voxels being foreground voxels, it checks only one voxel ( in
the mask shown in Fig. 3). In both cases, it does not need to re-
solve any label equivalence. For the other cases, the number of
voxels checked by Ours-1 algorithm will vary between 2 and 12,
and some label equivalences will need to be resolve, depending
on the configuration of its neighbor foreground voxels. There-
fore, the efficiency of the Ours-1 algorithm will depend on the
complexity of connected components in images.

For Ours-2 algorithm, for any run, it needs to check the four
row in the corresponding 26-connected range. Because it ac-
cesses background voxels only once, it will be efficient for low-
density images. Moreover, because it assigns provisional labels
to runs, it will be also efficient for images with large average
lengths of runs (in such cases, the number of runs will be much
smaller than that of foreground voxels). On the other hand, be-
cause Ours-2 algorithm needs to record the run data, for images
with small average lengths of runs (in such cases, the number of
runs is near to that of foreground voxels), it will take much time
than Ours-1 algorithm for labeling.

On the other hand, for any foreground voxel, the al-
gorithm needs to check all 26 neighbor voxels. Therefore, the

total number of times for it to check neighbor voxels will in-
crease with the density of an image.

The aforementioned analyses are consistent with the experi-
mental results given in Section V. From Fig. 9, we can find that
the execution times of the algorithm are almost propor-
tional to the density of an image, whereas the execution times
of the Ours-1 algorithm depend on the complexity of the con-
nected components in an image.3 On the other hand, the Ours-2
algorithm is very efficient for low-density images (where the
number of background voxels is large) and high-density images
(where the average length of runs is large). However, for images
with complex connected components, it takes much more time
for labeling than the Ours-1 algorithm.

From Fig. 11, for all overlapped-cube images, we can find that
both the Ours-1 and the Ours-2 algorithms are much more effi-
cient than the algorithm. Moreover, the Ours-2 algorithm
is more efficient than the Ours-1 algorithm, where the average
length of runs is larger than or equal to 5, especially when the
length of the sides of cubes becomes large.

For the 3-D magnetic resonance MR head images, from
Table II, the execution time of the algorithm is pos-
itively correlated with the density of an image, whereas the
execution times of the Ours-1 and Ours-2 algorithms vary only
little for different densities. Moreover, because, in such images,
when the average length of the runs is small, the density is
small, and when the density is large, the average length of the
runs is large; the Ours-2 algorithm is more efficient than the
Ours-1 algorithm.

Another main problem of the algorithm is the over-
flow of stack [4]. Although the algorithm can reduce the
requirement on stack memory by increasing the local cube size,
this will decrease its efficiency. In other words, there is a tradeoff
between execution time and memory. On the other hand, the
memory space necessary for the Ours-1 and Ours-2 algorithms
is and , respectively.

VII. CONCLUDING REMARKS

In this paper, we proposed two label-equivalence-based la-
beling algorithms for 3-D binary images. One is a voxel-based
algorithm, which checks the neighbors of the current voxel in
optical order and is efficient for images with complicated con-
nected components. The other is a run-based algorithm, which
assigns provisional labels to runs rather than voxels, as in con-
ventional label-equivalence-based labeling algorithms; it pro-
cesses background voxels only once, and it is efficient for im-
ages with low density or a large average length of runs. Both of
the proposed algorithms are linearity to image sizes, and much
more efficient than those naturally extended from the related al-
gorithms for 2-D binary images. Experimental results demon-
strated that the proposed two algorithms were much more effi-
cient than conventional labeling algorithms for 3-D binary im-
ages.

3For noise images, with the increase of the density of an image from 0 to 0.5,
the complexity of connected components also increases, and when the density of
an image exceeds 0.5, the complexity of connected components decreases with
the increase in density, i.e., the maximum complexity of connected components
occurs in images with densities around 0.5.
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Even with our proposed algorithms, it takes seconds for la-
beling 3D binary images. Therefore, the hard-
ware implementations [26] and/or parallel implementations [1],
[13] of our algorithms should be considered. For example, we
can divide a large 3-D binary image into some small subimages,
and process all subimages in parallel; then, we combine the re-
sults for all subimages together by resolving the label equiva-
lences on their interfaces.
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