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lications on an automated liver segmentation 
scheme for MRI, even though MRI carries 
no risk related to ionizing radiation, probably 
because it is thought that MRI liver volum-
etry has more variations and is more difficult 
than CT. Karlo et al. [10] compared the CT- 
and MRI-based volumetry of resected liver 
specimens with intraoperative volume and 
weight measurements to calculate conversion 
factors. A semiautomated dual-space clus-
tering segmentation method was proposed 
by Farraher et al. [11]. Their semiautomated 
method required, first, manual drawing of a 
small region of interest on the liver; then it 
iteratively evaluated temporal liver segmen-
tations with repeated adjustment of parame-
ters to obtain the final liver segmentation re-
sult. They evaluated the performance of their 
method on 18 normal and nine abnormal cas-
es. Ruskó and Bekes [12] proposed a parti-
tioned probabilistic model to represent the 
liver. In this model, the liver was partitioned 
into multiple regions, and different inten-
sity statistical models were applied to these 
regions. The scheme was tested on two nor-
mal and six abnormal cases. Gloger et al. [13] 
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M
edical and surgical advances have 
brought about a global success of 
liver transplantation with increas-
ing survival rates after transplan-

tation over the past decades. One of the impor-
tant assessments contributing to the success of 
a transplantation procedure is the estimation of 
total and segmental liver volumes. This is a 
major factor in predicting the safe outcome for 
both donor and recipient. Hence, an accurate 
estimation of liver volumes is crucial for plan-
ning liver transplantation [1, 2]. Although the 
manual tracing method can give accurate re-
sults, it is subjective, tedious, and time con-
suming. In addition, relatively large intraob-
server and interobserver variations still occur 
with the manual method. To address this issue, 
automated liver segmentation is being devel-
oped with image analysis techniques and has 
become an important research topic.

Several approaches to computerized liv-
er segmentation on CT images have been 
published, including image-processing tech-
niques [3–5], feature analysis [6], and lev-
el-set segmentation [7–9]. In comparison 
with CT-based schemes, there are few pub-
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OBJECTIVE. Our purpose was to develop an accurate automated 3D liver segmentation 
scheme for measuring liver volumes on MRI.

SUBJECTS AND METHODS. Our scheme for MRI liver volumetry consisted of three 
main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the 
portal venous phase to reduce noise and produce the boundary-enhanced image. This bound-
ary-enhanced image was used as a speed function for a 3D fast-marching algorithm to gener-
ate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-
contour segmentation algorithm refined the initial surface to precisely determine the liver 
boundaries. The liver volumes determined by our scheme were compared with those manu-
ally traced by a radiologist, used as the reference standard.

RESULTS. The two volumetric methods reached excellent agreement (intraclass correla-
tion coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy 
was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean 
processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual 
volumetry was 24.0 ± 4.4 minutes (p < 0.001).

CONCLUSION. The MRI liver volumetry based on our automated scheme agreed excel-
lently with reference-standard volumetry, and it required substantially less completion time.

Huynh et al.
3D Geodesic Active Contour Segmentation of Liver MRI 
Volumetry
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developed a three-step segmentation method 
based on a region-growing approach, linear 
discriminant analysis, and probability maps. 
Their method was evaluated with 20 normal 
cases and 10 fatty cases.

Although those studies showed promise, 
there is still room for improvement in accu-
racy, especially for diseased cases, and in the 
execution time of the computerized liver seg-
mentation in MRI to make it suitable for rou-
tine clinical use. In this study, we developed 
an automated liver segmentation scheme for 
MRI based on a geodesic active contour mod-
el and a fast-marching algorithm. The perfor-
mance of our scheme was evaluated on 23 pa-
tients with cancer, and a comparison between 
the computerized volumetry and reference 
standard manual volumetry was performed.

