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Abstract We present two optimization strategies to

improve connected-component labeling algorithms. Taking

together, they form an efficient two-pass labeling algorithm

that is fast and theoretically optimal. The first optimization

strategy reduces the number of neighboring pixels accessed

through the use of a decision tree, and the second one

streamlines the union-find algorithms used to track equi-

valent labels. We show that the first strategy reduces the

average number of neighbors accessed by a factor of about

2. We prove our streamlined union-find algorithms have

the same theoretical optimality as the more sophisticated

ones in literature. This result generalizes an earlier one on

using union-find in labeling algorithms by Fiorio and

Gustedt (Theor Comput Sci 154(2):165–181, 1996). In

tests, the new union-find algorithms improve a labeling

algorithm by a factor of 4 or more. Through analyses and

experiments, we demonstrate that our new two-pass

labeling algorithm scales linearly with the number of pixels

in the image, which is optimal in computational complexity

theory. Furthermore, the new labeling algorithm outper-

forms the published labeling algorithms irrespective of test

platforms. In comparing with the fastest known labeling

algorithm for two-dimensional (2D) binary images called

contour tracing algorithm, our new labeling algorithm is up

to ten times faster than the contour tracing program dis-

tributed by the original authors.

Keywords Connected-component labeling �
Optimization � Union-find algorithm � Decision tree �
Equivalence relation

1 Introduction

Connected-component labeling is a procedure for assigning

a unique label to each object (or a connected component) in

an image [7, 17, 34, 36]. Because these labels are key for

other analytical procedures, connected-component labeling

is an indispensable part of most applications in pattern

recognition and computer vision, such as character recog-

nition [6, 9, 23, 37]. In many cases, it is also one of the

most time-consuming tasks among other pattern-recogni-

tion algorithms [4]. Therefore, connected-component

labeling continues to be an active area of research [1, 9, 12,

21, 22, 24, 29, 32, 38, 43, 47]. In this paper, we present two

optimization strategies to improve labeling algorithms.

Through extensive testing, we demonstrate these optimi-

zation strategies greatly enhance the labeling algorithms on

all machines tested.

To illustrate the new optimization strategies, we con-

sider the problem of labeling binary images stored in two-

dimensional (2D) arrays. These images are typically the

output from another image-processing step, such as seg-

mentation [20, 35, 44]. A binary image contains two types

of pixels: object pixel and background pixel. The con-

nected-component labeling problem is to assign a label to

each object pixel so that connected (or neighboring) object

pixels have the same label. There are two common ways of

defining connectedness for a 2D image: 4-connectedness
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and 8-connectedness [33]. In this paper, we use the

8-connectedness as illustrated in Fig. 1a. Our optimization

strategies can be applied to higher dimensional images, but

the new labeling algorithm combining the two optimization

strategies even outperforms the fastest labeling algorithms

designed specifically for 2D images.

1.1 Background

There are a number of different approaches to labeling-

connected components. The simplest approach repeatedly

scans the image to determine appropriate labels until no

further changes can be made to the assigned labels [34]. A

label assigned to an object pixel before the final assignment

is called a provisional label. For a 2D image, a forward

scan assigns labels to pixels from left to right and top to

bottom. A backward scan assigns labels to pixels from

right to left and bottom to top. Each time a pixel is scanned,

its neighbors in the scan mask are examined to determine

an appropriate label for the current pixel. In the illustration

shown in Fig. 1, the current pixel being examined is

marked as e and the four neighbors in the scan masks are

designated as a, b, c and d. If there is no object pixel in the

scan mask, the current pixel receives a new provisional

label. On the other hand, if there are object pixels in the

scan mask, the provisional labels of the neighbors are

considered equivalent, a representative label is selected to

represent all equivalent labels, and the current object pixel

is assigned this representative label. A common strategy for

selecting a representative is to use the smallest label. A

more sophisticated labeling approach may have a separate

data structure for storing the equivalence information or a

different strategy to select a representative of the equiva-

lent labels. Without considering the issues such as image

formats or parallelization, we divide the labeling algo-

rithms into three broad categories: multi-pass algorithms,

two-pass algorithms and one-pass algorithms.

1. Multi-pass algorithms ([7, 19, 33, 36, 38]): The basic

labeling algorithm described in the preceding para-

graph is the best known example of this group. They

may require a large number of passes before reaching

the final labels. Given an image with p pixels, a

labeling algorithm is said to be optimal if it uses O(p)

time. Because the number of passes over the image

depends on the content of the image, multi-pass

algorithms are not considered to be optimal.

To control the number of passes, one may alternate the

direction of scans or directly manipulate the equiva-

lence information. The most efficient multi-pass

algorithm we know of is that of Suzuki et al. [38]. It

uses a label connection table to reduce the number of

scans. In tests, this algorithm uses not more than four

scans and was observed to be much faster than many

well-known algorithms [38]. In later discussions, we

refer to this algorithm as scan plus connection table, or

SCT.

2. Two-pass algorithms ([18, 27, 28, 30]): Many algo-

rithms in this group operate in three distinct phases.

(a) Scanning phase: In this phase, the image is

scanned once to assign provisional labels to

object pixels, and to record the equivalence

information among provisional labels.

(b) Analysis phase: This phase analyzes the label

equivalence information to determine the final

labels.

(c) Labeling phase: This third phase assigns final

labels to object pixels using a second pass

through the image.

Depending on the data structure used for representing the

equivalence information, the analysis phase may be

integrated into the scanning phase or the labeling phase.

One of the most efficient data structures for representing

the equivalence information is the union-find data structure

[10, 12]. Because the operations on the union-find data

structure are very simple, one expects the analysis phase

and the labeling phase to take less time than the scanning

phase. Indeed, many two-pass algorithms have the theo-

retically optimal time complexity of O(p), where p is the

number of pixels in an image. In this paper, we use an

algorithm by Fiorio and Gustedt [12] as the representative

of this group. Because the equivalence information is

stored in a union-find data structure, we refer to this

algorithm as scan plus union-find, or SUF.

3. One-pass algorithms ([7, 9, 22, 33, 42]): An algorithm

in this group scans the image to find an unlabeled object

pixel and then assigns the same label to all connected

object pixels. By definition, one-pass algorithms go

through the image only once, but typically with an

irregular access pattern. For example, an approach

proposed by Udupa and Ajjanagadde [42] avoids the

second pass by tracing boundary faces with contain-

ment trees. Similar to other one-pass algorithms, this

approach is recursive in nature. In practice, the

irregular access of pixels leads to slow performance.

(c) Backward 
         scan mask

(a) 8−connected 
       neighborhood

(b) Forward 
         scan mask

Fig. 1 The masks and the neighborhood of pixel e. Notice that all the

pixels in the forward and backward scan masks are in the neighbor-

hood of pixel b
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To overcome this problem, one may limit the scope of

this irregular accesses. Recently, Hu et al. [22] demon-

strated that it was possible to outperform SCT with

such a method. For 2D images that we plan to use for

illustrations, the most efficient one-pass algorithm is

the contour tracing (CT) algorithm by Chang et al. [9].

Because of this, we choose to use CT as the represen-

tative of one-pass algorithms. The implementation of

CT used in later tests is distributed by the original

authors of the algorithm.1 Note that CT is also the most

efficient sequential (i.e., not parallel) labeling algo-

rithm in literature.

