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Abstract
Purpose Our purpose is to develop a fully automated
scheme for liver volume measurement in abdominal MR
images, without requiring any user input or interaction.
Methods The proposed scheme is fully automatic for liver
volumetry from 3D abdominal MR images, and it consists
of three main stages: preprocessing, rough liver shape gener-
ation, and liver extraction. The preprocessing stage reduced
noise and enhanced the liver boundaries in 3D abdominal
MR images. The rough liver shape was revealed fully auto-
matically by using the watershed segmentation, thresholding
transform, morphological operations, and statistical proper-
ties of the liver. An active contourmodelwas applied to refine
the rough liver shape to precisely obtain the liver boundaries.
The liver volumes calculated by the proposed scheme were
compared to the “gold standard” references which were esti-
mated by an expert abdominal radiologist.
Results The liver volumes computedbyusingour developed
scheme excellently agreed (Intra-class correlation coefficient
was 0.94) with the “gold standard” manual volumes by the
radiologist in the evaluation with 27 cases from multiple
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medical centers. The running time was 8.4 min per case on
average.
Conclusions We developed a fully automated liver volume-
try scheme in MR, which does not require any interaction
by users. It was evaluated with cases from multiple medical
centers. The liver volumetry performance of our developed
system was comparable to that of the gold standard manual
volumetry, and it saved radiologists’ time for manual liver
volumetry of 24.7 min per case.

Keywords Fully automated segmentation scheme · Liver
volumetry · Quantitative radiology · MR liver volumetry ·
Transplantation

Introduction

The transplantation of the liver improves significantly the
survival rate of patients with liver diseases. One of the cru-
cial factors contributed to the success of a transplantation
procedure is the liver volume, because both a donor and a
recipient must keep a certain amount of the liver for living
[1]. Hence, the liver volumetry plays an important role for
planning the treatment of various liver diseases. Liver vol-
ume estimation is performed by amanual volumetry method.
This method can offer accurate results, but it is tedious and
time-consuming. It is also subjective: there are inter-observer
variations among different radiologists and intra-observer
variationswithin the same radiologist. To address those prob-
lems, investigators developed computerizedmethods for liver
volumetry by using image analysis and machine-learning
techniques.

Several computerized schemes have been developed for
liver segmentation on CT images [2–4]. In comparison with
CT images, only a few schemes were proposed for computer-
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ized liver volumetry onMR images [5]. A recently published
paper [6] proposed a variational level set-based method for
liver segmentation using Sobolev gradient. This method was
evaluated with different MR images, which are spectral pre-
saturation inversion recovery (SPIR) images. Gloger et al. [7]
developed a scheme combining available information from
different MR weightings. Their scheme consisted of a prob-
ability map, multiclass linear discriminant analysis (LDA),
a region-growing technique, and a thresholding technique.
Their scheme was evaluated on 20 normal and ten fatty liver
cases. Rusko et al. [8] proposed a segmentation scheme based
on the intensity; this scheme uses different probabilisticmod-
els to represent the different parts of liver, which can catch
the local intensity differences better. This scheme was tested
on eight cases. Masoumi et al. [9] proposed an approach
using an iterative watershed algorithm and neural networks.
In this method, six neural networks which were trained by
a backpropagation algorithm were used to extract the fea-
tures of the liver region. These features were employed to
monitor the quality of segmentation using a watershed trans-
form. The parameters were adjusted in several iterations.
In our previous studies, the approaches for liver segmen-
tation based on a fast marching algorithm and a geodesic
active contourwere presented [10]. The performance of these
approacheswas tested on23 cases froma single hospital. This
is a semi-automated scheme that requires 5–8 initial seed
points. Choosing the seed points in MR images may affect
the final results. We presented a preliminary fully automatic
scheme using the histogram and a level set algorithm at a
meeting [11]. The performance of the preliminary scheme
was tested on only 10 cases in a single hospital. In this
method, the rough shape of liver was determined based on
the second-to-last peak of the histogram. However, since the
peak corresponding to the intensity distribution of the liver
may vary by different cases due to variations of MR images,
the robustness against case variations was limited.

