
Author's personal copy

Pattern Recognition 42 (2009) 1977 -- 1987

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Fast connected-component labeling

Lifeng Hea,e,∗, Yuyan Chaob,e, Kenji Suzukic, Kesheng Wud

aGraduate School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480-1198, Japan
bGraduate School of Environment Management, Nagoya Sangyo University, Aichi 488-8711, Japan
cDepartment of Radiology, Division of the Biological Sciences, The University of Chicago, Chicago, IL 60637, USA
dLawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
eShaanXi University of Science & Technology, Xi'an Shannxi 710021, China

A R T I C L E I N F O A B S T R A C T

Article history:
Received 27 March 2008
Received in revised form 2 September 2008
Accepted 20 October 2008

Keywords:
Labeling algorithm
Label equivalence
Connected component
Linear-time algorithm
Pattern recognition

Labeling of connected components in a binary image is one of the most fundamental operations in
pattern recognition: labeling is required whenever a computer needs to recognize objects (connected
components) in a binary image. This paper presents a fast two-scan algorithm for labeling of connected
components in binary images. We propose an efficient procedure for assigning provisional labels to object
pixels and checking label equivalence. Our algorithm is very simple in principle, easy to implement, and
suitable for hardware and parallel implementation. We show the correctness of our algorithm, analyze its
complexity, and compare it with other labeling algorithms. Experimental results demonstrated that our
algorithm is superior to conventional labeling algorithms.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Labeling of connected components in a binary image is one of
the most fundamental operations in pattern analysis (recognition),
computer (robot) vision, and machine intelligence [1–3]. By use of
the labeling operation, a binary image is transformed into a sym-
bolic image in which all pixels belonging to a connected compo-
nent are assigned a unique label. Labeling is required whenever a
computer or a system needs to recognize objects (connected com-
ponents) in binary images; in other words, labeling is required in al-
most all image-based applications such as fingerprint identification,
character recognition, automated inspection, target recognition, face
identification, medical image analysis, and computer-aided diagno-
sis [4–6]. Especially in real-time applications such as traffic-jam de-
tection, automated surveillance, and target tracking, faster labeling
algorithms are always demanded.

Many algorithms have been proposed for addressing this issue,
because the improvement of the efficiency of labeling is critical in
many applications. For ordinary computer architectures such as the
Von Neumann architecture and two-dimensional images, there are

∗ Corresponding author. Tel.: +81561641111; fax: +81561641108.
E-mail addresses: helifeng@ist.aichi-pu.ac.jp (L. He), chao@nagoya-su.ac.jp

(Y. Chao), suzuki@uchicago.edu (K. Suzuki), KWu@lbl.gov (K. Wu).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.10.013

mainly the following four classes of algorithms:

(1) Multi-scan algorithms. Algorithms [7,8] scan an image in the
forward and backward raster directions alternately to propagate
label equivalences until no label changes.

(2) Two-scan algorithms. Algorithms [9–19] complete labeling in
two scans: during the first scan, they assign provisional labels to
object pixels, and record label equivalences. Label equivalences
are resolved during or after the first scan. During the second
scan, all equivalent labels are replaced by their representative
label.

(3) Hybrid algorithms. The algorithm [20] is a hybrid between multi-
scan algorithms and two-scan algorithms. Like multi-scan al-
gorithms, the hybrid algorithm scans an image in the forward
and backward raster directions alternately. During the scans,
as in two-scan algorithms, a one-dimensional table is used for
recording and resolving label equivalences. Experimental results
demonstrated that four is the upper limit on the number of scans
[20,21].

(4) Tracing-type algorithms. These algorithms [10,21–23] avoid
analysis of label equivalences by tracing the contours of objects
(connected components) or by use of an iterative recursion
operation. Such algorithms had been considered to be efficient
only for simple images, but not for complicated images, until
Chang's contour-tracing algorithm [23] was proposed.

There are other labeling algorithms for special image representa-
tions and special computer architectures. Algorithms [24–31] were



Author's personal copy

1978 L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987

developed for the images represented by hierarchical tree structures
[32–34], i.e., n-ary trees such as bintree, quadtree, octree, etc. The
efficiency of such algorithms may be better than that of other con-
ventional ones, but in the worst case, it is the same as that of conven-
tional two-scan algorithms. On the other hand, parallel algorithms
[35–43] were developed for parallel machinemodels such as a mesh-
connected massively parallel processor or systolic array processors.

This paper presents a new two-scan algorithm for labeling of
connected components in binary images. We propose an efficient
strategy for assigning provisional labels to object pixels and checking
label equivalence by case analysis, and we use the equivalent-label
sets and a representative label table for solving label equivalences
[19,44]. Experimental results showed that our algorithm is efficient
for connected-component labeling.

The rest of this paper is organized as follows: we review the
method for assigning provisional labels to object pixels and checking
label equivalence in conventional raster-scan labeling algorithms in
the next section, and we introduce our algorithm in Section 3. In
Section 4, we show experimental results, and in Section 5, we present
a discussion. We give our concluding remarks in Section 6.

The preliminary version of this paper was presented at the 2007
IEEE International Conference on Image Processing (ICIP 2007) [44].
However, the efficient strategy for assigning provisional labels for
object pixels by case analysis given in Section 3, the correctness
of our algorithm given in Section 5.1, the complexity analysis, and
the efficiency analysis of the proposed algorithm given in Sections
5.2 and 5.3, respectively, the comparison with other conventional
labeling algorithm given in Sections 5.4, 5.5, 5.6 and 5.7, and the
method for generating consecutive labels for connected components
given in Section 5.8 are new.

2. Conventional two-raster-scan algorithms

For an N × N binary image,1 we use b(x, y) to denote the pixel
value at (x, y) in the image, where 1�x, y�N, and VO for the value
of object pixels and VB for that of background pixels. We assume
that VO and VB are larger than the value of any provisional label, and
VO <VB.