Subjects and Methods
Liver MRI Datasets

This study was approved by the institutional 
review board of the University of Chicago Med-
ical Center and was compliant with the HIPAA. 
Informed consent was obtained from all patients. 
Twenty-three patients (14 men and nine women; 
age range, 46–84 years) were scanned in the su-
pine position with 1.5-T MRI scanners (Signa 
HDx/HDxt, GE Healthcare; and Achieva, Philips 
Healthcare) at the University of Chicago Medical 
Center. IV gadolinium contrast-based agent (8–20 
mL; mean [± SD], 15.3 ± 4.2 mL) was adminis-
trated. Contrast-enhanced MRI was performed by 
use of T1-weighted liver acquisition with volume 
acceleration or T1-weighted high-resolution iso-
tropic volume examination sequence (flip angle, 
10°; TR/TE, 3.48–3.92/1.64–1.84). The scanning 
parameters included a slice thickness of 5 mm (for 
the GE system) or 4 mm (for the Philips Health-
care system) and reconstruction intervals of 2.5 
mm (for the GE system) or 2 mm (for the Philips 
Healthcare system). Each MRI slice had a matrix 
size of 256 × 256, 384 × 384, or 512 × 512 pixels 
with an in-plane pixel size ranging from 1.17 to 
1.72 mm. The 23 cases in our database had liv-
er diseases (hepatocellular carcinoma in 11 cases 
and metastasis in 12 cases).

The manual liver contours were traced care-
fully by a board-certified abdominal radiologist 
on each slice containing the liver. The number of 
slices in each case ranged from 88 to 120 (aver-
age, 97.9 slices). The liver volume was calculat-
ed by multiplying the areas of the manually traced 
regions in each slice by the reconstruction inter-
val. Note that the slice thickness was different from 
the reconstruction interval, and consecutive slices 
overlapped. The total liver volume in each case 
was obtained from summation of the volumes in 

all slices. We also recorded the time required for 
the completion of the manual contour tracing. The 
performance of our computerized liver volumetry 
scheme was evaluated by using manual liver vol-
ume, which is considered as the reference standard.

Computerized Measurement Scheme  
for MRI Liver Volumes

A computerized scheme using level-set algo-
rithms coupled with geodesic active contour seg-
mentation was proposed by our group for CT liv-
er segmentation. In this study, we developed a 
scheme for the automated liver segmentation on 
MRI, based on the knowledge and techniques ac-
quired in the development of our CT liver seg-
mentation scheme. Our MRI liver segmentation 
scheme applied to the portal venous phase images 
in T1-weighted sequences consists of three main 
stages: preprocessing, rough estimation of the liver 
shape, and segmentation of the liver. The details 
of our scheme are presented in Appendix 1. In the 
first stage, a 3D MRI volume, I(x,y,z), consisting 
of portal venous phase images was processed to re-

duce noise, enhance liver boundaries, and produce 
the edge potential image. This edge potential im-
age was used as a speed function for level-set seg-
mentation and fast-marching algorithms. The out-
put of the fast-marching algorithm in the next stage 
was a time-crossing map indicating the time trav-
eling to each point. It forms a rough shape of the 
liver on MRI. Finally, we used a 3D geodesic ac-
tive contour algorithm [14] to refine the initial sur-
face determined by the time-crossing map to ob-
tain the liver boundaries more precisely. The liver 
regions segmented by the geodesic active contour 
algorithm were used to calculate the liver volume.

Evaluation Criteria
The liver volumes obtained by using our comput-

erized scheme were compared with the reference-
standard manual volumes determined by a radiolo-
gist. We determined true-positive (TP), false-positive 
(FP), true-negative (TN), and false-negative (FN) 
segmentation for detailed analysis (see Appendix 
2 for their definitions). We calculated the accuracy 
of the segmentation as follows:

A

C

B

D

Fig. 1—67-year-old man with liver cancer. Intermediate results of our scheme for sample case are shown.
A, Original axial T1-weighted MRI of liver in portal venous phase.
B, Three-dimensional anisotropic diffusion noise reduction. Noise in image is reduced substantially, whereas 
major structures in liver, such as major vessels and liver boundaries, are maintained. Retained structures inside 
liver are smoothed out, because they are structural noise in liver segmentation.
C, Three-dimensional fast-marching algorithm. Time-crossing map indicates traveling time to each voxel. Most 
vessels inside liver are excluded at this stage.
D, Three-dimensional geodesic active contour segmentation. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 U

ni
ve

rs
ity

 O
f 

C
hi

ca
go

 L
ib

ra
ry

 o
n 

01
/3

1/
14

 f
ro

m
 I

P 
ad

dr
es

s 
12

8.
13

5.
74

.1
29

. C
op

yr
ig

ht
 A

R
R

S.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d 



154 AJR:202, January 2014

Huynh et al.