1.2 Overview of key points

Generally, one expects a one-pass algorithm to be faster

than a two-pass algorithm and a two-pass algorithm in turn

to be faster than a multi-pass algorithm. However, this is

not always the case, as demonstrated in [38]. One reason

that a multi-pass algorithm like SCT could be faster than a

two-pass algorithm is that SCT performs only sequential

and local memory accesses, whereas a two-pass algorithm

needs random memory accesses to maintain and update the

union-find data structure. The sequential memory accesses

are much better supported on modern computers than are

random memory accesses. on the basis of this observation,

our optimization strategies seek to minimize the number of

random memory accesses. We show the usefulness of each

of the optimization strategies with both analyses and timing

measurements. By combining the optimization strategies,

we aim at producing a two-pass algorithm that is more

efficient than the fastest known algorithm, namely, the

contour tracing algorithm.

Our first optimization strategy minimizes the number of

neighbors visited during a scan and therefore reduces the

number of memory accesses. Assuming that the current

pixel is designated e (see Fig. 1), existing scanning pro-

cedures examine all four neighbors a, b, c, and d. With our

optimization, if b is an object pixel, the other three pixels

are not accessed. This is possible because all other three

pixels are neighbors of b. When the label equivalence

information is recorded, it is possible to derive the correct

label of b (and therefore that of e) later. If b is a back-

ground pixel, the order to examine the other pixels is given

as a decision tree. We are not aware of any existing

labeling algorithms that reduce memory accesses in this

manner. The SCT approach proposed by Suzuki et al. [38]

has some resemblance to ours; however, theirs reduces the

accesses to the label array and the label connection table,

but not the image pixels. Later, we show that using a

decision tree can significantly speed up SCT.

Our second optimization strategy simplifies the data

structure and the algorithms used to solve the union-find

problem [5, 8, 10, 11, 13, 14]. Because union-find involves

relatively simple operations, the time spent on union-find

was expected to be a small fraction of a two-pass algo-

rithm. However, this is not the case (see [13]). This has

motivated a number of research efforts to find more effi-

cient data structures to implement union-find [13, 15, 39,

40]. Our union-find data structure is implemented with a

single array. Even though this particular implementation

strategy has been suggested before [11], using it effectively

in a connected component labeling algorithm is new.

Although the basic versions of union-find algorithms are

simple, to achieve the best performance, they need to

incorporate a number of well-known optimization strategies,

which can significantly complicate the implementation. In

their work, on the scan plus union-find algorithm, Fiorio and

Gustedt [12] found that by using a relative simple optimi-

zation strategy called path-compression in union-find

algorithms along with some extra flattening of the active

union-find trees (defined in Sect. 4.2), they can achieve the

optimal O(p) performance. We find it possible to achieve the

same optimal performance without the extra flattening

operations. This simplifies the use of union-find in labeling

algorithms and also improves their overall performance.

Another key contribution of this paper is the develop-

ment of a two-pass labeling algorithm that combines the

above two optimization strategies. This algorithm gene-

rates consecutive final labels, which are preferred over

nonconsecutive ones in most applications. We analyze this

new labeling algorithm for its correctness, its worst-case

time complexity, and its average time complexity. In

addition, we conduct extensive timing measurements on

three different platforms to ensure that the performance

advantages we report are not due to any particularity of a

specific hardware.

Previously, we have published a limited performance

study on the optimization strategies [45]. Since then, an

independent study has confirmed their effectiveness [47],

which makes it more interesting to carefully study them

and fully understand the reasons for their efficiency.

1.3 Organization

The remainder of this paper is divided into six sections.

The next section describes the decision tree used for min-

imizing the number of neighbors visited during a scan.

Section 3 contains the description of the new union-find

solution. In Sect. 4, we analyze the correctness of the

optimization strategies, the worst-case time complexity

of the new labeling algorithm, and it expected average

1 An implementation of the Contour Tracing algorithm distributed by

the original authors of the algorithm is available from http://www.iis.

sinica.edu.tw/*fchang/03src.html.
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execution time on random images. In Sect. 5, we present

timing results that confirm the expected performance

advantages of the two optimization strategies, and compare

the perform of the new labeling algorithm against the

fastest known labeling algorithm. A summary and discus-

sion on future work are given in Sect. 6. We conclude

this paper with a section discussing the originality and

contribution.

2 Minimizing scan cost

In this section, we briefly describe the generic scanning

procedure used by most connected-component labeling

algorithms, and then a decision tree to minimize the cost of

such a scanning procedure. To make the description con-

crete, we apply this optimization strategy to the scan plus

connection table (SCT) algorithm of Suzuki et al. [38]. To

use the decision tree in a scanning procedure, one needs to

maintain enough label equivalence information. The con-

nection table used in SCT is a minimalistic data structure

that satisfies this requirement and produces the correct final

labels.

2.1 The basic scanning procedure

Let I denote the 2D array representing an image. A pixel is

a background pixel if I[i, j] = 0, and an object pixel if

I[i, j] = 1.2 We use an array L of the same size and shape

as I for storing the labels. In our implementation of the

labeling algorithms, we use one array to hold both I and L.

However, for clarity, we will continue to describe them as

two separate arrays. The problem of connected-component

labeling is to fill the array L with (integer) labels so that the

neighboring object pixels have the same label. We name

the pixel in the scan mask (illustrated in Fig. 1) as a, b, c, d

and e, and also use the same letters in place of their (i, j)

coordinates in the following discussion. With this notation,

L[e] denotes the label of the current pixel, I[b] denotes the

pixel value of the neighbor directly above e in the forward

scan mask, and so on. Let l be an integer variable initial-

ized to 1. The assignment of a provisional label for e during

the first scan can be expressed as follows (i [(a, b, c, d)):

L½e�  
0; I½e� ¼ 0;
l; ðl lþ 1Þ; I½i� ¼ 0; 8i;
min

ijIðiÞ¼1
ðL½i�Þ; otherwise:

8
><

>:
ð1Þ

The above expression states that L[e] is assigned to 0 if I[e]

= 0. It is assigned a new label l, and l is increased by 1, if

its neighbors in the scan mask are all background pixels.

Otherwise, it is assigned the minimum of the provisional

labels already assigned to a neighbor in the scan mask.

In later scans, labels for object pixels are modified to be

the minimum labels of their neighbors, as described by the

following expression (which is the last case of Eq. 1):

L½e�  min
i2ða;b;c;dÞjI½i�¼1

ðL½i�Þ;

if I½e� ¼ 1; and I½i� ¼ 1; 9i 2 ða; b; c; dÞ:
ð2Þ

The above formulas can be used for both forward scan and

backward scan. In principle, we can apply them to any type

of scan on any image format.

The simplest multi-pass algorithm repeats the above

scanning procedure until the label array L no longer

changes. Initially, pixels in a connected component may

receive different provisional labels. We say that these

labels are equivalent, and we have chosen to use the

smallest label as their representative. As labels are dis-

covered to be equivalent, the pixels not yet scanned will

take on the smallest label of its neighbors in the scan mask.

Eventually, each pixel will receive the smallest provisional

label assigned to any pixel in the connected component, but

it may take many scans. One successful technique to

reduce the number of scans is using the label connection

table [38], which we describe next.