For convenience, we consider only the case for eight-connected
connectivity in this paper, because our algorithm can easily be ex-
tended to that for labeling with four-connected connectivity.

By using the mask [3] shown in Fig. 1, all conventional pixel-
based raster-scan algorithms except the one proposed in Ref. [44]
scan a given image in the raster scan direction once (the first scan)
to process pixels one by one. If the current pixel b(x, y) is a back-
ground pixel, nothing needs to be done. On the other hand, if there
is no object pixel in the mask other than the current pixel, it is as-
signed a new label. Otherwise, it is assigned the minimal label in the
mask, and all different labels (if any) in the mask are recorded to be
equivalent labels.

By the above first scan, the connected component illustrated in
Fig. 2(a), for example, is provisionally labeled as the one shown in
Fig. 2(b), where label 1 and label 4, label 2 and label 5, label 2 and
label 3, and label 3 and label 4 are recorded to be equivalent labels.

There are severalmethods for recording and resolving label equiv-
alences. One uses an L × L two-dimensional array table [9,14] to
record label equivalences, where L is the number of provisional la-
bels assigned to an image.2 Each element Xij of the table is initial-
ized to 0. If provisional labels u and v are found to be equivalent
labels, then the element Xuv is set to 1. After the first scan, for each

1 For convenience, in this paper, we consider only N×N images. However, our
algorithm works for any N × M images.

2 For an N × N image, L has the order O(N).

b(x,y)b(x-1,y)

b(x,y-1)b(x-1,y-1) b(x+1,y-1)

x

y

the current pixel the pixel in the mask

Fig. 1. Mask for eight-connected connectivity.

1
1

14
32

3
3

2
2

25

Fig. 2. Illustration of provisional labeling by the first scan. (a) Connected-component
example. (b) Provisional labels assigned after the first scan.

provisional label m from 0 to L, it analyzes the table to find all m's
equivalent labels, and m is used as their representative label.

Another method is an application of the so-called union-find al-
gorithm [18,45–48]. It records label equivalences by use of union-
find trees. When two provisional labels are found to be equivalent,
the two union-find trees corresponding to the two labels are con-
nected together. Thus, after the first scan, all equivalent provisional
labels will be combined in the same union-find tree, and the label
on the root is used as their representative label.

The third method was proposed in Refs. [19,44]. By this method,
all equivalent labels are combined in a set (called and equivalent label
set), and the smallest label among them is used as their representative
label, whose relation is recorded in the so-called representative label
table. When two provisional labels are found to be equivalent, the
two equivalent label set corresponding to the two labels are com-
bined together, and the representative label table is updated at the
same time. Thus, after the first scan, all equivalent provisional la-
bels will be combined in the equivalent label set and hold the same
representative label.

After label equivalences are resolved, the second scan is executed
by replacement of all equivalent labels with their representative
label.

3. Outline of our proposed algorithm

Because the method by using equivalent label sets and the rep-
resentative label table for resolving label equivalences is simple and
efficient, we also use the method for resolving label equivalence in
our algorithm.

By this method, in the first scan, all provisional labels that belong
to a connected component found at this point will be combined in
the same equivalent label set and hold the same representative label.
That is, all labels in an equivalent label set are equivalent. Therefore,
when processing an object pixel, in the case where there is at least
one object pixel in the mask, instead of assigning the minimum label
in the mask to the object pixel, we can assign an arbitrary provisional
label in the mask to it. This simplifies the labeling operation by
avoiding calculation of the minimum label in the mask.



Author's personal copy

L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987 1979

(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

the current object pixel the object pixel in the mask

Fig. 3. Sixteen possible cases for the current object pixel in the mask for eight-connected connectivity.

On the other hand, with the mask for eight-connected connec-
tivity, for an object pixel b(x, y), there are 16 possible cases in the
mask, as shown in Fig. 3.

Case (1) is the only case necessary for creating a new equivalent
label set.

In cases (2)–(9) and (13)–(16), b(x, y) can take on any existing
provisional label in the mask without the need for consideration of
label equivalences. In our algorithm, because any label equivalence
is resolved immediately whenever it is found, if there is any label
equivalence in the mask, it should have been resolved already. Con-
sidering, for example, case (16), by use of our algorithm, the order
of processing of the object pixels in the mask is b(x − 1, y − 1) →
b(x, y−1) → b(x+1, y−1) → b(x−1, y). After b(x, y−1) is processed,
the provisional labels for b(x − 1, y − 1) and b(x, y − 1) should have
been combined in the same equivalent label set and have the same
representative label. In the same way, after b(x+1, y−1) is processed,
the provisional labels for b(x− 1, y− 1), b(x, y− 1), and b(x+ 1, y− 1)
should have been combined in the same equivalent label set and
have the same representative label. Finally, after b(x − 1, y) is pro-
cessed, the provisional labels for b(x−1, y−1), b(x, y−1), b(x+1, y−1),
and b(x − 1, y) should have been combined in the same equivalent
label set and had the same representative label. Because all provi-
sional labels (if any) in the mask have the same representative label,
b(x, y) can take on any of the labels without consideration of any
label equivalence.

Case (12) can be classified into either case (10) or (11), because
b(x − 1, y) and b(x − 1, y − 1) should have belonged to the same
equivalent label set and already have had the same representative
label.

Cases (10) and (11) are the only two cases necessary for con-
sidering label equivalence, where the two object pixels in the mask
would not be “connected” if b(x, y) was not an object pixel. In each
case, b(x, y) can take either of the labels of the two object pixels.
If the two object pixels have the same representative label, noth-
ing needs to be done. Otherwise, i.e., if they have different repre-
sentative labels, the equivalence between the two labels should be
resolved.