 Accuracy = (|TP| + |TN|)/|I| (1),

where I is the entire image. The Dice measure-
ment representing the fraction of the overlapping 
volume and the volume of two segmentation meth-
ods is given by the following equation:

Dice = (2).
2|TP| + |FP| + |FN|

2|TP|

We also determined the percentage volume er-
ror (E) for each computerized volume (Vc) and the 
reference-standard manual volume (Vm) as follows:

E = |(Vc − Vm)/Vm| (3).

The association between the computerized vol-
umetry and the manual volumetry was measured 
by the Pearson product-moment correlation coeffi-
cient (r). The significance of the correlation coeffi-
cient was evaluated by using the Student t test. An 
agreement between the two measurements was as-
sessed by using the intraclass correlation coefficient 
(ICC) [15, 16]. The two-way random single measure 
model, ICC(2,1), was used because we assumed that 
the cases were chosen randomly and each case was 
measured by two volumetric methods. The ICC(2,1) 
was defined by the following equation:

(4),ICC (2,1) =
BMS + (k − 1) + k (RMS − EMS)/n

BMS − EMS

where n is the number of cases, k is the number of 
raters (i.e., volumetric methods), BMS is the be-
tween-cases mean square, EMS is the error mean 
square, and RMS is the between-raters mean 
square. The statistical significance was obtained 
by analysis of variance. We performed a posthoc 
power analysis with the Walter-Eliasziw-Donner 
model [17] for ICC-based reliability studies to de-
termine the statistical power in this study. As done 
by Suzuki et al. [7], we assumed a type 1 error (α) 
of 0.05 and a type 2 error (β) of 0.20 in this analy-
sis. An additional agreement analysis for two mea-
surements was performed by the Bland-Altman 
method [18] based on the mean difference (bias) 
and the SD of the difference. The limits of agree-
ment, which are given by bias ± 1.96 × SD, were 
used to consider the degree of agreement.

Results
The intermediate results of our scheme for 

an example case are illustrated in Figure 1. 
The original MRI (Fig. 1A) was processed by 
the anisotropic diffusion filter to reduce noise 
while preserving the major liver structures, 
such as the portal vein and liver boundaries 
(Fig. 1B). The edge potential image was gen-
erated from the noise-reduced image by using 
a 3D gradient magnitude filter, and a sigmoid 
gray-scale converter was applied to the fast-

marching algorithm to generate the initial con-
tour (Fig. 1C). Finally, the liver was segment-
ed more precisely by using the geodesic active 
contour algorithm (Fig. 1D). The liver volume 
was computed from the segmented regions.

A comparison of the liver volume be-
tween the two measurements is shown in Ta-
ble 1. The mean reference standard manual 
volume was 1710 ± 401 cm3 (range, 1013–
2529 cm3), whereas the mean volume of our 
computerized scheme was 1697 ± 400 cm3 
(range, 1120–2418 cm3). The mean absolute 
difference and the percentage volume error 
(E) were 56 cm3 and 3.6%, respectively. The 
overall mean of the Dice coefficients was 
calculated as 93.6 ± 1.7, and the accuracy of 
liver segmentation was 99.4% ± 1.4%. The 
relationship between the computerized vol-
umetry and the manual volumetry is shown 
in Figure 2. The Pearson correlation coeffi-

cient was 0.98 at a level that was statistically 
significant (p < 0.0001). Table 2 presents the 
results from the ICC analysis. The two vol-
umetric methods achieved excellent agree-
ment, with an ICC of 0.98 and no statistically 
significant difference (p = 0.42). The statisti-
cal power in the study was evaluated by using 
the posthoc power analysis based on the Wal-
ter-Eliasziw-Donner model [17]. The lowest 
ICC between the computer-based volume-
try and the manual volumetry that we should 
have been able to detect with the 23 cases 
was 0.95, and this study had the power to de-
tect a bias of 0.03 in the ICC. The Bland-Alt-
man plot for assessing agreement is also pre-
sented in Figure 3. Here, the mean difference 
was−13.2cm3. The limits of agreement with 
the 95% CI were −163.3 to 136.9 cm3, which 
were small enough to show a good agreement 
between the two volumetric methods.

TABLE 1: Comparison Between Computer-Based Volumetry and 
Reference-Standard Manual Volumetry

Volume Average SD

Computer (cm3) 1697 400

Manual (cm3) 1710 401
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Fig. 2—Relationship 
between computer-based 
volumes and reference-
standard manual volumes. 
Two volumetric methods 
reached excellent 
agreement (intraclass 
correlation coefficient, 0.98).