2.2 Scan plus connection table

The connection table proposed by Suzuki et al. [38] is a

one-dimensional (1D) array that has as many elements as

the number of provisional labels. Let T denote this con-

nection table. In the first scan, the arrays L and T are

updated as follows (i [ (a, b, c, d)):

L½e�  

0; I½e� ¼ 0;
l; ðT½l�  l; l lþ 1Þ; I½i� ¼ 0; 8i;
min

ijIðiÞ¼1
ðL½i�Þ; ðT½L½i� �  

L½e�; 8i j I½i� ¼ 1Þ; otherwise:

8
>>><

>>>:

ð3Þ

In the subsequent scans, we only update the labels of object

pixels that have other object pixels in their scan masks. The

formula for updating L and T follows from the last case in

Eq. 3 and is given as

L½e�  min
i2ða;b;c;dÞjI½i�¼1

ðL½i�Þ;

T ½L½i� �  L½e�; 8i 2 ða; b; c; dÞ j I½i� ¼ 1;

if I½e� ¼ 1; and I½i� ¼ 1; 9i 2 ða; b; c; dÞ:

ð4Þ

Because the connection table passes the label equivalence

information to all the pixels with the same provisional

2 Note that we have made an arbitrary choice of denoting a

background pixel by 0 and an object pixel by 1; however, there are

other equally valid choices [38]. It is also possible to use other types

of labels than the integers used in this paper.
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labels, the labels can propagate much faster than in other

multi-pass algorithms. The above formulas indicate that all

four neighbors in the scan masks need to be visited. We

refer to this basic version of SCT as SCT-4.

2.3 Decision tree

In Fig. 2a, it is clear that all the neighbors in the scan masks

are neighbors of b. If there is enough equivalence infor-

mation for accessing the up-to-date label of b, then there is

no need to examine the rest of the neighbors. On the basis of

this observation, we present a set of decision trees that

organize the scan operation in a specific order as illustrated

in Fig. 2. Two equivalent trees are shown. We can produce

two more equivalent trees by swapping the labels a and d.

Because they are equivalent, one may use any one of them.

A decision tree is invoked to handle the case when the

current pixel is an object pixel. In the first scan pass, if all

neighbors in the scan mask are background pixels, a new

label is generated. In subsequent scans, this branch of the

decision tree performs no operation. All other branches of

the decision tree deal with the case where some neighbors

in the scan mask are object pixels. Using this decision

process, we minimize the accesses to array I.

The decision trees presented in Fig. 2 need three func-

tions in their leaf nodes. They are defined as follows (using

the same arrays L and T defined previously):

1. The one-argument copy function, such as copy(a),

contains one statement:

L½e�  T ½L½a� �: ð5Þ

2. The two-argument copy function, such as copy(c, a),

contains three statements:

L½e�  minðT ½L½c� �; T ½L½a� �Þ;
T ½L½c� �  L½e�;

and, T ½L½a� �  L½e�:
ð6Þ

3. The new label function performs the three statements

below, which replicate the second case in Eq. 3.

L½e�  l; T ½l�  l and l lþ 1: ð7Þ

The use of a decision tree minimizes the number of

neighbors visited in determining a label for pixel e. We

formalize this observation later after we have explained the

concept of union find. In the following discussions, we

denote the SCT algorithm that employs a decision tree as

SCT-1.

3 Array-based union-find

The connection table helps SCT to propagate the label

equivalence information quickly. The ultimate version of

this would be to bypass all the repeated scans by directly

working with the equivalence information, which leads to

theoretically optimal two-pass labeling algorithms [10, 12].

Our challenge is to make the union-find algorithms simple

enough so that these optimal algorithms are also fast. Our

approach is to implement the union-find data structure with

a single array. To provide a context for the union-find

algorithms, we briefly review a two-pass labeling algorithm

that uses them.

A two-pass labeling algorithm employing a union-find

data structure generally starts with a scanning phase by

using one of the scanning procedures described in the

previous section. During the scanning phase, it also builds

up the union-find data structure to record the equivalence

information among the provisional labels. After the scan-

ning phase, it analyzes the union-find data structure to

determine the final label for each provisional label. This is

the analysis phase, which does not access the image array.

Finally, it passes through the image a second time to

convert all the provisional labels into their final values.

This is the labeling phase. Next, we proceed to describe the

union-find problem in general and then given the details of

the proposed array-based union-find data structure and

algorithms.

3.1 General union-find data structure

A union-find data structure can be viewed conceptually as

rooted trees, where each node of a tree is a provisional

label and each edge represents the equivalence between

two labels [16]. By definition, all labels in a tree are

equivalent. The label associated with the root of a tree is

usually chosen as the final label for all provisional labels in

Fig. 2 The decision trees used

in scanning for 8-connected

neighbors. The two decision

trees are equivalent. We use the

first in this paper. a Forward

scan mask, b decision tree 1,

c decision tree
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the tree. We will refer to the union-find data structure and

the associated algorithms simply as the union-find in the

future.

There are only three operations on a union-find data

structure: (1) unite two trees, (2) find the root of a given

node, and (3) make a new tree with a single node. The first

two operations are commonly referred to as union and find,

respectively, hence the name union-find. The find operation

starts from a node and follows the edges until it reaches the

root of the tree. This operation returns the root label. The

union operation adds an edge from the root of one tree to the

root of another. The input arguments to a union operation

can be two arbitrary nodes, and two find operations are

needed for finding the root nodes of their respective trees. In

general, the cost of a union operation is dominated by the

two find operations. Therefore, an efficient find algorithm is

critical to the overall efficiency of union-find operations.

A natural to represent the edges in trees is to use soft-

ware pointers. In most cases, nodes of a pointer-based

rooted tree are scattered randomly by the memory man-

agement system. A find operation follows the pointers to

the root and traverses the memory in an unpredictable

manner. This is typically slow.

A number of authors have suggested storing these rooted

trees in arrays because an array resides in consecutive

memory locations [ 3, 11, 36]. Figure 3 shows an example

of such an array. Usually, the complexity of a union-find

problem is defined as the cost of an arbitrary combination

of m union and find operations on a union-find data

structure with n nodes. Because each operation touches at

least one node, the time complexity of m operations cannot

be less than O(m). We say that a union-find is linear if it

has O(m) time complexity. Such an approach is also said to

be optimal. A naive approach may require O(mn) time.

Common optimization techniques to speed up these opera-

tions are path compression [2] and weighted union [16, 40].

Using both these techniques, union-find is nearly linear in

general [39, 41]. Under some restricted settings [14, 26] or

some special classes of inputs [11, 25, 46], m union and

find operations can be proven to take O(m) time. However,

these approaches are too cumbersome to implement with

arrays or not applicable in a real application.

Our array-based union-find approach only uses path

compression. This allows us to implement all necessary

algorithms as simple iterative procedures on a single array.

In the next section, we prove that these algorithms lead to

an optimal union-find for connected component labeling.

We also use a special union rule that allows us to access

elements of the array in a regular pattern, which makes the

algorithms efficient.

3.2 Proposed union-find

Following examples in the literature [11, 36], we call the

array that contains the equivalence information array P

(short for the parent array). Array P can be filled in a way

similar to that of the connection table T introduced in

Sect. 2.2. In particular, every time a new provisional label

is generated, array P is extended by one element denoted

by the assignment P[l] /l. This operation adds a new

single-node tree to the union-find trees. In other cases, a

reference to T[i] needs to be replaced by either a find or a

union operation. Next, we describe these two operations

using pseudo-code. Our implementations are in C++.3 The

two basic operations for finding the root of a tree and

changing all nodes on a path to point to a new root are

defined as findRoot and setRoot.

Fig. 3 An array representation of the rooted trees

3 In C++ convention, all indices to arrays start from 0. The word

array or vector in all pseudo-code segments is a short-hand of C++

STL type std::vector\unsigned[.
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With the function findRoot and procedure setRoot,

we can easily define the functions for union and find

operations. We note that these two functions are iterative

rather than recursive as in a pointer-based union-find

implementation. In function findRoot, the variable

root takes on a sequence of values. This sequence

forms a path from the starting node i to the root of the

tree. This path is known as a find path. The procedure

setRoot changes all nodes on the find path to point

directly to the specified new root. This operation is the

path compression.

