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A New First-Scan Method for Two-Scan Labeling Algorithms

Lifeng HE†a), Yuyan CHAO††, Nonmembers, and Kenji SUZUKI†††, Member

SUMMARY This paper proposes a new first-scan method for two-scan
labeling algorithms. In the first scan, our proposed method first scans every
fourth image line, and processes the scan line and its two neighbor lines.
Then, it processes the remaining lines from top to bottom one by one. Our
method decreases the average number of times that must be checked to
process a foreground pixel will; thus, the efficiency of labeling can be im-
proved.
key words: labeling algorithm, connected component, first scan, pattern
recognition

1. Introduction

Labeling of connected components in a binary image is one
of the most fundamental operations in pattern analysis, pat-
tern recognition, computer (robot) vision, and machine in-
telligence [6], [7]. Especially in real-time applications such
as traffic-jam detection, automated surveillance, and target
tracking, faster labeling algorithms are always desired.

Many algorithms have been proposed for addressing
this issue, because improving the efficiency of labeling is
critical in many applications. For ordinary computer archi-
tectures and 2D images, there are mainly two types of label-
ing algorithms:

(1) Raster-scan algorithms. These algorithms process an
image in the raster-scan way. There are multi-scan
algorithms [17] and two-scan algorithms [7]–[12], and
one-and-a-half scan algorithm [13];

(2) Label propagation algorithms. These algorithms access
an image in an irregular way. There are run-based al-
gorithms [2], [16] and contour-tracing algorithms [3],
[14].

According to experimental results on various types
of images, the two-scan labeling algorithm proposed in
Ref. [10], an improvement of the algorithm proposed in
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Ref. [8], is the most efficient one, and has been used for
various applications [1], [4], [5]. For convenience, we de-
note this algorithm as MECTSL (Most Efficient Conven-
tional Two-Scan Labeling) algorithm.

Similar to other two-scan labeling algorithms, in the
first scan, the MECTSL algorithm processes an image line
by line. It assigns provisional labels to the foreground pix-
els in the scan line, and resolves the connectivities of these
foreground pixels and those on the above neighbor line.

In fact, the connectivities of the foreground pixels on
the scan line and those on the below neighbor line can also
be found easily when we process the foreground pixels on
the scan line. Comparing to resolving these connectivities
later when scanning the next line, where we need to check
the connectivies again, it would be more efficient to do that
at the same time as processing the scan line.

This paper presents a totally new first-scan method for
two-scan labeling algorithms. We first scan image lines ev-
ery four lines. For each scan line, we assign provisional la-
bels to the foreground pixels on the scan line and its two
neighbor lines, and resolve the label equivalences among
those labels. Then, we scan the unprocessed remaining lines
one by one from top to bottom. For each line, we assign pro-
visional labels to the foreground pixels on the scan line and
resolve label equivalences among these labels and those as-
signed to the foreground pixels on its two neighbor lines.
Experimental results showed that the efficiency of our first-
scan method is superior to that of the MECTSL algorithm.

2. Review of the MECTSL Algorithm

For an N×M binary image, we use b(x, y) to denote the pixel
at (x, y) in the image, where 1 ≤ x ≤ N, 1 ≤ y ≤ M, and also
its value. All pixels in the edge of an image are considered to
be background pixels. Because 4-connectivity is a subcase
of 8-connectivity, we will only consider 8-connectivity in
this paper.

Similar to other two-scan labeling algorithms, the
MECTSL algorithm completes labeling in two scans by four
processes:

(1) Provisional label assignment, i.e., assigning a provi-
sional label to each foreground pixel;

(2) Equivalent label finding and recording, i.e., finding all
provisional labels assigned to foreground pixels that
are connected and using some data structures to record
them as equivalent labels;
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(3) Label-equivalence resolving, i.e., finding a representa-
tive label for all equivalent provisional labels;

(4) Label replacement, i.e., replacing each provisional la-
bel by its representative label.

The first process is completed in the first scan, the sec-
ond and the third processes are completed during the first
scan and/or between the first scan and the second scan, and
the fourth process is completed in the second scan.