TABLE 2: Analysis of Variance Table From Intraclass Correlation 
Coefficient Analysis

Comparison
Degrees of 
Freedom Sum of Squares Mean Squares F Statistic Value

Between raters 1 2008 2008 0.69

Between cases 22 6,999,296 318,150 108.5

Within cases 23 66,496 2891

Residual 22 64,488 2931

Total 45 7,065,792
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Figure 4 illustrates the computerized liver 
segmentation and manual liver segmentation 
for a case with a high accuracy (99.7%). The 
computerized segmentation agreed almost 
perfectly with the reference-standard manual 
segmentation for slices through the superior 
portion of the liver (Figs. 4B and 4D). Two 
other cases with more typical results, which 
had accuracies close to the average accuracy, 
are presented in Figure 5. Overall, the com-
puterized method was able to segment the 
livers very accurately. However, occasional-
ly there was over- and undersegmentation in 
the segmented livers. Major FP and FN seg-
mentation sources are illustrated in Figure 6. 
The major FN sources included a lesion at-
tached to the liver boundaries, low-contrast 
liver boundaries, and inhomogeneous densi-
ty due to focal fat and noise. The major FP 
sources included the heart, kidney, vena cava, 
and stomach, which abut the liver. They also 
were from artifact due to the partial volume 
effects. Other under- and oversegmentation 
sources were convex and concave boundary 
parts with high curvatures.

The average processing time of our scheme 
for liver segmentation was 1.03 ± 0.13 min-
utes per case (range, 0.9–1.5 min/case) on a 
PC (CPU: Intel, Xeon, 2.66 GHz), whereas 
that for the manual method was 24.0 ± 4.4 
minutes per case (range, 18–30 min/case). 
The difference was statistically significant 
(p < 0.001).

Discussion
Liver volumetry is performed for hepatec-

tomy to treat patients with liver tumors. Be-
cause the liver volume is reduced after hepa-
tectomy, it must be ensured that the remaining 
liver volume is sufficient to maintain the liv-
er function. A minimum of 40% of the stan-
dard liver mass is required by the recipient, 
whereas 30–40% of the original volume must 
remain for the donor to survive [19]. In the 
case of complicated treatment, such as that for 
chronic liver disease, a larger remaining liv-
er volume is required [20]. Many research-

ers have tried to estimate the liver volume ac-
curately on the basis of CT images, such as 
by use of virtual hepatectomy [21]. However, 
fewer researchers have reported liver volume-
try on MRI, probably because it is thought that 
MRI liver volumetry has more variations and 
that manual liver volumetry with MRI is more 
difficult than with CT. Furthermore, manual 
liver volumetry is very time consuming and 
not cost effective. Therefore, it is crucial to in-

vestigate the potential of a computerized volu-
metry for liver MRI. We think that computer-
ized MRI liver volumetry has the potential to 
be very useful.

Although our computerized liver volum-
etry had excellent agreement with the refer-
ence-standard manual liver volumetry (ICC, 
0.98), there were still occasional FNs and 
FPs that were mainly caused by the simi-
lar density of other organs abutting the liver. 
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Fig. 3—Bland-Altman plot 
for agreement between 
computer and manual 
volumetry. Bias was 
−13.2 cm3; 95% limits of 
agreement were −163.3 
and 136.9 cm3.

A

C

B

D

Fig. 4—54-year-old man with liver cancer. 
Comparisons are shown of computer-based liver 
segmentation with reference-standard manual liver 
segmentation for case with high accuracy (99.7%).
A, Original axial MRI from case.
B, Computer-based liver segmentation (red contour) 
and reference-standard manual liver segmentation 
(blue contour) are shown.
C, Original axial MRI (different slice) from same case.
D, Computer-based liver segmentation (red contour) 
and reference-standard manual liver segmentation 
(blue contour) are shown.
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The liver segmentation accuracy was also in-
terfered with by the partial volume effects 
and the liver intensity variation among dif-
ferent studies and patients, because the in-
tensity depends on acquisition timing and on 
the characteristics of the contrast material.