The operations for all cases in our proposed algorithm are sum-
marized in Table 1, where c1, c2, c3, and c4 denote pixels b(x − 1, y),
b(x−1, y−1), b(x, y−1), and b(x+1, y−1), respectively, in the mask
shown in Fig. 1, 0 denotes the background pixel, 1 denotes the ob-
ject pixel, and resolve (u,v) denotes the operation for resolving the
equal equivalence of labels u and v.

Because the operation resolve takes much time compared to the
other operations, we should avoid it as much as possible. The Kar-
naugh map [49] for the operation resolve is shown in Fig. 4. The
condition under which resolve does not take place can be derived as

c3 + c4 + c1 · c2,

where ci (ci) is true if ci is (not) an object pixel, and (·) and (+) denote
the logical multiplication (`AND') and the logical summation (`OR'),
respectively.

That is, the conditions where resolve does not happen are: c3 is
an object pixel, or c4 is not an object pixel, or neither c1 nor c2 is an
object pixel. Considering that we need to assign a provisional label
to b(x, y), the most efficient way is to check first whether c3 is an
object pixel or not, because if it is an object pixel, we do not need
to consider label equivalences, and we can assign c3's label to b(x, y)
without checking other pixels in the mask. Otherwise, for example,
suppose that we check c4 first. If c4 is not an object pixel, we do
not need to consider label equivalences, but we should check other
pixels in the mask further to determine the provisional label for
b(x, y). Obviously, we need to do more work in the latter case.

Based upon the above discussion, the efficient procedure for la-
beling the current object pixel and resolving label equivalences in
the mask can be summarized as follows:

if (c3�VB)
b(x, y) = c3;

else if (c1�VB)
b(x, y) = c1;
if (c4�VB)
resolve(c4, c1);

else if (c2�VB)
b(x, y) = c2;
if (c4�VB)
resolve(c2, c4);

else if (c4)
b(x, y) = c4;

else
b(x, y) = m, m = m + 1.

After the first scan, the provisional labels that are assigned to a
connected component in the given image will be combined in an
equivalent label set and hold the same representative label. Then,
by the second scan, each provisional label is replaced by its repre-
sentative label. Thus, after the second scan, all pixels in a connected
component will be assigned a unique label.

4. Comparative evaluation

All algorithms used for our comparison were implemented in the
C language and compiled under the same condition, and all experi-
mental results presented in this section were obtained by averaging
of the execution time for 5000 runs on a PC-based workstation (In-
tel Pentium D 930 3.0GHz + 3.0GHz CPUs, 2GB Memory, Mandriva
Linux OS) by use of one core.



Author's personal copy

1980 L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987

Table 1
Operations in the sixteen cases

Case c4 c3 c2 c1 b(x, y) Operations

(1) 0 0 0 0 m m = m + 1
(2) 0 0 0 1 c1 No operation
(3) 0 0 1 0 c2 No operation
(4) 0 0 1 1 c1 or c2 No operation
(5) 0 1 0 0 c3 No operation
(6) 0 1 0 1 c1 or c3 No operation
(7) 0 1 1 0 c2 or c3 No operation
(8) 0 1 1 1 c1, c2, or c3 No operation
(9) 1 0 0 0 c4 No operation
(10) 1 0 0 1 c1 or c4 resolve(c1, c4)
(11) 1 0 1 0 c2 or c4 resolve(c2, c4)
(12) 1 0 1 1 c1, c2, or c4 resolve(c1, c4) or resolve(c2, c4)
(13) 1 1 0 0 c3 or c4 No operation
(14) 1 1 0 1 c1, c3, or c4 No operation
(15) 1 1 1 0 c2, c3, or c4 No operation
(16) 1 1 1 1 c1, c2,c3, or c4 No operation

00001 0

00001 1

11100 1

00000 0

1
0

1
1

0
1

0
0

c1
c2

c3 c4

Fig. 4. The Karnaugh map for the operation resolve.

Images used for testing were composed of four types: artificial
images, natural images, texture images, and medical images.

Artificial images contain specialized patterns (stair-like, spiral-
like, saw-tooth-like, checker-board-like, and honeycomb-like con-
nected components) [20] and noise images. Forty-one noise images
of each of five sizes (32 × 32, 64 × 64, 128 × 128, 256 × 256, and
512 × 512 pixels) were used for testing (a total of 205 images). For
each size, the 41 noise images were generated by thresholding of the
images containing uniform random noise with 41 different thresh-
old values from 0 to 1000 in steps of 25. Because connected compo-
nents in such noise images have complicated geometric shapes and
complex connectivity, severe evaluations of labeling algorithms can
be performed with these images.

On the other hand, 50 natural images, including landscape, aerial,
fingerprint, portrait, still-life, snapshot, and text images, obtained
from the Standard Image Database (SIDBA) developed by the Univer-
sity of Tokyo3 and the image database of the University of Southern
California,4 were used for realistic testing of labeling algorithms. In
addition, seven texture images, which were downloaded from the
Columbia-Utrecht Reflectance and Texture Database,5 and 25 med-
ical images obtained from a medical image database of The Uni-
versity of Chicago were used for testing. All of these images were
512× 512 pixels in size, and they were transformed into binary im-
ages by means of Otsu's threshold selection method [50].

We mainly compared our algorithm with the following three
labeling algorithms: (1) the contour-tracing connected-component
labeling (CT) algorithm proposed in Ref. [23]; (2) the scan
plus array-based union-find (SAUF) algorithm proposed in Ref. [18];

3 http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
4 http://sipi.usc.edu/database/
5 http://www1.cs.columbia.edu/CAVE/software/curet/index.php

(3) the run-based two-scan (RTS) algorithm proposed in Ref. [19].
The programs of the SAUF algorithm and the RTS algorithm were
provided by the original authors, and that of the CT algorithm was
downloaded from the original authors' website.6

4.1. Execution time versus the number of object pixels and the number
of pixels in an image

We used all noise images to test the linearity of the execution
time versus image size. As shown in Fig. 5, all of the three algorithms
have the ideal linear characteristics versus image size.