Although the above studies showed promising results,
the computerized liver volumetry on MR images is still a
challenging task in medical image analysis. The liver tissue
intensities are similar to the intensities of other organs, which
are not easy to distinguish the liver from adjacent organs
and tissues. The 3D MR images typically have the varia-
tions of contrast and edgemagnitudes, which is complicate to
apply the edge-based segmentation and limited to apply the
histogram based method. Some level set-based techniques
require the initial seed points chosen manually, which may
be time-consuming. The fully automated liver volumetry is
a technical challenge that has not been resolved adequately.
In this study, we rose to the challenge and developed a fully
automated scheme for liver volumetry in MR images, based
on the combination of the watershed transform and the active
contour model, without requiring any user input or interac-
tion. We evaluated our developed scheme with cases from

multiple medical centers, which offered more critical evalu-
ation, compared to evaluation with single center cases.

Materials and methods

Liver MRI cases

The dataset consisted of 27 cases of 3D MRI scans obtained
from multiple medical centers. Sixteen cases were obtained
from 16 patients by using the 1.5T MRI scanners (Sigma
HDxt/HDx; Achieva, Philips medical systems, Cleveland,
OH; andGEmedical systems,Milwaukee,WI) at theUniver-
sity of ChicagoMedical center. The intravenous gadolinium-
based contrast agents (8-20mL; mean 15.3±4.2mL) were
administrated to patients. Eleven other cases were obtained
from 11 patients with MRI scanners (Avanto, Siemens)
at the Medic Medical center. With the Siemens system,
the post-contrast MR images were generated by using the
T1-weighted VIBE sequence (volumetrically-interpolated
breath-hold examination). With the GE and Philips systems,
theywere generated by theT1-weightedLAVA(liver acquisi-
tion with volume acceleration) or THRIVE (high-resolution
isotropic volume examination) sequence. The repetition time
(TR)was from3.48 to 4.74, the echo time (TE)was from1.64
to 2.38, and the flip angle was 10◦. The slice thickness or col-
limation was 5 and 4mm for the GE and the Philips system,
respectively, and it was from 3.5 to 4mm for the Siemens
one. The reconstruction interval was 2.5 and 2mm for the
GE and the Philips system, respectively, and it was 1mm for
the Siemens one. The MR slice number was 100 in average
(min 88, max 120) for the GE and Philips system, and it was
55 in average (min 44, max 56) for the Siemens system. The
matrix size for each MR slice was 256 × 256, 320 × 230,
384× 384, or 512× 512 pixels, and the voxel size was rang-
ing from 1.17 to 1.72mm on the x and y axes. Our dataset
consists of cases with the liver diseases.

In order to compute the “gold standard” liver volumes, a
board-certified abdominal radiologist traced carefully con-
tours on each slice which contains the liver tissues. The vol-
ume of the liver corresponding to each slice was determined
by multiplying the liver region areas to the reconstruction
interval. Note that the successive slices were overlapped and
the slice thicknesswasdifferent from the reconstruction inter-
val. The liver volumes in all slices were summed to obtain
the total volume of the liver. The tracing time for each case
was recorded. The performance evaluation of the proposed
scheme was performed by comparison with the “gold stan-
dard” liver volumes.

Computerized scheme for MR liver volumetry

The studies for the computerized liver volumetry on MR
image were investigated by our group. In those studies, the
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Fig. 1 Overview of the fully
automated scheme for
computerized liver volumetry in
MR images

Reducing noise by using anisotropic diffusion filter

Enhancing liver boundary by scale-specific gradient 
magnitude filter

Estimating the rough shape of the liver

Refining the liver boundaries by the active contour 
segmentation

Determining the liver volume

Determining liver candidate region 

3D MR abdominal image

Preprocessing 
stage

Automatic 
determination of the 
rough shape of liver 

(no need for user 
inputs)

proposed scheme employed the fast marching algorithm to
determine the initial surface of the liver, and then this sur-
face was refined by employing the geodesic active contour.
The fast marching algorithm requires the initial seed points
chosen manually, which may affect the final results and be
time-consuming. Another automatic scheme also was devel-
oped in our previous study [11]. This scheme determined the
rough shape of the liver based on the second-to-last peak of
the histogram. However, the peak corresponding to the inten-
sity distribution of the liver may vary by different cases due
to variations of MR images, which leads to the limitation in
the robustness against case variations.