Although the volumes obtained by using 
our computerized method had a strong cor-
relation to those by the reference-standard 
manual tracing method (Pearson product-
moment correlation coefficient, 0.98), it still 
does not reach the minimal variation obtained 
in CT volumetry between expert radiologists, 
which was reported as 0.997 [22]. (Although 
we could not find a study reporting the vari-
ation for MRI volumetry, we expect that it 
would be larger than that for CT.) One can in-
crease the overall accuracy by correcting FP 
and FN segmentations manually. This can be 
accomplished rapidly with routine manipula-
tions. The substantial amount of time saved 
by using the computerized method may jus-
tify the small error rate (average percentage 
volume error, 3.6%) compared with the man-
ual tracing method, for which the average 
processing time was 24 minutes per case.

Direct comparisons of our method with ex-
isting methods in literature are not easy be-
cause different databases and quality measure-
ments were used. Nakayama et al. [6] obtained 
a correlation coefficient between their meth-
od and the manual tracing method of 0.883 

for CT liver volumetry. Freiman et al. [23] 
achieved volume errors of 5.36% and 2.36% 
for CT volumetry of their database and a pub-
licly available database (SLIVER07), respec-
tively. Florin et al. [24] obtained a volume 

error of 10.72% in CT volumetry. For evalu-
ation of liver MRI segmentation, Gloger et al. 
[13] obtained volume errors of 8.3% for nor-
mal livers and 11.8% for fatty livers, with run 
times of 11.2 and 15.4 minutes, respectively. 

A

A

C

C

B

B

D

D

Fig. 5—Comparisons of computer-based liver 
segmentation with reference-standard manual 
liver segmentation for two cases with accuracies 
(99.5% for first case; 99.2% for second case) close to 
average accuracy (99.4%).
A and B, 68-year-old man with liver cancer. Shown 
are original axial MRI (A) and corresponding image 
(B) showing computer-based liver segmentation 
(red contour, B) and reference-standard manual liver 
segmentation (blue contour, B).
C and D, 70-year-old woman with liver cancer. Shown 
are original axial MRI (C) and corresponding image 
(D) showing computer-based liver segmentation 
(red contour, D) and reference-standard manual liver 
segmentation (blue contour, D).

Fig. 6—Illustrations of major false-positive (FP) and 
false-negative (FN) sources. 
A and B, 54-year-old man with liver cancer. Shown 
are original axial MRI scan (A) and corresponding 
image (B) showing computer-based liver 
segmentation (red contour, B) and reference-
standard manual liver segmentation (blue contour, B). 
In panel B, there is FP due to heart (a), FN due to vein 
(b), and FN due to lesion on liver boundary (c). 
C and D, 68-year-old man with liver cancer. Shown 
are original axial MRI scan (C) and corresponding 
image (D) showing computer-based liver 
segmentation (red contour, D) and reference-
standard manual liver segmentation (blue contour, 
D). In panel D, there is FP due to duodenum (d) and FN 
due to low-intensity region (e).
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Besides volume errors, some researchers used 
the shape alignment measurement to evalu-
ate the segmentation performance. A robust 
measurement based on the shape alignment is 
the modified Hausdorff distance, which over-
comes the noise and outlier sensitivity of the 
original Hausdorff distance. The modified 
Hausdorff distance (MHD) is defined by the 
following equations:

MHD = max{dH(X, Y), dH(Y, X)} (5),

dH(X, Y) = (6),
card(X)

min║x −y║
x∈X y∈Y

1 ∑

where X and Y are two sets of boundary posi-
tions of the liver segmented by a manual meth-
od and a computerized method, respectively. 
Our scheme achieved an average modified 
Hausdorff distance of 12.8 ± 2.24 mm for liv-
ers with diseases, whereas the average origi-
nal Hausdorff distance reported by Gloger et 
al. [13] was 20.35 ± 8.66 mm for fatty livers. 
Note that a modified Hausdorff distance was 
not provided by Okamoto et al. [20].

The 95% limits of agreement between 
our computerized volumes and the reference 
standard manual volumes were −163.3 and 
136.9 cm3. These limits are smaller than the 
results reported by Nakayama et al. [6]: the 
limits between automated and manual vol-
umes were −230.3 and 327.9 cm3, and those 
between automated and measured liver vol-
umes were −309.3 and 412 cm3. In addition, 
these 95% limits of agreement were smaller 
than those in our previous work on CT im-
ages [7], which were −211 and 278 cm3 for 
agreement between the automated and man-
ual CT volumes. Note that these compari-
sons were not direct comparisons because 
different databases were used.