Noise images with a size of 512 × 512 pixels were used for test-
ing the execution time versus the density of an image. As shown in
Fig. 6, our algorithm is superior to the CT algorithm, the SAUF algo-
rithm, and the RTS algorithm for all images.

4.2. Comparisons in terms of the maximum, mean, and minimum
execution times

Natural images, medical images, texture images, and artificial im-
ages with specialized shape patterns were used for this test. We also
compared our algorithm with one representative multi-scan algo-
rithm, i.e., Lumia's algorithm [11], and two representative two-scan
algorithms, i.e., Rosenfeld's algorithm [3] and Shirai's algorithm [13].
The results of the comparisons are shown in Table 2. The results
for the selected six images are illustrated in Fig. 7, where the ob-
ject pixels are displayed in black. The results demonstrated that our
algorithm was the fastest of all of the algorithms for all images.

5. Discussion

In this section, we analyze our algorithm and make some qualita-
tive comparisons of our algorithm with representative conventional
labeling algorithms, including the SAUF algorithm, the RTS algorithm,
and the CT algorithm [23].

5.1. Correctness of our algorithm

The correctness of our algorithm is quite straightforward:
(1) every object pixel is assigned a provisional label7; (2) ev-
ery provisional label belongs to only one equivalent label set;
(3) each equivalent label set has only one representative label;

6 http://dar.iis.sinica.deu.tw/Download
7 If there is no object pixel in the mask, the object pixel is assigned a new

provisional label. Otherwise, it is assigned a label in the mask.



Author's personal copy

L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987 1981

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 50000 100000 150000 200000 250000 300000
Number of pixels in an image

E
xe

cu
tio

n 
tim

e 
[m

se
c]

.0

CCL (Mean)
RTS (Mean)

SAUF(Max.)
Ours (Max.)

SAUF (Mean)
Ours (Mean)

CCL (Max.)
RTS (Max.)

Fig. 5. Execution time versus the number of pixels in an image.

0

2

4

6

8

10

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Density of an image

E
xe

cu
tio

n 
tim

e 
[m

se
c]

CT SAUF RTS Ours

Fig. 6. Execution time versus the density of object pixels in an image.

Table 2
Comparison of various execution times (ms) on various kinds of images

Image type Rosenfeld Lumia Shirai Hybrid CT SAUF RTS Ours

Natural
Max. 2185.2 2045.9 52.4 18.4 3.8 3.2 2.9 2.3
Mean 524.6 173.3 40.0 13.7 2.4 2.1 1.8 1.5
Min. 22.7 11.7 33.9 9.6 1.2 1.3 1.0 1.0

Medical
Max. 650.2 807.7 41.7 14.9 2.6 2.3 1.8 1.5
Mean 378.9 192.1 38.8 13.4 1.9 1.7 1.5 1.2
Min. 75.5 15.3 37.2 11.4 1.5 1.4 1.2 0.9

Textural
Max. 1068.7 72.7 42.8 28.5 3.7 2.9 2.5 2.0
Mean 296.7 35.2 39.3 27.4 2.7 2.5 1.8 1.6
Min. 13.8 15.6 38.5 26.4 1.5 2.3 1.1 1.1

Special
Max. 1061.3 748.9 39.3 15.8 7.4 2.2 2.5 1.8
Mean 316.8 164.9 22.5 7.9 3.9 1.2 1.5 0.8
Min. 2.0 2.5 0.96 2.2 1.1 0.3 0.8 0.3

(4) whenever two different parts of a single connected compo-
nent are found to be connected in the first scan, all provisional
labels belonging to the two parts are combined, while conditions
(2) and (3) are preserved at all times. In this way, at any time
in the first scan, all provisional labels for each part of a single

connected component found so far are combined with a corre-
sponding equivalent label set.

Thus, when the first scan is finished, all provisional labels as-
signed to a connected component are combined in a corresponding
equivalent label set, and all of them have the same representative



Author's personal copy

1982 L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987

Rosenfeld: 147.5 Lumia: 17.5
Shirai: 45.2 Hybrid: 12.9

CT: 3.4 SAUF: 2.1
RTS: 2.0 Ours: 1.7

Rosenfeld:541.9 Lumia: 154.8
Shirai: 40.5 Hybrid: 17.6

CT: 3.3 SAUF: 2.5
RTS: 2.2 Ours: 1.7

Rosenfeld: 339.8 Lumia: 38.5
Shirai: 42.8 Hybrid: 28.4

CT: 3.7 SAUF: 2.9
RTS: 2.5 Ours: 2.0

Rosenfeld:545.2 Lumia: 203.7
Shirai: 39.8 Hybrid: 14.8

CT: 2.0 SAUF: 1.9
RTS: 1.4 Ours: 1.4

Rosenfeld: 583.9 Lumia:174.2
Shirai: 38.8 Hybrid: 15.1

CT: 2.2 SAUF: 2.2
RTS: 1.6 Ours: 1.5

Rosenfeld:36.8 Lumia: 13.2
Shirai:34.3 Hybrid: 10.1

CT: 1.2 SAUF: 1.4
RTS: 1.0 Ours: 1.0

Fig. 7. Execution time (ms) of labeling algorithms for the selected six images: (a) a
text image; (b) a fingerprint image; (c) a portrait image; (d) a snapshot image; (e)
a texture image; (f) a medical image.

label. On the second scan, all object pixels having the correspond-
ing provisional labels in a connected component are assigned their
unique representative label. Therefore, every connected component
is assigned a unique label by our algorithm.