In this study, we developed a fully automated segmenta-
tion scheme for measuring the liver volume in 3D abdominal
MR image. The proposed scheme includes threemain stages:
preprocessing, automatic estimation of the rough liver shape,
and liver extraction as depicted in Fig. 1. First, noise in 3D
MR image I is reduced by using an anisotropic diffusion fil-
ter. This filter is controlled by a modified curvature diffusion
equation (MCDE) given by

It = |∇ I | ∇ · c(|∇ I |) ∇ I

|∇ I | , (1)

where c(·) is the diffusion parameter determined by c(∇ I ) =
e−(

|∇ I |
K )2 , and K is a conductance parameter. This filter

smooths the image while preserving major structures includ-
ing liver boundaries. A recursive filtering method with the
Gaussian kernel was applied to the smoothed image to gen-
erate the image IG which enhances edges. The gradient

magnitude image is generated, in which each voxel is deter-
mined by

IM =
√(

∂ IG
∂x

)2

+
(

∂ IG
∂y

)2

+
(

∂ IG
∂z

)2

. (2)

In this study, the intensity range of the liver is estimated
based on the watershed transform and the statistical char-
acteristics of the liver. The height function obtained from
the gradient magnitude image is used as the input to the
watershed transform. The main goal of this transform is
to find the catchment basins which are associated with the
local extremes of the height function. The local extremes are
formed based on geometric structures where the boundaries
are indicated by the higher values of the height function.
The watershed segmentation divides the image into sepa-
rated regions. These regions are labeled, which indicates the
membership of a voxel in a particular region.

Let G = {G1, G2, . . .,GM} be a list of labeled regions
with the decreasing order of volumes, i.e., vol(Gi ) ≥
vol(Gi+1), i = 1, . . ., M − 1. The x coordinate of the cen-
troid corresponding to region G i is calculated by

Cx
i =

∑
p∈Gi

x I (p)∑
p∈Gi

I (p)
. (3)

Because the liver region candidate usually locates on the
left part of the image, its centroid satisfiesCx

i ≤ XI /2,where
XI is the size of the image on the x-axis. The length of the
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axes of the hyper-ellipsoid which fits to a region G i can be

determined as 4
√

λij , where λij , j = 1, 2, 3 are eigenvalues

corresponding to G i in the descending order. Note that as the
eigenvalues are in the descending order, the axis lengths will
correspond to the decreasing lengths of the hyper-ellipsoid
axes. The volume ratio between region G i and its oriented
bounding box is calculated by

ri = vol(Gi )

64
∏3

j=1 λij

. (4)

From the statistical characteristics of the liver, region G l

evolving the liver candidate is one of the first five regions of
G(except the background regions) and satisfies

l = argmax
i

ri and Cx
i <= XI/2. (5)

The steps in the fully automatic determination of liver
candidate regions can be summarized as follows:

Input Given G={G1, G2,…, GM} be a list of labeled
regions with the decreasing order of volumes.
Output The index of a region (l) which is a liver candi-
date.
Step1 Initialize themaximumvolume ratio (max_ratio=0)
and its corresponding index (l = 0)
Step 2 Let i loop over values [1,5], for each G i:

Compute the x-coordinate of the weighted centroid
(Cx

i ) by using (3).
Compute the volume ratio (ri) by using (4).
If ri >max_ratio and Cx

i <= XI/2

Update the maximum volume ratio (max_ratio=ri ) and
its corresponding index (l = i)
Step 3 Return the output value l.

Due to variations of the intensities in an MR image, G l may
not approximate the liver well, but it can infer the intensity
range of the liver in the image. Let lpk and σ be mean and
variation of the intensities in G l. Two thresholds are com-
puted by

Lower threshold = lpk − mσ

Upper threshold = lpk + mσ, (6)

where m is a user-defined parameter. The thresholding
method is applied to the image I with above two thresh-
olds to generate the thresholding image Ith. The image Ith
then is updated by

Iu(p) = u(Ith(p)) + g(p), (7)

where g and u are the member and unit step function defined
by

g(p) =
{
1 if p ∈ G l

0 otherwise
and u(x)=

{
1 if x > 0
0 otherwise

(8)

The image Iu may include the liver and other organs
because their intensities are similar to those of the liver. The
boundaries between these organs and the liver are enhanced
by

Ie(p) = Iu(p)u(IM (p) − θ), (9)

where θ is a user-defined parameter. Morphological opening
and connected-component operations [12,13] are applied to
separate the organs. The region with the largest volume is
filtered out. Then the morphological operation is applied to
this region to generate the initial shape of the liver.