3.3 New labeling algorithm

With functions find and union, we now describe how

to implement the three different phases of a two-pass

labeling algorithm, the scanning phase, the analysis

phase, and the labeling phase. We start by describing

how to modify the scanning phase to update the union-

find data structure. To use the basic scanning procedure

defined by Eq. 3, we perform the operations as follows (i

[(a, b, c, d)):

L½e�  

0; I½e� ¼ 0;
l; ðP½l�  l; l lþ 1Þ; I½i� ¼ 0;8i;
min

ijI½i�¼1
findRootðP; L½i�Þð Þ;

ðsetRootðP; L½i�; L½e�Þ;
8i j I½i� ¼ 1Þ; otherwise:

8
>>>>><

>>>>>:

ð8Þ

To use a decision tree in the scanning phase, we need

to redefine the three functions used at the leaf nodes of

the decision tree (shown in Fig. 2): the new label function,

one-argument copy function and the two-argument

copy function. Note that the new label function is the

second case in the above equation. The one-argument copy

function, copy(a), previously defined by Eq. 5, is simplified

to be

L½e�  L½a�: ð9Þ

The third function, the two-argument copy function, copy

(c, a) previously defined by Eq. 6, is now simply

L½e�  unionðP; L½c�; L½a�Þ: ð10Þ

The above union function always selects the root with

the smaller label as the root of the combined tree, which

means that the parent of a node always has a smaller label

than its own label (i.e., P[i] B i), and furthermore, the

root of a tree always has the smallest label in the tree.

This has two important consequences: the memory access

pattern in findRoot and setRoot is more predictable

than using other union strategies, and we can produce

consecutive final labels efficiently by using the procedure

flattenL.

The procedure flattenL carries out the analysis phase

of the two-pass labeling algorithm. After which, the third

phase of assigning the final labels can be expressed as the

following equation:

L½i; j�  P½L½i; j� �; 8i; j: ð11Þ

If there is no need for consecutive labels, one may use the

procedure flatten instead of flattenL because flatten
is less time consuming than flattenL.

One important characteristics of two above algorithms

is that their computational complexities are not affected

by the actual content of array P. No matter how the

union-find trees are shaped, the costs of both flatten and

flattenL are the same. Therefore, there is no need to

keep the height of the union-find tree as short as possible

to reduce the cost of the analysis phase. Later, we show

that this is true even if other union-find data structures are

used.
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4 Analyses of expected performance

We now show the correctness of our proposed algorithms

and their expected time requirement. One of the main

results of our analyses is that any two-pass algorithm using

the path compression in union-find has the worst-case time

complexity of O(p). There is no need to flatten the union-

find trees immediately after scanning each row as recom-

mended in [12]. We use SUF (scan plus union-find) as a

short-hand for any two-pass labeling algorithm and use

SAUF (scan plus array-based union-find) to denote the

version that uses our array-based union-find describe in the

previous section.

4.1 Correctness of algorithms

The main results of this section are stated in the form of

lemmas and theorems. The first two lemmas concern the

union-find algorithms. Their proofs do not require explicit

details of the scanning procedure. For completeness, one

can assume that Eq. 8 is used for defining the scanning

procedure. We then show that the use of a decision tree

achieves the same result as checking all four neighbors. We

conclude this subsection by showing that the use of a

decision tree minimizes the number of neighbors visited

during a scan.

Lemma 1 The array P produced by the array-based

union and find algorithms satisfies P[i] B i, Vi.

Proof Each element of the array P[i] is initialized to i.

During both union and find procedures, the value of P[i]

never increases. Therefore, the lemma is true. h

The procedure flatten can be used to produce final

labels for the connected components. However, the labels

may be discontinuous. For example, the array P may

contain 0, 1, 2, and 4, but not 3. In many applications,

consecutive labels are preferred. In these cases, one may

use the procedure flattenL to generate consecutive

labels. The following lemma formalizes this property.

Lemma 2 Given that there are k connected components,

the procedure flattenL changes array P to contain all

integers between 0 and k.

Proof Label 0 is reserved for the background pixels. If

there is one connected component, we must have P[0] = 0

and P[1] = 1. Clearly, the lemma is true for k = 1. To prove

the lemma by induction, we assume that it is true for the

first i elements of array P and prove that, after executing

the procedure flattenL for one more iteration, the lemma

is true for P with (i+1) elements. We observe that flat-
tenL only changes one value of P in any iteration and

does not go back to change any values already examined. If

there are (k - 1) connected components represented by the

first i elements of P, then P[0:i-1] must contain the final

label already, i.e., P[0]…P[i-1] must contain all integers

between 0 and (k - 1). At the ith iteration, depending on

the value of P[i], the procedure flattenL may perform

one of two possible actions. If P[i] = i, then P[i] is assigned

the value of variable k. In this case, there are k components

and the content of P[0]…P[i] is between 0 and k. The

correctness of the lemma is maintained. On the other hand,

if P[i] \ i, then the content of P[P[i]] must be an integer

less than k and a correct final label for the tree that contains

node P[i] and i. In this case, there are (k - 1) components,

and the lemma is also correct. By induction, the lemma is

true for any i. h

Lemma 3 Let S0 denote the scanning phase without a

decision tree, and let S1 denote the scanning phase with a

decision tree. The connected-component labeling algo-

rithm SUF using either S0 or S1 produces the same final

labels.

Proof To produce the same final labels, the scanning

phase needs to ensure that each union-find tree contains all

provisional labels assigned to the pixels that are connected.

Because the final labels are always produced with a flat-

tening of union-find trees, different scanning procedures
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must perform the same union operations but may perform

different find operations. We say that two union-find trees

are equivalent if they contain the same set of provisional

labels. We say that two sets of union-find trees are equi-

valent if each tree from one set is equivalent to exactly one

tree from the other set.

With the above definitions, to prove this lemma, we

need to show that S0 and S1 produce equivalent sets of

union-find tree. To do this, we observe that they produce

exactly the same trees after scanning the first row of an

image and the first pixel of the second row because each

union-find tree contains only a single node. To generalize

this, we assume that S0 and S1 have produced equivalent

sets of trees up to pixel d in the scan mask. We need to

show that, after a label is assigned to e, the two sets of trees

remain equivalent. To prove this, we show that there are

only two union operations that may possibly involve two

distinct trees; all remaining apparent union operations

performed by S0 are operating on a single tree and therefore

are actually find operations.

If pixel b is an object pixel, the provisional labels

assigned to all neighbors of e in the scan mask must be in

one tree. If pixel b is a background pixel, pixel c may

belong to one union-find tree, and a and d may belong to

another tree. The two union operations that may involve

two distinct trees must involve c and one of a or d. These

two cases are captured by the decision trees as two invo-

cations of the two-argument copy function. Therefore, the

decision trees correctly capture the equivalence informa-

tion. The union-find trees produced by S0 and S1 are

equivalent. h

To prove that using the decision tree actually minimize

the work performed in the scanning phase, we need to

quantify the costs of operations. For this purpose, we count

the number of accesses to pixel values I[i], i [(a, b, c, d).

The actual number of operations is bounded by a small

constant times the number of pixels accessed, where the

constant depends on the details of the scanning procedure

such as the union-find algorithms.

Theorem 1 The use of a decision tree minimizes the

number of pixels accessed during the scanning phase of the

connected-component labeling algorithm.

Proof Lemma 3 implies that using the decision tree in a

scanning phase performs all necessary work. To prove that

it actually performs the minimal amount of work, we show

that any modification to the order of accessing the neigh-

bors leads to one of the three outcomes, an equivalent

decision tree, a more expensive decision tree, or an

incomplete scanning phase.