5.2. Maximum execution time of our algorithm

To complete labeling, our algorithm performs the following pro-
cedures:

(1) Assigning provisional labels to object pixels during the first
scan.

11
1
1
1
1
1

2
2
2
2
2

23
3
3
3

34
4
4

45
5

56

1
2

3
4

5
6

67

Fig. 8. A connected component with seven provisional labels.

(2) Creating equivalent label sets and setting representative labels
for all new provisional labels.

(3) Resolving label equivalences.
(4) Replacing the provisional labels of object pixels with their rep-

resentative labels during the second scan.

For an N × N-pixel image, both the maximum number of provi-
sional labels and the maximum number of connected components
have an order ofO(N2). Accordingly, the order of themaximum num-
ber of label equivalences among provisional labels is also O(N2).

By our algorithm, it is obvious that the orders of procedures (1)
and (4) are O(N2). In procedure (2), only constant operations are ex-
ecuted for each new provisional label. Because the order of the max-
imum number of provisional labels is O(N2), the order of procedure
(2) in the worst case is also O(N2).

Now we consider procedure (3). For resolving a label equivalence
between two provisional labels, there are two operations: one is
combining two equivalent label sets; the other is updating the rep-
resentative label table. By the method, the operation for combining
two equivalent label sets can be made in constant time, i.e., the order
is O(1). Because the maximum number of label equivalences occur-
ring in an image has the order O(N2), the order of all such operations
for labeling an image is also O(N2).

The only remaining operation is updating the representative label
table. For convenience, we useS(i) to denote an equivalent label set
with i as the representative label. By combining S(u1) = {u1, . . . ,um}
into S(v1) = {v1, . . . ,vm}, where v1�u1, the combined equivalent
label set will be S(v1) = {v1, . . . ,vm,u1, . . . ,um}. To realize this, for
each label x ∈ {u1, . . . ,um}, we need to set the representative label of
X as v1. The execution time of this process depends on the number
of members in S(u1), i.e., m.

For a W-pixel connected component with M provisional labels,
we consider the following two special cases: (1) when the maxi-
mum time that the operation is executed for updating the repre-
sentative label table happens; (2) when the connected component
has the maximum number of provisional labels, i.e., when M is the
maximum.

In the first case, the maximum times that the operation is exe-
cuted for updating the representative label table should be 1 + 2 +
3 + · · · + (M − 1), the order of which is O(M2). A connected compo-
nent with seven provisional labels is illustrated in Fig. 8. In such a
case, the number of pixels in the connected component has an order
of O(M2). Thus, O(M2) = O(W).

In the second case, the maximum number of provisional labels for
a W-pixel connected component has the order O(W). A nine-pixel
connected component is illustrated in Fig. 9. In this case, the times
that the operation is executed for updating the representative label
table is 1 + 1 + · · · + 1 = (W − 1)/2, the order of which is O(W).

It is found from the above discussion that, in both cases, the order
of the operation for updating the representative label table for a W-
pixel connected component becomes O(W). Thus, the order of the
operations for updating the representative label table for labeling an
N × N image should be O(N2).



Author's personal copy

L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987 1983

1
1

2
23

34
45

Fig. 9. The maximum number of provisional labels for a nine-pixel connected
component.

Therefore, for an N×N image, the order for resolving label equiv-
alences is also O(N2).

Because the order of every procedure for labeling an N×N image
in our algorithm isO(N2), the order of our algorithm should beO(N2).

5.3. Efficiency analysis of our algorithm

We analyzed each step of our algorithm in terms of efficiency;
in other words, we analyzed the reasons for the efficiency of our
algorithm. Because processing for background pixels in our algorithm
is the same as that in other raster-scan algorithms, we focus on an
analysis of processing for object pixels. For convenience, we assume
that each of the 16 possible cases for the current object pixel shown
in Fig. 3 occurs with the same probability in this analysis.

The efficiency of our algorithm is achieved by the following three
improvements: (1) simplification of the labeling operation by avoid-
ing the calculation of the minimum label in the mask (we call this ef-
ficiency improvement 1 hereafter); (2) checking c3 first in the mask
by the case analysis introduced in Section 3 (efficiency improve-
ment 2); (3) using the label-equivalence-resolving method and the
relative data structures (efficiency improvement 3). We describe the
analysis of each efficiency improvement in detail below.

Conventional raster-scan labeling algorithms assign the minimal
provisional label in the mask to the current object pixel. For deriving
the minimal provisional label, a comparison operation is required
four times in any cases in the conventional algorithms, whereas in
our algorithm shown in Section 3, a comparison operation is required
once for cases (5)–(8), (13)–(16); twice for cases (2), (4), (10), and
(12); three times for cases (3), (11), and (15); and four times for cases
(1) and (9). The average time required for comparison operations by
our algorithm is (1 × 8 + 2 × 4 + 3 × 3 + 2 × 4)/16 ≈ 2.06, which
is less than four times that are needed by conventional raster-scan
algorithms.

On the other hand, for processing an object pixel, our algorithm
checks whether a pixel in the mask is an object pixel in the order
c3 → c1 → c2 → c4. By the procedure shown in Section 3, the
checking operation is required once for cases (5)–(8), (13)–(16); three
times for cases (2), (4), (10), and (12); and four times for cases (1), (3),
(9), and (11). The average number of checking operations is (1× 8+
3×4+4×4)/16=2.25. In comparison, conventional two-scan labeling
algorithms check pixels in the mask in the order c1 → c2 → c3 →
c4. The checking operation is required three times for cases (5)–(8),
(13)–(16); and four times for cases (2), (4), (9), (10), (11), and (12).
The average number of checking operations is (3×8+4×8)/16=3.5.
Thus, our algorithm is more efficient by approximately 35% than are
conventional two-scan algorithms.