The initial shape is refined by employing a geodesic active
contour model [14]. This model refines the boundaries by
combining the classical snake approach which is based on
the energy minimization and the geometric active contours
which is based on the curve evolution theory. The curve evo-
lution is represented by using the level set approach, and its
evolution is governed by a partial differential equation:

dϕ

dt
= αF(p)κ |∇ϕ| − βS(p) |∇ϕ| − γ A(p) · ∇ϕ, (10)

where ϕ(p, t) is a level set function, the first term is the
mean curvature which is based on a spatial modifier F(·)
and the mean curvature κ , S(·) is an expansion or propaga-
tion function, and A(·) is an advection vector function. The
mean curvature term governs the smoothness of the surface
(front). The front moves in the direction which decreases the
total curvature; therefore, the regions with the high curvature
areas are smoothed out. The expansion function controls the
propagation speed of a front. The coefficients α, β, and γ

are used for a trade-off among terms on the evolution of the
front. The algorithm requires two images as input: the ini-
tial shape which is corresponding to an initial zero-level set
ϕ(p, t = 0) and a feature image which is the image to be
segmented. In this scheme, the initial zero-level set employs
the surface which is represented by the isovalue of the initial
shape. The propagation term for the evolution of the front is
an edge potential image. With this image, the front moves
rather fast in the low gradient regions and very slow in the
high gradient regions. The evolution is terminated when the
root-mean-square error change of the level set function is
below a predefined threshold or the number of iterations
reaches a predetermined number.

Evaluation criteria

The performance evaluation process was performed by com-
paring the liver volumes computed by our proposed scheme
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to the “gold standard” ones. We computed the true-positive
rate (TP), true-negative rate (TN), false-positive error (FP),
and false-negative error (FN). The accuracy and the Dice
coefficient, which represents the fraction of volume overlap-
ping between two volumetry approaches, were given by

Accuracy = (|TP| + |TN|)/(|TP| + |TN| + |FP| + |FN|),
(11)

Dice = 2 |TP|
|FP| + 2 |TP| + |FN| , (12)

The Dice coefficient is 100% for the perfect segmentation
and 0% if the segmentation results by two approaches do
not overlap at all. This is one of the most popular metrics
for evaluating the accuracy of segmentation. In addition, the
sensitivity, specificity, and the volume percentage error (E)

were also calculated as

Sensitivity = |TP|/(|TP| + |FN|), (13)

Specificity = |TN|/(|TN| + |FP|), (14)

E = ∣∣(Vc − Vg)/Vg
∣∣ , (15)

where Vc and Vg are the computerized volume and the gold
standard volume, respectively.

The agreement between our measurement method and
the gold standard reference method was expressed by the
Pearson product-moment correlation coefficient (ρ) which is
widely used as a measurement of the degree of linear depen-
dence between two variables. This coefficient is zero for no
correlation, and one if two variables are total positive cor-
relation. The statistical significance analysis of correlation
was performed by using the Student’s t-test. The reliability
analysis of measurements was performed by using the intra-
class correlation coefficient (ICC) [15]. It was assumed that
all n cases were chosen randomly, and all cases were rated
by k raters (volume measurement methods). The models of
two-way random single and average measures, ICC(2,1) and
ICC(2,k), were applied. They were calculated by:

ICC(2, 1) = MSC−MSCR

MSC+(k − 1)MSCR+k(MSR−MSCR)/n
,

(16)

ICC(2, k) = MSC−MSCR

MSC+(MSR−MSCR)/n
, (17)

where MSC , MSR , and MSCR are the mean square for
between cases, between raters, and interaction, respectively.
The statistically significant results were obtained by using
the variance analysis.