In Sect. 2.3, we mentioned four equivalent decision

trees. They all access pixel b first, and the four variations

represent all possible arrangements of the other three

neighbors. Without any specific information about which

neighbor is more likely to be an object pixel, the four

variations are equivalent in the sense that they have the

same average cost overall all possible combinations of

pixel values.

If we rearrange the decision tree so that we access a

pixel other than b, it is easy to see that it leads to accessing

at least two pixels before reaching a leaf node and therefore

increase the cost of the scanning phase.

Inspecting a decision tree, such as the one in Fig. 2b,

makes it clear that removing any node or leaf or subtree

leads to incomplete scanning operation. Furthermore, we

cannot remove any operations from a leaf node. More

specifically, if we neglect any of the new label operation or

the one-argument copy functions, we will not assign pro-

visional labels to some pixels. The two-argument copy

function is simply a union operation as shown in Eq. 10. If

we remove any union operations or replace then with find

operations, we neglect to record the equivalence informa-

tion between provisional labels. Note that the actual cost of

union-find operations is counted in the constant mentioned

above, and the fact that it is actually a constant follows

from Theorem 2. In terms of the number of accesses to

neighboring pixels, using the decision tree indeed mini-

mizes this cost measure. h

4.2 Worst-case complexity

Fiorio and Gustedt [12] proved that the worst-case time

complexity of a two-pass algorithm with the path com-

pression in its union-find is O(p), where p is the number of

pixels in the image. A key step in their approach is that

they flatten the union-find trees after scanning each line of

the image. Our thesis is that these flattening operations are

not necessary. We just showed that the find operations can

be skipped without affecting the final labels and without

adding any extra work to the last two phases of the Scan

plus array-based union-find (SAUF) algorithm. We next

show that this is true for any union-find with path

compression.

To be precise, we define the cost of a find operation to

be the number of nodes on the find path. This definition

ensures that the cost of a find operation is at least one. We

define the cost of a union operation to be the cost of the

two find operations it invokes.

Theorem 2 Given an arbitrary union-find tree with t

nodes, the total cost of executing a find operation with path

compression on each node is no more than 3t.

Proof For convenience, let us number the nodes of the

tree from 0 to t - 1 and assign the root of the tree to be

node 0. We define the degree di of node i to be the number
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of children of the node. In each find path, there is a starting

node and the root. In all t find operations, there are t dis-

tinct starting nodes. The root node appears t times as well.

In one case, the root appears also as the starting node.

Altogether, the t find paths include 2t - 1 nodes at the

beginning and the end of the paths. To compute the total

cost, we need to account for the nodes that appear in the

middle of the find paths.

With path compression, node i can appear in the middle

of a find path at most di times. Because the path com-

pression ensures that all nodes on a find path point to the

root directly, after appearing in the middle of find path di

times, all children of node i must directly point to the root

of the tree. The total number of nodes that appear in

the middle of t find paths is
P

di. In any tree with t nodes,
P

di = t - 1. Because the root is never in the middle of any

find path, the total number of nodes that appear in the

middle of the find paths is actually less than t - 1. The total

cost of t find operations is no more than 3t - 2 \ 3t. h

After the scanning phase, the union-find data structure

may contain an arbitrary number of trees. However, the

total number of provisional labels (i.e., the number of

nodes in all trees) is not more than the number of object

pixels, which, in turn, is not more than the total number of

pixels p. In the most general case, the analysis phase (the

second phase) of a two-pass algorithm performs a find

operation (with path compression) on each provisional

label. The total cost of the analysis phase then is not more

than 3p. This proves the following lemma regarding the

computational complexity of the analysis phase.

Lemma 4 The worst-case time of the analysis phase of a

two-pass connected-component labeling algorithm using

any union-find with pass compression is O(p), where p is

the number of pixels in the image being labeled.

After flattening of a union-find tree, the steps to assign

the final labels clearly costs O(p) (see Eq. 11).

So far, we have analyzed the last two phases of a two-

pass labeling algorithm. Now we turn our attention to the

first phase, the scanning phase. We have shown (see

Lemma 3) that using a decision tree produces the same

final labels as using the straightforward scanning strategy,

and using either scanning procedure does not change the

cost of the analysis phase or the labeling phase of a two-

pass algorithm. Therefore, we choose the simple scanning

strategy for the analysis of the worst-case complexity of the

scanning phase. This scanning procedure is defined by

Eq. 8, but may use different union rules or different union-

find data structures.

During a forward scan, only the labels of the pixel in the

preceding line may directly affect the labels to be used. We

call these labels the active labels. These active labels form

their own union-find trees we call the active union-find

trees or the active trees for short.

After scanning of the first line, each union-find tree

contains a single node. The above statement is clearly true.

We next examine what happens while scanning an arbitrary

line i. By construction, the scanning procedure always

assigns the label of a root to a pixel. What we need to show

then is that, as new pixels are assigned labels, the labels

used earlier either remain as roots or are connected to roots

through labels used more recently. A root of a tree may

become non-root only through union operations such as the

following. The label assigned to pixel d was a root when the

assignment was made. While determining a label for pixel

e, a union involving d and c is performed and the root of the

tree containing the label of c becomes the parent of the label

of d. In this case, pixel e is assigned the label of the root of

the newly united tree and the label of d is a child of the new

root. This is the only mechanism by which a root becomes a

non-root. In this process, the old label becomes a child of

the new label. This process may be repeated many times,

but the earlier labels always connect to the roots through

other labels that have been used more recently.

Lemma 5 The total cost of a scanning phase of a two-

pass labeling algorithm (using any union-find with path

compression) with flattening of active trees after scanning

each line is O(p).

Proof Following from the argument above, the active

labels form their own union-find trees. Therefore, the cost

of flattening the active tree is proportional to the number of

pixels on the line. The process to assign labels to the pixels

on the next line of the image will only involve these active

labels and new labels that are in single-node union-find

trees. The cost of each find and union operation is bounded

by a small constant. The total cost of assigning labels to the

next line is again proportional to the number of pixels on

the line. Overall, the total time is O(p). h

If we do not flatten the active trees, we cannot account

for the costs in the same way. However, we expect that the

total cost of a scanning phase without the flattening of

active trees to be not more than the total cost of a scanning

phase with the flattening. This is because the process of

flattening the active trees are simply a series of find opera-

tions on the active labels. If we do not perform these find

operations explicitly, the procedure of assigning a new

label may invoke them anyway.

Lemma 6 The total cost of a scanning phase of a two-

pass labeling algorithm (using any union-find with path

compression) without flattening of active trees is O(p).

Proof In the process of assigning a provisional label to

pixel e, it may perform find operations on the labels of a, b,
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c, and d. Instead of associating the cost of these find

operations with e, we associate the cost of each find

operation with its starting pixels a, b, c, or d. This leaves a

small constant cost of assigning the provisional label to be

associated with pixel e. While labeling a 2D images, each

pixel may be the starting point of up to 4 find operations.

Because these find operations involve only the active trees

or newly generated single-node trees, the total cost of all

find operations after scanning each row is at worst pro-

portional to the number of object pixels in the row.

Therefore, the total cost of all find operations is at worst

proportional to the number of object pixels. Accounting for

other constant costs per pixel, the total cost of the scanning

phase is O(p). h

Theorem 3 The total time required by a two-pass

labeling algorithm using any union-find with path com-

pression is O(p), where p is the number of pixels in the 2D

image.