We performed an experimental test to demonstrate the efficiency
achieved by each efficiency improvement by using 512 × 512 noise
images. The results are shown in Fig. 10, where algorithm A, algorithm
B, algorithm C, and algorithm D indicate our algorithm without effi-
ciency improvements 1 and 2, that without efficiency improvement
1, that without efficiency improvement 2, and that with all three
efficiency improvements (i.e., our complete algorithm), respectively.

5.4. Comparison with multi-scan algorithms

In multi-scan algorithms, because, at every scan, the label equiv-
alences propagate only in the neighboring object pixels (thus, the
label equivalences will be resolved slowly), they need to scan an
image at least twice (usually, many times), depending on the com-
plexity of the connected components in an image. The worst case
is N/2 times, where N is the image matrix size [20]. Thus, the or-
der of the maximum time for labeling an N × N image is O(N3). At
each scan except the first one, the provisional labels of object pixels
are rewritten in order to propagate label equivalences. Moreover, at
each scan and for each object pixel, the algorithms need to calculate
the minimum label in the mask.

In comparisonwithmulti-scan algorithms, our algorithm resolves
each label equivalence completely as soon as it is found (thus, the
label equivalences will be resolved very quickly), it scans an im-
age only twice, and the labels of object pixels need to be rewritten
only once. Moreover, our algorithm does not need to calculate the
minimum label in the mask. On the other hand, we need three ad-
ditional L-sized one-dimensional arrays for resolving label equiva-
lences, where L is the largest provisional label in an image.

5.5. Comparison with conventional two-scan labeling algorithms

The main problems with the methods for resolving label equiv-
alences in conventional two-scan labeling algorithms are compli-
cated, and they usually need a large memory space. For example,
for an L-provisional label image IL, Shirai's algorithm [14], which is
an improved version of that proposed in Ref. [13], first uses a two-
dimensional 2L2/(3d) bit-size table to remove the duplicate equiva-
lences, where d is the number of sub-images, which are divided from
IL for reducing the memory size. Then, it sets an L×L size connection
table T, each of whose elements Xij is initialized to 0. If provisional
labels u and v are found to be equivalent labels, then the element
Xuv is set to 1.

After the first scan, for each provisional labelm from 0 to L, which
is initially marked to be unprocessed, it finds all m's equivalent labels
by analyzing the table T as follows: (1) if m is not unprocessed, do
nothing; (2) if m is unprocessed, put m into a queue Q; (3) while Q
is not empty, for the first element p of Q, if p is not unprocessed,
do nothing, otherwise, change p's status to processed, and for each
element Xpq of T such that Xpq = 1, the provisional label v is m's
equivalent label, and put q into Q.

The efficiency of this algorithm depends on the size of L, i.e., the
number of provisional labels. Moreover, it has no linearity property
versus image sizes [20,23].

Another representative two-scan labeling algorithm [11], i.e., Lu-
mia's algorithm, employs a small local table to store label equiva-
lences at each row of an image to improve the memory space prob-
lem. This algorithm was improved in Ref. [16] by implementation
with run-length coding. Because searching of the table and replacing
of provisional labels are performed after scanning of every row, this
algorithm is not more efficient than other conventional two-scan la-
beling algorithms.

On the other hand, because the union-find algorithm [45–48] is
a general method for resolving the disjoint set union problem or the
equivalence problem, it was used for resolving label equivalences in
two-scan algorithms [18,51].

The union-find algorithm makes use of a tree to represent each
set and consists of three basic operations:

(1) MakeSet(E) creates a new tree only with the root E.
(2) Find(E) finds the root of the node E.
(3) Union(A,B) combines two trees with the roots A and B into a

single tree by linking one of the roots to the other.



Author's personal copy

1984 L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000
Number of pixels in an image

E
xe

cu
tio

n 
tim

e 
[m

se
c]

algorithm A (Mean)
algorithm C (Max.)
algorithm A (Max.)

algorithm C (Mean)

algorithm D (Max.)
algorithm B (Mean)
algorithm D (Mean)

algorithm B (Max.)

Fig. 10. Analysis of efficiency improvements in our algorithm.

Two optimizations were proposed for improving the performance
of the algorithm. One is called path compression: whenever Find(E)
is executed, all nodes on the path from node E to the root of the tree
(including E, but not the root) are reset to point the root. Another is
called weight balancing: when Union(A,B) is performed, the root of
the smaller tree is linked to the root of the larger one.

The labeling algorithm employing the union-find algorithm pro-
posed in Ref. [51] was slower than the CT algorithm [23]. However,
the SAUF algorithm proposed in Ref. [18], which is implemented by
use of a single L-sized one-dimensional array with path compression
only (i.e., without weight-balancing), is superior to the CT algorithm
for most cases.

All of the above conventional two-scan algorithms complete la-
beling in three phases: a first scanning phase (assigning a provisional
label to each object pixel and storing label equivalences), an analysis
phase (solving label equivalences), and a relabeling phase (assigning
a final label to each object pixel). Moreover, for each object pixel,
they need to calculate the minimum provisional label in the mask.

In comparison with these conventional two-scan algorithms: (1)
Because our algorithm resolves the label equivalences immediately
whenever they are found during the first scan, all label equivalences
are resolved at the completion of the first scan; thus, the second scan
can start immediately. In other words, resolving label equivalences
is combined into the first scanning phase. (2) Our algorithm does
not require the calculation of the minimum provisional label in the
mask; therefore it saves a great deal of time. (3) The processing
for resolving label equivalences does not depend on the provisional
label assignment. Thus, our algorithm is more suitable than other
two-scan algorithms for parallel implementation.

It should be noted that the optimizations of the union-find al-
gorithm can be achieved naturally in our algorithm. Because two
equivalent label sets are combined whenever they are found to be
equivalent, all labels in an equivalent label set are always at the same
level. In other words, there is no path that needs to be compressed
further. Thus, the optimal effect of the path-compression operation
is achieved naturally in our algorithm.