Results and discussion

The results of intermediate steps in our proposed scheme
are illustrated in Fig. 2. The denoising technique, which
uses the anisotropic diffusion, was applied to the original 3D
MR image (Fig. 2a). It should not only smooth the image,
but also preserve the major structures including the liver
boundaries as depicted in Fig. 2b. The smoothed image was
used to generate the gradient magnitude image by using a
recursive Gaussian filter (Fig. 2c). The watershed, connected
component, and relabeled filter were applied to produce the
relabeled regions (Fig. 2d). Then, the liver candidate region
and its features were determined. The thresholding method
was performed to produce the thresholding image (Fig. 2e).
The thresholding image was updated, and then, the bound-
aries of the liver were enhanced as depicted in Fig. 2f. The
region with the largest volume was filtered out, and the mor-
phological operations were applied to generate the rough
shape of the liver (Fig. 2g). This rough shape was refined
by using a geodesic active contour model to obtain the seg-
mented liver as depicted in Fig. 2h. The liver segmentation
obtained by our fully automatic scheme (white contour) was
compared with the “gold standard” segmentation (black con-
tour) as shown in Fig. 2i.

A comparison between the manual tracing method and
the computerized method was performed. Table 1 represents
the mean and deviation of the liver volumes obtained from
two measurement methods. The average volume measured
by the fully automated scheme was 1456 ± 392cm3, and
the average volume measured by the manual tracing method
was 1567 ± 437cm3. The mean volume percentage error
was 8.3%. The overall means of accuracy and Dice coef-
ficients were 99.0 ± 2.5 and 91.1 ± 1.9%, respectively.
Those of sensitivity and specificity were 88.10 ± 3.3 and
99.70 ± 0.2%, respectively. The Pearson correlation coeffi-
cient on the measured volumes of two volumetry methods
was 0.98 which was a positive correlation with not statisti-
cally significant (t-value= 24.98). Two volumetry methods
obtained an agreement with high intraclass correlation coef-
ficients. The intraclass correlation for mean rating, ICC(2,k),
was 0.97 with a 95% confidence interval of (0.94, 0.99). The
intraclass correlation for a single rater, ICC(2,1), was 0.94
with a 95% confidence interval of (0.88, 0.97). The results
from the ICC analysis are shown in Table 2.

Figure 3 illustrates the liver segmentation results of our
proposed scheme for a case which has the high Dice coef-
ficient. Our computerized segmentation agreed excellently
with the gold standard reference segmentation for slices
which contain the liver portion as depicted in Fig. 3b, d.
Another case with the Dice coefficient close to the average
Dice value is shown in Fig. 4. Overall, our fully automated
scheme for liver segmentation offered accurate results com-
pared to those obtained from the gold standardmethod. How-
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Fig. 2 An illustration of the results of intermediate steps in our fully
automated computerized scheme. a Original axial T1-weighted MR
image of liver in portal venous phase. b Three-dimensional anisotropic
diffusion reduction. Noise in image is reduced substantially, whereas
major structures in liver, such as major vessels and liver bound-
aries, are maintained. c Three-dimensional recursive Gaussian filter.

d The relabeled regions after applying a watershed transform and
connected-component filter. e The thresholding method. Two thresh-
olds are automatically determined. f The boundaries of the liver were
enhanced. g The initial shape of liver. h Three-dimensional active con-
tour segmentation. iComputer-based segmentation (white contour) and
reference-standard manual liver segmentation (black contour)

Table 1 Comparison between our fully automated liver volumetry
(computer volume) and gold standard volumetry (manual volume)

Average Standard deviation

Computer volume (cc) 1456 392

Manual volume (cc) 1567 437

ever, there exist over- and under- segmentations in the seg-
mented liver occasionally. The major sources of FP and FN
are shown in Fig. 5. The major FNs were caused by intensity
variations or lesions on the surface of the liver. Themajor FPs
were caused by the vena cava, heart, colon, stomach, or kid-
ney, which adjoin to the liver. They were also from convex or
concave parts of the boundaries which have high curvatures.
In addition, the partial volume effects also caused some FPs.