Proof A two-pass labeling algorithm can be divided into

three phases: scanning phase, analysis phase, and labeling

phase. Lemmas 2 and 2 show that the scanning phase

takes at most O(p) time with or without flattening of

active trees. Lemma 2 shows that the analysis phase takes

O(p) time by the use of a series of find operations with

path compression, or one of the simplified algorithms,

flatten and flattenL. The labeling phase, as defined by

Eq. 11, obviously takes O(p) time. Overall, the total time

is at worst O(p). h

4.3 Average performance on random images

For the expected performance of the scan plus array-based

union-find (SAUF) algorithm, consider a random image

with n rows and m columns where each pixel has a proba-

bility q of being an object pixel. We also refer to q as the

density of object pixels (0 B q B 1). The total number of

pixels p = mn, of which no = qmn are expected to be

object pixels.

To illustrate the probability model, we first consider the

number of provisional labels produced by a forward scan.

A new provisional label is generated if all neighboring

pixels in the scan mask are background pixels. Each pixel

has the probability (1 - q) of being a background pixel.

Assuming that each pixel is generated independently, the

probability of all four pixels being background pixels is

(1 - q)4.

In a 2D image, pixels normally have four neighbors in

the forward scan mask. There are also four special cases

that contain fewer pixels in their scan masks.

1. The top-left pixel that has no neighbors in the scan

mask.

2. The pixels on the top-most row (except the left-most

pixel), each of which has one neighbor to the left.

3. The pixels on the left-most column (except the

top-most pixel), each of which has two neighbors.

4. The pixels on the right-most column (except the

top-most pixel) each of which has three neighbors.

Including the normal case, there are five different scan

masks used during a forward scan. An illustration of these

five scan masks is shown in Table 1. The same table also

lists the number of instances (in column 2 under the

heading of instances) for each case and the probabilities of

an object pixel receiving a new label (in column 6 under

the heading of labels). Multiplying the density q and the

values in columns 2 and 6 of Table 1, we get an estimate of

the number of provisional labels produced for each case.

The following equation shows the total number of provi-

sional labels expected:

np ¼ q 1þ ðm� 1Þð1� qÞ þ ðn� 1Þð1� qÞ2
�

þðn� 1Þð1� qÞ3 þ ðm� 2Þðn� 1Þð1� qÞ4
�
:
ð12Þ

Using the same probability model, we can estimate the

time required by SAUF to label a random 2D binary image.

To do this, we divide the operations performed by SAUF

into six independent categories.

Table 1 The expected numbers

of operations per object pixel

used by the SAUF algorithm

The dominant case is shown in

the last row

Mask Instances Expected values

(3) Neighbors (4) Copy (5) Union (6) Labels

e 1 0 1 0 1

d e m - 1 1 q 0 1 - q

b c n - 1 2 - q q(2 - q) 0 (1 - q)2

e

a b n - 1 3 - 3q + q2 1 - (1 - q)3 0 (1 - q)3

d e

a b c (m - 2)(n - 1) (2 - q)2 4q - 8q2 + 7q3 - 2q4 q2(1 - q)(2 - q) (1 - q)4

d e
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1. Work done per pixel: Work performed on every pixel,

such as reading a pixel value from main memory to a

register, testing whether a pixel is a background pixel

or an object pixel, and assigning the final label to each

pixel (the last phase of any two-pass algorithm).

2. Unaccounted work done per object pixel: Work

performed on an object pixel that is not already

counted in the next four categories.

3. Time for visiting the neighbors: This is the major part

of the scanning procedure. The process of traversing a

decision tree requires multiple if-tests. Because each

if-test is for a different neighbor, the amount of time

required in this category should be proportional to the

number of neighbors visited. The expected number of

neighbors to be visited for each object pixel is shown

in column 3 under the heading of neighbors in

Table 1.

4. Copying a provisional label or assigning a new label:

This includes two types of terminal nodes on a

decision tree shown in Fig. 2, the new label operation

and the one-argument copy function. The amount of

work performed for each copy or assignment is a small

constant. The expected number of copy (or new label)

operations to be performed for each object pixel is

shown in column 4 under the heading of copy in

Table 1.

5. Union operations: This is a case where the two-

argument copy function is invoked by a decision tree.

Each union operation has the same cost as two find

operations. Based on Theorem 2, we can say that the

average cost of a find operation is a constant, and

therefore the average cost of a union operation is a

constant. The probability of performing a union

operation for each object pixel is shown in column 5

under the heading of union in Table 1.

6. Flattening operation: This is the second phase of the

SAUF algorithm. The total cost of this operation is

proportional to the number of provisional labels. The

probability of assigning a new label to an object pixel

is shown in column 6 under the heading of labels in

Table 1.

To illustrate how we obtain values in Table 1, we

briefly describe how we compute the values in columns 3,

4, and 5 in the last row (the normal case). Column 3

contains the average number of neighbors accessed. In the

normal case, the computation of this quantity is based on

the decision tree shown in Fig. 2b. We associate each

edge labeled ‘‘1’’ with the probability q and each edge

labeled ‘‘0’’ with the probability (1-q). There is one path

from the root to a leaf that is of length 1 (i.e., when

I[b] = 1). Note that the path length is the number of

neighboring pixels accessed. The probability of taking this

path is q. There are two paths of length 3. The proba-

bilities of taking these paths are (1-q)q2 and (1-q)2q.

The total probability of accessing 3 neighbors is (1-q)q.

There are four paths of length 4. The probabilities of

taking these four paths are (1-q)4, (1-q)3q, (1-q)3q, and

(1-q)2q2. The total probability of accessing 4 neighbors is

(1-q)2. The average number of accesses to neighbors is

q + 3q(1-q) + 4(1-q)2 = (2-q)2. This value is entered

in the row for the normal case (case 5) under the column

heading neighbors in Table 1.

Among the seven paths in a decision tree, there are two

leading to a two-argument copy function. These two paths

have probabilities of (1-q)q2 and (1-q)2q2. The two-

argument copy function invokes the union operation, and

therefore the total probability of invoking a union operation

is q2(1-q)(2-q). This value is entered in the row for the

normal case under the heading of union. The remaining 5

paths lead to either a one-argument copy function or a new

label function. We enter their total probability under the

heading of copy. The other four rows of Table 1 are

computed similarly.

For a typical image, where m and n are sufficiently

large, the normal case should dominate the four special

cases. Only considering the normal case, we can make a

few observations. Our first observation is that the proba-

bility of performing a union approaches 0 for both small

q (q ?0) and large q (q ?1). This agrees with our

expectation.

Theorem 4 In the scanning phase of two-pass labeling

algorithm on a random 2D binary image, the average

number of neighboring pixels visited following a decision

tree is 7/3, and consequently, using a decision tree speeds

up the scanning procedure by a factor of 12/7.

Proof In the normal case, the number of neighbors visited

is given by a quadratic formula, (2-q)2. As the density q

increases from 0 to 1, the quadratic formula quickly drops

from 4 to 1. Using this formula, we can compute an

average number of neighbors visited. If the density q is

uniformly sampled between 0 and 1, we can compute the

average number of neighbors visited by simply integrating

the function f(q) = (2-q)2 over q from 0 to 1, which yields

7/3.

The naive scanning procedure always accesses all 4

neighbors. On average, the speedup of using a decision tree

is 12/7. h

Based on the probabilities shown in Table 1, we define

the number of instances of six categories as
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p ¼ mn;

no ¼ qmn;

nn ¼ qðm� 1þ ðn� 1Þð5� 4qþ q2Þþ
ðm� 2Þðn� 1Þð2� qÞ2Þ;

nc ¼ qþ q2ðm� 1þ ðn� 1Þð5� 4qþ q2Þ
þ ðm� 2Þðn� 1Þð4� 8qþ 7q2 � 2q3ÞÞ;

nu ¼ q3ð1� qÞð2� qÞðm� 2Þðn� 1Þ;

Let constants C1,…,C6 represent the average cost per

operation of the six categories identified, then the total

execution time of SAUF is (note that np is defined in

Eq. 12):

tS ¼ C1pþ C2no þ C3nn þ C4nc

þ C5nu þ C6np:
ð13Þ

5 Performance measurements

In this section, we report the timing measurements of

various connected-component labeling algorithms. We use

these measurements to verify the expected performance

advantages of the two optimization strategies and the

resulting labeling algorithm SAUF. The decision tree

shown in Fig. 2b was implemented in all test programs that

required a decision tree.