The MECTSL algorithm uses equivalent label sets and
a representative label table to record equivalent labels and
resolve the label equivalences. For convenience, an equiv-
alent label set with the representative label u is denoted as
S (u), and that the representative label of a provisional label
l is t is denoted as t = T [l].

In the first scan, this algorithm uses the mask shown
in Fig. 1 (a), which consists of three scanned (processed)
neighbors of the current foreground pixels, to assign pro-
visional labels to foreground pixels, and to record and re-
solve label equivalences. At any moment in the first scan,
all equivalent provisional labels are combined in an equiva-
lent label set with the same representative label.

For the case where the current foreground pixel fol-
lows a background pixel (Fig. 1 (b)), if there is nolabel (fore-
ground pixel) in the mask, this means that the current fore-
ground pixel does not connect with any scanned foreground
pixel, and the current foreground pixel belongs to a new
connected component at this point. The algorithm assigns
a new provisional label m to the current foreground pixel,
which is initialized to 1, and establishes the equivalent la-
bel set S (m) = {m}; it sets the representative label table as
T [m] = m, and m = m+1 for later processing. Otherwise,
i.e., if there are some foreground pixels in the mask, all of
such foreground pixels and the current foreground pixel be-
long to the same connected component. Therefore, the cur-
rent foreground pixel can be assigned any of the labels in the
mask.

On the other hand, for the case where the current fore-
ground pixel follows another foreground pixel (Fig. 1 (c)),
the current foreground pixel can be assigned the same label
of that foreground pixel.

In both cases, if there are provisional labels belong-
ing to different equivalent label sets, all provisional labels
in those sets are equivalent labels, and therefore should be
combined. Suppose that u and v are equivalent labels that
belong to S (T [u]) and S (T [v]), respectively. If T [u] = T [v],
the two label u and v belong to the same equivalent label set
already, thus, nothing needs to be done. Otherwise, without

Fig. 1 Mask used in the MECTSL algorithm.

loss of generality, suppose that T [u] < T [v], i.e., T [u] is the
smallest label in the two equivalent label sets, then the com-
bination of the two equivalent label sets can be completed
by the following operations:

S (T [u]) = S (T [u]) ∪ S (T [v]);

(∀s ∈ S (T [v]))(T [s] = T [u]).

As soon as the first scan is finished, all equivalent labels
of each connected component have been combined into an
equivalent label set with a unique representative label. In
the second scan, by replacement of each provisional label
with its representative label, all foreground pixels of each
connected component will be assigned a unique label.

3. Outline of Our Proposed First-Scan Method

Our first-scan method consists of two parts: Scan 1-A and
Scan 1-B.

In Scan 1-A, from line 3 shown in Fig. 2, it uses the
mask shown in Fig. 3 to scan image lines every four other
lines, i.e., in the order of line 3, line 7, line 11, . . . (i.e., the
black lines in Fig. 3). For each pixel on the scan line be-
ing processed, it assigns provisional labels to the foreground
pixels on the line and its two neighbor lines (i.e., the gray
lines in Fig. 2), and resolves the label equivalences among
these labels. By Scan 1-A, all foreground pixels in each
area consisting of black and gray lines in Fig. 2 will be as-
signed provisional labels, among which label equivalences
have been resolved.

Fig. 2 Scanning method of the first scan in our proposed method.

Fig. 3 Mask used in Scan1-A.
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Fig. 4 Mask used in Scan1-B.

After Scan 1-A, Scan 1-B uses the mask shown in
Fig. 4 to scan the lines unprocessed in the Scan 1-A (i.e.,
the white lines in Fig. 2) in the order of line 5, line 9, line
13, . . .. For each scan line, it assigns provisional labels to the
foreground pixels on the line, and resolves the label equiva-
lences among these labels and those on its two neighboring
lines.

When Scan 1-B is finished, all foreground pixels in the
given image will be assigned provisional labels, and all la-
bel equivalences will be resolved, i.e., all equivalent labels
will be combined into an equivalent label set with a unique
representative label.

In the second scan, similar to other two-scan labeling
algorithms, by replacing the provisional label of each fore-
ground pixel with its representative label, we can complete
the whole labeling process.

Notice that, in our algorithm, the label equivalences are
recorded and resolved in exactly the same way introduce as
in the MECTSL algorithm.