Table 2 Analysis of variance table from intraclass correlation coeffi-
cient analysis

d f Sum of squares Mean squares F

Between raters 1 167,784 167,784 38.4

Between cases 26 8,878,568 341,483 78.2

Within cases 27 281,280 10,417

Residual 26 113,496 4,365

Total 53 9,159,848

df degree of freedom, F F statistic value

The average time for a case was 8.4min on PC (Intel,
Xeon, 2.66GHz) by using the proposed liver segmenta-
tion scheme, while that was 24.7min by using the manual
tracing method. The difference was statistically significant
(p < 0.001).
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Fig. 3 Comparisons between
our fully automated
computerized liver volumetry
(white contours) and the gold
standard manual volumetry
(black contours) for a case
(68-year-old man) with a high
Dice coefficient (94.7%). a An
axial MRI slice. b A computer
contour (white) and a manual
contour (black). c A different
axial slice of the same patient. d
A computer contour (white) and
a manual contour (black)

Fig. 4 Comparisons between
our fully automated
computerized liver volumetry
(white contours) and the gold
standard manual volumetry
(black contours) with a case
(another 68-year-old man) with
a Dice coefficient of 90.1%
which is close to the average
Dice coefficient (91.1%). a An
axial MRI slice. b A computer
contour (white) and a manual
contour (black). c A different
axial slice of the same patient. d
A computer contour (white) and
a manual contour (black)
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Fig. 5 Illustrations of major
false-positive (FP) and
false-negative (FN) sources in
two cases (a, b 68-year-old man
with cancer; c, d 75-year-old
woman with cancer). a An axial
MRI slice of a patient
(68-year-old man with cancer).
b A computer contour (white)
and a manual contour (black). In
panel b there are FNs due to
low-intensity (A) and lesion on
liver boundary (B). c An axial
MRI slice of another patient
(75-year-old woman with
cancer). d A computer contour
(white) and a manual contour
(black). In panel d there is an FP
due to a part of the colon (C) and
a FN (D) due to a high curvature
region on the boundary

B

C
D

A

a b

c d

There are several user-defined parameters for the proposed
scheme. These parameters were determined by empirical
analysis on one case, and they were fixed for all remaining
cases. Hence, our scheme is robust.

It is not easy to directly compare the proposedmethodwith
other existing methods in the literature due to differences
in datasets and quality measurements. In CT volumetry, the
approach proposed by Seghers et al. [2] obtained the overlap
error of 10.7% for a publicly available database (SLIVER07).
The approach represented by Florin et al. [16] yielded a
10.72% error in liver volume. The method developed by
Freiman et al. [17] obtained the volume percentage error of
5.36% for their database, and the error for the SLIVER07
dataset was 2.36%. In MR images, the method proposed by
Gloger et al. [7] for liver volumetry obtained volume percent-
age error of 11.8% for fatty livers and the error for normal
livers was 8.3%. The processing time of this method for fatty
and normal livers was 15.4 and 11.2min, respectively.

As in previous studies, the limitation in this study is the
number of expert radiologistswho traced themanual contour.
It will be ideal if the gold standard measurement were pro-
duced by multiple experienced radiologists. However, there
were no many centers or institutions which can satisfy this
requirement. Although several investigators have reported
the performance evaluation based on the gold standard mea-
surement, none of them employed the measurements from
multiple-radiologist measurements. Even though there are
multiple experienced radiologists, the inter-observation vari-

ability among them is small and the correlation coefficient
between manual volumes was reported as 0.997 [18]. Given
a small inter-observer variation, we believe that the liver vol-
umes carefully obtained by a single expert radiologist should
serve as the gold standard.

Conclusions

The liver segmentation in MR abdominal images is one of
challenging tasks. Only a few attempts have been made to
address this issue, while MRI is increasingly used as an
exam for liver resection and transplantation. This leads to
imperative demands for developing computerized MRI liver
volumetry. Existing schemes required interactions by users
such as regions of interest or initial seed points, and a fully
automated scheme has not been developed adequately due to
its technical challenge. In this study, we rose to the challenge
and developed a fully automated scheme for liver volume-
try on 3D MR images. Our developed scheme employed the
watershed transform, the statistical characteristics of liver,
thresholding, and active contour algorithm. Our scheme does
not require any interaction by or input from users. The vol-
umes determined by our proposed scheme and the gold
standard manual volumetry agreed excellently with an intra-
class correlation coefficient of 0.94. Thus, the performance
of our fully automated scheme was comparable to that of
radiologists. The running time was 8.4 min per case on aver-
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age. Our fully automated scheme saved radiologists’ time for
manual liver volumetry of 24.7 min per case.
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