5.1 Test setup

To measure the performance of labeling algorithms, we used

four different sets of binary images. We previously con-

ducted a limited performance study in which we used random

binary images only [45]. For this study, we used three

additional sets of images from various applications. Some

sample images are shown in Fig. 4, and summary descrip-

tions of these images are given in Table 2. We applied Otsu

thresholding [31] on the intensity to turn the application

images into binary images. The random binary images used

in this study were smaller than in our previous study, so that

they were closer to the application images in size. Users who

apply our algorithms on large images may see larger per-

formance improvements as demonstrated in [45].

To ensure that our measurements are not biased by a

particular hardware environment, we elected to run the

same test cases on three different machines listed in

Table 3. With each machine, we also chose to use a dif-

ferent compiler.

5.2 Effectiveness of the decision tree

We implemented two variants of the scan plus connection

table algorithm, namely, SCT-4 and SCT-1. A summary of

timing results is given in Table 4. Because the four sets of

test images have significantly different sizes, we show the

average time for each set separately. The timing mea-

surements were made for each test image. The test on each

image was repeated enough times so that at least one

second is used altogether. A minimum of five iterations

was always used. The time values reported are wall clock

time. The speedup of SCT-1 is measured against SCT-4.

Each speedup value is computed for one test image and the

speedup values reported in Table 4 are averages.

On each test platform, the two algorithms, SCT-4 and

SCT-1, show consistent relative performances on the three

sets of application images. The performance characteristics

are slightly different for random binary images (marked

noise). This is partly because the application images typi-

cally contain well-shaped connected components, whereas

the random images contain irregular components. This

Fig. 4 A sample of the binary images used in tests. Object pixels are

shown as black
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irregularity slightly reduces the effectiveness of SCT-1. On

the application images, SCT-1 is about twice as fast as

SCT-4. Based on the number of neighbors accessed, The-

orem 3 predicts a speed up of 12/7, which is about 1.7. On

random images, the actual observed speedup values shown

in Table 4 are close to 1.7, which confirms our analyses.

In all test cases, SCT-1 is never slower than SCT-4.

Because of this, we use a decision tree in all subsequent

tests.

5.3 Effectiveness of array-based union-find

To assess the effective of the new union-find algorithms,

we compare the new scan plus array-based union-find

(SAUF) algorithm with the scan plus union-find (SUF)

algorithm [12]. We implemented two versions of SUF,

SUF1 that flattens the active union-find trees after scanning

each line of the image as suggested by Fiorio and Gustedt

[12], and SUF0 that does not perform the extra flattening

operation. In Lemmas 5 and 6, we prove that both should

use O(p) time, and suggested that SUF0 could be faster

than SUF1. This expectation is confirmed by the timing

results shown in Table 5. SAUF is considerably faster than

both SUF1 and SUF0. Since all of them use the same

scanning procedure, the performance differences are due to

different union-find algorithms. The simpler union-find

algorithms in SAUF are clearly more efficient.

As in the previous table, Table 5 reports the elapsed

time. In this table, the speedup was measured against

SUF1. In our tests, SUF0 was at least 30% faster than

SUF1 on relatively small test images. On larger images, the

performance differences were much larger. For example,

on the lung structure images, SUF0 was five times as fast as

SUF1 on two of the three test machines. From our analyses,

we expected SUF0 to be faster than SUF1; however, the

observed performance difference was much larger than

anticipated. Our new labeling algorithm SAUF was usually

four times or more as fast as SUF1, and about twice as fast

as SUF0. The performance differences were even larger

when many provisional labels were combined into a small

number of final labels, as in the test image set lung. In

these cases, the union-find algorithms need to unite more

provisional labels and a set of more efficient union-find

algorithms makes a bigger difference. On lung images, the

Table 2 Summary information about test images, where N is the

number of images in the test set, P is the average number of pixels in

an image, O is the average number of object pixels, C is the average

number of connected components, and Q is the average number of

pixels per component

Name N P O C Q Description

imgs 54 254,558 94,256 1,088 3,633 Images used in [38]

lung 64 468,220 315,898 3 198,211 Mouse lung structure images from lbl.gov

nasa 63 8,294,591 5,041,424 17,289 638 Satellite images from nasa.gov

noise 78 1,750,000 875,000 35,434 309,246 Random binary images (500 9 500, 1,000 9 1,000, 2,000 9 2000)

Table 3 Information about the

three test machines
CPU type Clock (MHz) Cache (KB) Memory (MB) OS Compiler

UltraSPARC 450 4,096 4,096 Solaris 8 Forte workshop 7

Pentium 4 2,200 512 512 Linux 2.4 gcc 3.3.3

Athlon 64 2,000 1,024 512 Windows XP Visual Studio.NET

Table 4 Summary of timing measurements on the multi-pass algo-

rithms: the time values are in milliseconds and the values reported for

speedup are the averages of speedups computed for each individual

image

Time (ms) speedup

SCT-4 SCT-1 SCT�1
SCT�4

UltraSPARC

imgs 96 44 2.1

lung 215 95 2.3

nasa 5,776 2,880 2.1

noise 940 501 1.9

Pentium 4

imgs 15 8 2.0

lung 29 14 2.2

nasa 782 383 2.1

noise 173 97 1.8

Athlon 64

imgs 14 8 1.7

lung 26 14 1.8

nasa 687 394 1.8

noise 141 87 1.7
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SAUF is more than 10 times faster than SAUF1 on two of

the three test machines.

5.4 Verifying performance model for SAUF

As shown in Table 2, we used 78 random binary images of

various sizes for this set of tests. For each image, we

computed the average time used by SAUF on each of the

test machines. We used these 78 average time values to

compute the six constants C1,…,C6 for each machine. The

computation used a linear least-square formulation to

minimize the fitting error with a non-negative constraint.4

The results of C1,…,C6 for all three test machines are

shown in Table 6. Because the three computers used dif-

ferent types of CPUs, caches and operating systems, these

constants are different. we next study their similarity and

differences to understand the our performance model

further.

Overall, we see that our performance model captures the

actual work quite well because C2 is 0 on all three

machines. Category 2 was introduced as a catch-all cate-

gory. The value of C2 being 0 indicates there is no need for

such term.

On all three machines, both C1 and C3 were computed as

positive values. The value of C1 is the average time spent

on per pixel operations such as reading a pixel from

memory to register and assigning the final labels. This

value is positive because at a density of 0, SAUF uses some

time to label the image. The value C3 is the average time

used to access a neighboring pixel during the scanning

phase, which involves accessing the pixel value of the

neighbor and performing an if-test to see if it an object

pixel. Both of which consume a number of clock cycles.

The constant C4 represents the average cost of a copy

operation and the operation to assign a new label. We

expected it to be small. This was indeed the case as shown

in Table 6. The values C5 and C6 are zero on UltraSP-

ARC, but are nonzero on the others. This is due to the

different sizes of CPU caches as shown in Table 3. These

two constants measure the average cost of a union opera-

tion and the operation to compute a final label in the

analysis phase. They involve operations on array P, which

is usually less than 1 MB because the array has less than 1/

4 million (4-byte) elements in most cases as shown in

Fig. 6. An array of this size can fit in cache on UltraSP-

ARC, but not on the other systems.