4. Comparative Evaluation

We implemented the MECTSL algorithm and our algorithm
with the C language on a PC-based workstation (Intel Pen-
tium D 3.0 GHz + 3.0 GHz CPUs, 2 GB Memory, Mandriva
Linux OS). Because our method is a new first-scan method
(as we described above, the second scan of our method is
exactly the same with the MECTSL method), we will com-
pare the performances of the two methods only on the first
scan. All data in this section were obtained by averaging of
the execution time for 10,000 runs with a single core.

Noise images consist of forty one 512×512-sized noise
images were generated by thresholding of the images con-
taining uniform random noise with 41 different threshold
values from 0 to 1000 in steps of 25. The densities† of these
images are from 0.04 to 0.99.

On the other hand, 50 natural images, including land-
scape, aerial, fingerprint, portrait, still-life, snapshot, and
text images, obtained from the Standard Image Database
(SIDBA) developed by the University of Tokyo†† and the
image database of the University of Southern California†††,
were used for realistic testing of labeling algorithms.
In addition, seven texture images, which were down-

Fig. 5 Speed-up (%) of our method compared to the MECTSL method
on the 512 × 512 noise images.

loaded from the Columbia-Utrecht Reflectance and Texture
Database††††, and 25 medical images obtained from a medi-
cal image database of The University of Chicago were used
for testing. All of these images were 512×512 pixels in size,
and they were transformed into binary images by means of
Otsu’s threshold selection method [15]. The densities of the
transformed images are from 0.05 to 0.61.

Figure 5 shows the speed-up of our algorithm com-
pared to the MECTSL algorithm on the 512 × 512 noise
images, where the vertical axis is defined as (t1 − t2)/t1 ×
100 (%), where t1 is the execution time of the MECTSL al-
gorithm and t2 is that of our proposed method.

From Fig. 5, we can find that our proposed algorithm
is relatively efficient for images with densities from 0.2 to
0.9 (the largest speed-up ratio happens for the noise image
with density about 0.75). Because the foreground pixels in
such images have complicated connectivity, it shows that
our algorithm is efficient for images with complicated con-
nectivity.

On the other hand, because our algorithm processes an
image piecewise, it is not as efficient as the MECTSL algo-
rithm, which does that successively. Therefore, as shown in
Fig. 5, our algorithm is not as efficient as the MECTSL al-
gorithm for the noise images whose densities are lower than
0.1, where the advantage of our algorithm for resolving con-
nectivity cannot be exerted.

For high-density noise images, because our method
processes an image every four lines in Scan1-A, the num-
ber of provisional labels assigned by our algorithm is much
larger than that assigned by the MECTSL algorithm. For ex-
ample, for the highest density noise image used in our test,
the number of provisional labels assigned by our algorithm
and that assigned by the MECTSL algorithm are 129 and 2,
respectively. For each provisional label, we need to apply
some operations to establish a new equivalent label set and
initialize the representative label table. Moreover, because
the connectivity of the foreground pixels in this case is sim-
ple, the advantage of our method for resolving connectivity

†The density of an image is defined as Nf /N, where Nf is the
number of foreground pixels in the image and N that of all pixels
in the image.
††http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
†††http://sipi.usc.edu/database/
††††http://www1.cs.columbia.edu/CAVE/software/curet/

index.php
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Table 1 Comparison of various execution times (ms) for natural images,
medical images, and textural images.

cannot be exerted, and the effect of the efficiency of our al-
gorithm becomes weaker and weaker with the increase of
the density of an image from 0.8.

The experimental results on the natural images, the
medical images, and the textural images are shown in Ta-
ble 1. Because images in each categories have special char-
acteristics with different connectivities, our algorithm shows
different performances on them.

5. Concluding Remarks

In this paper, we presented a totally new method for the
first scan of label-equivalence-based two-scan labeling al-
gorithms. By our method, the number of times for check-
ing pixels for assigning provisional labels and processing
label equivalences is decreased; thus, the efficiency of label-
ing is improved. Experiments demonstrated that our method
was more efficient than the first scan of conventional label-
equivalence-based two-scan labeling algorithms.
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