Moreover, when combining two equivalent label sets, we com-
bine the equivalent label set L with a larger representative label
into the other set S. This combining operation has an effect sim-
ilar to weight balancing. Because S (with a smaller representative
label) is created earlier than L in our algorithm, with use of our
combining operation, the length of S is usually greater than that
of L. Although it is not guaranteed that the shorter set is always

combined into the longer set, our combining operation has the great
advantages that we do not need to track the length of a set and to
compare the lengths of two sets.

In order to confirm the above analysis, we compared our method
to themethodwith theweight-balancing optimization on all 292 test
images. The experimental results demonstrated that our algorithm
was faster by 18.3% on average than the method with the weight-
balancing optimization (for example, the execution times (ms) of our
algorithm and the method with the weight-balancing optimization
for Fig. 7(a), (b), (c), (d), (e), and (f) are (1.7, 1.9), (1.7, 2.0), (1.5, 1, 6),
(1.0, 1.1), (2.0, 2.3), and (1.4, 1.6), respectively. Moreover, we investi-
gated the proportion of sets with a smaller length which were even-
tually combined into sets with a greater length. We found that the
proportion was 98%. This fact agreed with the above analysis and
with the experimental results.

In addition, our strategy is more suitable for generating consec-
utive labels for connected components (see Section 5.8).

Recently, a run-based two-scan labeling algorithm was proposed
[19]. Unlike other conventional two-scan labeling algorithms, which
process label equivalences among pixels, this algorithm processes
label equivalences among runs. It also uses equivalent label sets and
the representative label table for resolving label equivalences. Be-
cause this algorithm considers the connectivity between runs, the
number of provisional labels assigned to an image is usually smaller
than that assigned by other conventional provisional labels. The re-
duction in the number of provisional labels reduces not only the time
for marking new labels, but also that for resolving label equivalences.

This algorithm is very efficient for run-length-encoded images.
However, for general images, because it needs to find and record run
data in the first scan, it is not as efficient as our algorithm.

It is worth mentioning that, if we use only the equivalent label
sets and the representative label table for resolving label equiva-
lences, the efficiency of our algorithm will decline a lot (see Fig. 10).
In this case, our algorithm was inferior to the RTS algorithm.

5.6. Comparison with the hybrid algorithm

Similar to multi-scan algorithms, the hybrid algorithm [20] is
based on label equivalence propagation. Although it uses a one-
dimensional table to speed up the propagation of label equivalences,
to complete labeling, it still needs to scan an image four times
in the forward and backward raster-scan directions alternately for



Author's personal copy

L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987 1985

propagating label equivalences. Similar to multi-scan algorithms, at
every scan except the first one, the labels for object pixels are rewrit-
ten. Moreover, like other raster-scan algorithms, at each scan and
for each object pixel, it needs to calculate the minimum label in the
mask.

In comparison with the hybrid algorithm, as mentioned above,
our algorithm resolves each label equivalence completely as soon as
it is found, i.e., the label equivalence propagation is complete at each
time. Our algorithm scans an image only twice, and the labels of
object pixels need to be rewritten only once. Again, we do not need
to calculate the minimum label in the mask. However, we need two
additional L-sized one-dimensional arrays.

5.7. Comparison with the CT algorithm

The CT algorithm proposed in Ref. [23] completes labeling by one
scan (i.e., no re-labeling is required), and it needs no additional mem-
ory. During labeling, the algorithm can extract connected-component
contours and the sequential orders of contour points, which are also
important for some image processing and pattern recognition. How-
ever, (1) because the algorithm accesses an image in an irregular
way, it is not suitable for pipeline processing [55], parallel imple-
mentation [56], or systolic-array implementations. (2) For labeling,
it marks some background pixels as −1 to indicate that they have
been visited. For recovering the value −1 to 0, the algorithm be-
comes a two-scan algorithm. (3) In cases in which the value of the
background pixels in a given image is not 0, and we need to set them
to 0 in the output image, it also becomes a two-scan algorithm.

In comparison, our algorithm processes an image in the raster-
scan order; therefore, it is suitable for hardware implementation
[57], pipeline processing, and parallel implementation. For example,
we can design a chip to detect the status of the mask in a single
step. Moreover, our algorithm is faster than the CT algorithm for all
images used in our test. On the other hand, for an N×N-size image,
our algorithm requires three N × N/4-sized one-dimensional arrays
for resolving label equivalences. In addition, our algorithm does not
provide connected-component contours or the sequential orders of
contour points.

5.8. Generating consecutive labels

With our proposed algorithm, each connected component in a
given image will be assigned a unique label. Generally, those labels
are not consecutive. In the case where we prefer consecutive labels,
we only need to sort the representative table rtable[ ] before the
second scan as follows, where L is the number of provisional labels
assigned to the given image:

j = 1;
for (i = 1; i�L; i + +)

if (rtable[i] = =i)
rtable[i] = j;
j + +;

else
rtable[i] = rtable[rtable[i]];

end if
end for

This process should not take much time. According to our exper-
imental results, for all test images, it took only 2.6% additional time
on average.