With the six constants shown in Table 6, we can use

Eq. 13 to compute the expected time. In Fig. 5, we show

the measured time along with the expected time. We see

that the expected time agrees with the measured time to

within ±10% in most cases. The only case where the

expected values never intersected any observed values is

when random images of size 1,000 9 1,000 were labeled

on UltraSPARC. In this particular case, the estimated time

is about 1/4 larger than the actual measured values. This

discrepancy is largely because we used the same parame-

ters for the smaller images and the larger ones. On this

particular machine, the smaller images fit into the cache,

which makes the labeling algorithm more efficient on

smaller images than on larger ones.

The estimated number of provisional labels for random

images is given in Eq. 12. As a sanity check for the per-

formance model, we compared this estimated number of

provisional labels with the actually observed numbers. We

plotted the estimated and the observed numbers of provi-

sional labels in Fig. 6. The estimated values are close to the

observed values for q \ 0.2. For higher densities, the dif-

ferences between estimated and observed values become

Table 5 Summary of timing measurements on the three two-pass

algorithms; the time values are in milliseconds and the speedup values

are relative to SUF1

SUF1 SUF0 SAUF

Time Time Speedup Time Speedup

UltraSPARC

imgs 83 62 1.3 22 3.7

lung 366 134 2.7 53 6.8

nasa 5,279 3,231 1.6 1,164 4.6

noise 1,056 742 1.4 243 4.4

Pentium 4

imgs 25 16 1.7 5 5.5

lung 131 25 5.2 10 13.3

nasa 1,506 576 2.5 182 7.9

noise 332 186 1.9 47 6.6

Athlon 64

imgs 17 11 1.7 4 4.7

lung 86 17 5.1 7 11.7

nasa 1,073 429 2.4 134 7.5

noise 237 140 1.9 34 6.5

Table 6 The constant values (10-8 s) of Eq. 13 produced with a non-

negative least-square fitting of measured time values

UltraSPARC Pentium 4 Athlon 64

C1 9.5 1.1 1.2

C2 0 0 0

C3 5.3 0.8 3.7

C4 0.2 0 0

C5 0 6.7 4.1

C6 0 11.5 5.4

4 The computation uses the function lsqlin from the optimization

toolbox of MATLAB.
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more pronounced because the independence assumption

used for our estimation becomes more unreliable as q

increases.

In Theorem 3, we prove that SAUF has time complexity

of O(p), which is theoretically optimal. In Fig. 7, we plot

the maximum observed time and the average observed time

versus the image size p. It is clear that both the maximum

time and the average time scales linearly with p.

5.5 Comparison with contour tracing

According to the current literature, the Contour Tracing

algorithm is the fastest algorithm for connected-component

labeling on 2D binary images [9]. To demonstrate the

effectiveness of our optimization strategies, we compared

SAUF versus the contour tracing algorithm. We used the

implementation of the contour tracing algorithm distributed

by the original authors. In the following discussions, we

denote it as CTo to emphasis that the program is from the

original authors.

Table 7 shows the average time used by SAUF and the

contour tracing algorithm. In 8 out of the 12 cases shown,

SAUF is noticeably faster than CTo, particularly on larger

images. Of the three sets of large images, the images in the

set nasa are scenery photos which have more well-shaped

components than others. The contour tracing algorithm was

more efficient in identifying these well-shaped components

because there are fewer pixels on their boundaries. On the

smaller images, SAUF and CTo perform about the same

overall. The average speedup of SAUF over CTo, across

the four sets of test images and on three machines, is about

1.5.

Figure 8 shows the relative performance of SAUF over

CTo on a set of large random images. In this case, the

images still fit in memory as in earlier tests. On these

images with 100 million pixels (requiring about 400 MB),

SAUF is between 6 and 10 times faster than CTo (except

the special case of the empty image with no object pix-

els). The relative performance differences between SAUF

and CTo are much larger in this test for two reasons.

Firstly, the components in random images are not well-

shaped, and a majority of the pixels in a components are

on the boundary. CTo performs more work on boundary
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pixels than on interior ones. Therefore CTo performs

more work per pixel on random images than on scenery

images. Secondly, as the image sizes increases, the ran-

dom memory accesses used by CTo becomes relatively

more expensive because of the increased likelihood of

cache line address collision which leads to the same

words to be loaded from main memory to cache more

times. CTo also uses more memory than SAUF, which

increases the likelihood that some inactive program or

data may need to be swapped out of memory to make

space for the active program and data. This also increases

the observed elapse time.

6 Summary and future work

We have presented two strategies for optimizing the con-

nected-component labeling algorithms. The first strategy

minimizes the work in the scanning phase of a labeling

algorithm; and the second reduces the time needed for

manipulating the equivalence information among the pro-

visional labels. Our analyses show that a two-pass

algorithm using these strategies has the optimal worst-case

time complexity O(p), where p is the number of pixels in

an image. We also showed with extensive tests that the new

algorithm SAUF significantly outperforms well-known

algorithms, such as the scan plus connection table [38] and

scan plus union-find [12]. On the set of 2D images used for

our timing measurements, the contour tracing (CT) algo-

rithm is the fastest known method [9]. On relatively small

images, SAUF outperform CT by 50%. However, on larger

images, we observed a factor of 10 improvement for

SAUF, because the memory access pattern of SAUF is

more regular than CT and the relative advantage of SAUF

increases as the image size increases.

The optimization strategies are straightforward to

implement and can be extended to higher dimensional

images. It also produces consecutive labels, which are

convenient for applications.

More work remains to be done for a better understand-

ing of the performance features and trade-offs of these

strategies. For example, it may be useful to mix the contour

tracing algorithm and SAUF. A derivation of a bound on

the maximum number of scans needed by the SCT algo-

rithm would help us to understand SCT better. It should

also be interesting to apply the two optimization strategies

to parallel algorithms for connected-component labeling

and for different image formats.

7 Originality and contribution

This paper presents a new two-pass connected-component

labeling algorithm based on two optimization strategies,

the first one uses a decision tree to minimize the number of

neighbors examined during the scanning phase, and the

second one streamlines the union-find algorithms to mini-

mize the work needed to manage label equivalence

information. These optimization can be used in other

labeling algorithms separately and are novel in their own

right. We have not seen any other published labeling

algorithm that uses a decision tree to minimize work. The

second strategy combines an effective way of using union-

find algorithms for labeling [12] with an array-based

implementation for union-find [2, 11]. The novelty of this

approach is that we are able to remove a significant amount

Table 7 Average time (in milliseconds) used by CTo and SAUF to

label the test images; the overall average speedup is 1.5

Time (ms) Speedup

CTo SAUF SAUF
CTo

UltraSPARC

imgs 21 22 1.0

lung 127 53 2.4

nasa 793 1,164 0.8

noise 327 243 1.5

Pentium 4

imgs 4 5 0.8

lung 21 10 2.1

nasa 358 182 1.3

noise 67 47 1.3

Athlon 64

imgs 4 4 1.0

lung 20 7 2.7

nasa 191 134 1.4

noise 59 34 1.7
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of unnecessary work while keeping the algorithms simple

enough for an array-based implementation.

Combined together, the two optimization strategies

form a powerful two-pass labeling algorithm that are

faster than known labeling algorithms for 2D images. The

new two-pass labeling algorithm is efficient because it

performs the minimal amount of work necessary to find

the connected components and it does so with a relatively

small amount of random memory accesses. These are

confirmed with both theoretical analyses and extensive

timing comparisons.
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