There are several parameters to be adjusted 
in our scheme. They were determined by em-
pirical analysis. Because the intensity on liv-
er MRI varies significantly among patients, we 
used two sets of parameters: one for lower av-
erage intensity images (below 700) and one for 
higher average intensity images (greater than 
or equal to 700). Note that this strategy does 
not disturb automation, because the average in-
tensity is measured automatically from images.

Different protocols and MRI scanners can 
result in different image sizes, which would af-
fect the stability or robustness of our scheme. 
To reduce this effect, the images of different 
sizes were resampled so that the size of image 
slices became 256 × 256 pixels. Note that this 
strategy did not affect the precision of volume 
calculation, because the volume obtained by 
multiplying the number of voxels by the voxel 
size was unchanged.

One of the limitations of this study was that 
the evaluation was performed with the refer-
ence-standard manual volumes determined 
by a single expert radiologist. Ideally, the ref-
erence-standard volumes are determined by 
multiple radiologists who are experts in liv-
er diagnosis. However, such an ideal evalua-
tion would not be available at all institutions 
because not many institutions have a num-
ber of such radiologists who are sufficiently 
experienced in liver diagnosis. Many publi-
cations reported the evaluation based on the 
reference-standard manual volumes; how-
ever, none of them used reference-standard 
volumes estimated by multiple radiologists, 
probably for the aforementioned reason. Fur-
thermore, it was shown that the correlation 
between two manual volumes by radiologists 
was 0.997 [22], which may imply that the in-
terobserver variation is small and that the dif-
ferences among manual volumes determined 
by multiple radiologists and those by a sin-

gle radiologist are not significant. We used 
the manual volumes determined by an expe-
rienced radiologist as the reference standard. 
We thought that the manual volumes obtained 
by multiple inexperienced radiologists or a 
mixture of inexperienced radiologists and ex-
perienced radiologists may be less reliable, 
compared with volumes determined by an ex-
perienced radiologist who traces liver bound-
aries very carefully.

Another limitation of this study is the rel-
atively small number of cases. We evaluat-
ed our scheme on 23 cases, whereas other 
studies evaluated four cases [4], eight cases 
[12], 30 cases (20 normal cases and 10 fatty 
liver cases) [13], 27 cases (18 normal cases 
and nine abnormal cases) [11], 20 cases [25], 
nine cases [26], 10 cases [3], and 15 cases 
[8]. In general, a small number of cases lim-
its the variations among cases. In the future, 
we will need to increase the number of cases 
used for evaluation.

In conclusion, the increasing use of liver 
MRI as a single examination for liver resec-
tion and transplantation leads to imperative 
demands for investigative research in auto-
matic MRI liver volumetry. However, few 
studies have been reported for this challeng-
ing task. In this study, we developed an auto-
matic scheme for liver volumetry on MRI by 
using the fast-marching algorithm combined 

3D liver MRI

Preprocessing:

• Removing noise by anisotropic
 diffusion filter
• Enhancing the liver boundary
 by scale-specific gradient
 magnitude filter
• Producing the edge potential
 image by nonlinear gray-scale
 converter 

Estimating the rough shape
of the liver by fast-marching

algorithm

Refining the liver boundary by
geodesic active contour

segmentation with a level-set
algorithm

Estimating liver volume

Fig. 7—Overview of our computerized MRI liver 
volumetry scheme.

Fig. 8—67-year-old man with liver cancer. Image 
illustrates definitions of true-positive (TP) (gray 
region), false-positive (FP) (red region), and 
false-negative (FN) segmentation (blue region) in 
evaluation of computerized liver segmentation (red 
contour) compared with reference-standard manual 
segmentation (blue contour).
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with geodesic active contour segmentation. 
MRI liver volumes obtained by our scheme 
agreed excellently with those determined by 
the current reference-standard manual trac-
ing method. With our computerized volu-
metry, the time required for volumetry was 
reduced significantly from 24 minutes to 1 
minute per case. Therefore, our computer-
ized scheme would be useful for radiologists 
in liver volumetric analysis on MRI.
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3D Geodesic Active Contour Segmentation of Liver MRI Volumetry

APPENDIX 1: Computerized Measurement Scheme for MRI Liver Volumes

The computerized measurement scheme for MRI liver volumes is 
shown in Figure 7. First, a 3D MRI volume, I(x,y,z), must be pro-
cessed to reduce noise and enhance liver structures by using an 
anisotropic diffusion algorithm, which is based on the modified cur-
vature diffusion equation given by the following:

=∇I∇ ⋅ c(∇I) (7),
∂I
∂t

∇I
∇I

where c(·) is the diffusion coefficient controlling the sensitivity of 
edge contrast. This algorithm smoothes noise in the image while pre-
serving the major liver structures, such as major vessels and the liv-
er boundaries. The noise-reduced image was then passed through a 
Gaussian gradient magnitude filter to enhance the boundaries. The fi-
nal step in this preprocessing stage was to produce the edge potential 
image from the gradient magnitude image by using a sigmoid func-
tion defined by the following equation:

(8),f(x) =
1

1 + e−(x−β)/α

where x is an intensity in the gradient magnitude image, and α and 
β are parameters specifying the range and center, respectively, of 
the intensity to be enhanced. They were set to −2.5 and 8.0 in our 
scheme. The normalized output image of the sigmoid gray-scale con-
verter was used as a speed function for the level-set segmentation and 
fast-marching algorithms.

In the next stage, the shape of the liver was estimated roughly by 
using a fast-marching algorithm. This algorithm was initially pro-
posed as a fast numerical solution of the eikonal equation, represent-
ed as follows:

∇TF = 1 (9),

where F is a speed function and T is an arrival time function. The al-
gorithm requires 5–8 initial seed points. From the initial location (T = 
0), the algorithm propagates the information in one way from smaller 
values of T to larger values based on the first-order scheme. This algo-
rithm consists of two main processes. First, all grid points generated 
from the entire region were divided into three categories: seed points 
corresponding to the initial location were categorized as Known; the 

neighbors of Known points were categorized into Trial with the com-
puted arrival time; and all other points were categorized into Far that 
the arrival time was set to infinity. An iterative process served points in 
the Trial and Far list. The Trial point p with the smallest T value was 
chosen and moved to the Known. The arrival time of neighbors of p was 
recomputed on the basis of the first-order scheme, and the Far points 
that are neighbors of p were moved to the Trial. This iterative process 
was terminated when the maximum number of iterations was reached. 
The salient point of this algorithm is to use a heap data structure that can 
rapidly locate points with the smallest T value. The output of the fast-
marching algorithm is a time-crossing map indicating the time traveling 
to each point. It forms a rough shape of the liver on MRI.

A 3D geodesic active contour algorithm [14] was used to refine the 
initial surface determined by the time-crossing map to determine the 
liver boundaries more precisely. This algorithm is based on the rela-
tion between active contours and the computation of geodesic or min-
imal distance curves, which allows stable boundary detection with 
large variations of gradients, including gaps. Let ψ(p, t) be a level-set 
function with the initial surface corresponding to ψ(p, t = 0). This lev-
el-set function is then evolved to fit the form of the liver following the 
partial differential equation:

= −αA(p) · ∇ψ − βF(p)∇ψ +
γZ(p)κ∇ψ

(10),
dψ
dt

where A(·) is an advection vector function, F(·) is a propagation (or ex-
pansion) function, and Z(·) is a spatial modifier function for the mean 
curvature κ. The scalar constants α, β, and γ allow trading off among 
three terms: advection, propagation, and curvature. The algorithm re-
quires an initial zero level set containing an initial surface that roughly 
approximates the liver boundaries. The initial surface was propagated 
with speed and direction (outward, inward) controlled by the propaga-
tion function. The spatial modifier term controls the smoothness of the 
surface where regions of high curvature are smoothed out. The level-set 
evolution was terminated when the convergence criterion or the maxi-
mum number of iterations was reached. The convergence criterion was 
defined in terms of the root mean squared change in the level-set func-
tion. The evolution was considered to be converged if the root mean 
squared change is below a predefined threshold.

APPENDIX 2: Definitions Used in Evaluation of Computerized Liver Segmentation

The definitions used in evaluation of a computerized liver segmen-
tation compared with the reference standard manual liver segmen-
tation are shown in Figure 8. True-positive (TP) segmentation was 
defined as an overlapping region (gray color) between the computer-
ized liver segmentation (indicated by a red contour), C, and a refer-

ence standard manual segmentation (indicated by a blue contour), G 
(i.e., TP = G ∩ C). False-positive (FP) segmentation (red region) was 
defined by FP = C − TP. False-negative (FN) segmentation (blue re-
gion) was defined by FN = G − TP. Finally, true-negative (TN) seg-
mentation was defined by TN = I − G ∪ C, where I is the entire image.
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