Note that: (1) in order to generate consecutive labels, all
equivalent-label-based labeling algorithms require a similar pro-
cedure; (2) when combining two equivalent sets, if we used a
weight-balancing strategy to combine a set with a larger length

into one with a smaller length, then it was not guaranteed that the
representative label of an equivalent set was the smallest in the set.
In this case, a procedure for generating consecutive labels requires
more steps than ours, as follows:

j = 1;
for (i = 1; i�L; i + +)

if (rtable[i] = =i)
rtable[i] = j;
j + +;

end if
end for
for (i = 1; i�L; i + +)

rtable[i] = rtable[rtable[i]];
end for

6. Concluding remarks

In this paper, we present a fast two-scan algorithm for labeling
of connected components in binary images. The advantages of our
algorithm are: (1) it is simple in principle; (2) it is easy to imple-
ment (less than 50 lines in the C language); (3) it is efficient for
various types of images (overall, it is faster than all conventional la-
beling algorithms that we could find); (4) it has the ideal linearity
property versus image size (i.e., for N × N images, its complexity is
O(N2)); (5) it is suitable for hardware implementation (because it
processes an image in a sequential order); (6) it is suitable for par-
allel implementation (because in our algorithm, the processing for
resolving label equivalences is independent of the provisional label
assignment, the two processes can be made by parallel processing).
The main weaknesses of our algorithm are: (1) in comparison with
the SAUF algorithm and the CT algorithm, we need more memory
space for implementation; (2) for labeling, our algorithm needs to
process each pixel at least twice, whereas the tracing-type labeling
algorithms usually process most background pixels once.

For future work, we plan to implement our algorithm in hard-
ware [52,53], to extend it to include three-dimensional connected-
component labeling [21,54], and to develop algorithms for parallel
architectures.

Acknowledgments

We thank the anonymous referees for their valuable comments
that improved this paper greatly. We are grateful to the editor for
his/her kind cooperation and help. We also thank Ms. E.F. Lanzl for
proofreading this paper. This work was partially supported by the
TOYOAKI Scholarship foundation, Japan.

References

[1] C. Ronsen, P.A. Denjiver, Connected Components in Binary Images: The
Detection Problem, Research Studies Press, 1984.

[2] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Addison-Wesley, Reading,
MA, 1992.

[3] A. Rosenfeld, A.C. Kak, Digital Picture Processing, second ed., vol. 2, Academic
Press, San Diego, CA, 1982.

[4] K. Suzuki, S.G. Armato, F. Li, S. Sone, K. Doi, Massive training artificial neural
network (MTANN) for reduction of false positives in computerized detection
of lung nodules in low-dose CT, Med. Phys. 30 (7) (2003) 1602–1617.

[5] K. Suzuki, H. Yoshida, J. Nappi, S.G. Armato, A.H. Dachman, Mixture of expert
3D massive-training ANNs for reduction of multiple types of false positives
in CAD for detection of polyps in CT colonography, Med. Phys. 35 (2) (2008)
694–703.

[6] K. Suzuki, F. Li, S. Sone, K. Doi, Computer-aided diagnostic scheme for distinction
between benign and malignant nodules in thoracic low-dose CT by use of
massive training artificial neural network, IEEE Trans. Med. Imaging 24 (9)
(2005) 1138–1150.

[7] R.M. Haralick, Some neighborhood operations, in: Real Time/Parallel Computing
Image Analysis, Plenum Press, New York, 1981, pp. 11–35.



Author's personal copy

1986 L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987

[8] A. Hashizume, R. Suzuki, H. Yokouchi, et al., An algorithm of automated RBC
classification and its evaluation, Bio Med. Eng. 28 (1) (1990) 25–32.

[9] A. Rosenfeld, J.L. Pfalts, Sequential operations in digital picture processing, J.
ACM 13 (4) (1966) 471–494.

[10] A. Rosenfeld, Connectivity in digital pictures, J. ACM 17 (1) (1970) 146–160.
[11] R. Lumia, L. Shapiro, O. Zungia, A new connected components algorithm for

virtual memory computers, Comput. Vision Graphics Image Process. 22 (2)
(1983) 287–300.

[12] R. Lumia, A new three-dimensional connected components algorithm, Comput.
Vision Graphics Image Process. 23 (2) (1983) 207–217.

[13] Y. Shirai, Labeling connected regions, in: Three-Dimensional Computer Vision,
Springer, Berlin, 1987, pp. 86–89.

[14] T. Gotoh, Y. Ohta, M. Yoshida, Y. Shirai, Component labeling algorithm for video
rate processing, in: Proceeding of the SPIE, Advances in Image Processing, vol.
804, April 1987, pp. 217–224.

[15] M. Komeichi, Y. Ohta, T. Gotoh, T. Mima, M. Yoshida, Video-rate labeling
processor, in: Proceedings of the SPIE, Image Processing II, vol. 1027, September
1988, pp. 69–76.

[16] R.M. Haralick, L.G. Shapiro, Computer and Robot Vision, vol. I, Addison-Wesley,
Reading, MA, 1992, pp. 28–48.

[17] S. Naoi, High-speed labeling method using adaptive variable window size for
character shape feature, in: IEEE Asian Conference on Computer Vision, vol. 1,
December 1995, pp. 408–411.

[18] K. Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component labeling
algorithms, Pattern Anal. Appl. 2008, in press, doi: 10.1007/s10044-008-0109-y.

[19] L. He, Y. Chao, K. Suzuki, A run-based two-scan labeling algorithm, IEEE Trans.
Image Process. 17 (5) (2008) 749–756.

[20] K. Suzuki, I. Horiba, N. Sugie, Linear-time connected-component labeling based
on sequential local operations, Comput. Vision Image Understanding 89 (2003)
1–23.

[21] Q. Hu, G. Qian, W.L. Nowinski, Fast connected-component labeling in three-
dimensional binary images based on iterative recursion, Comput. Vision Image
Understanding 99 (2005) 414–434.

[22] D.H. Ballard, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.
[23] F. Chang, C.J. Chen, C.J. Lu, A linear-time component-labeling algorithm using

contour tracing technique, Comput. Vision Image Understanding 93 (2004)
206–220.

[24] H. Samet, Connected component labeling using quadtrees, J. ACM 28 (3) (1981)
487–501.

[25] I. Gargantini, Separation of connected component using linear quad- and oct-
trees, in: Proceedings of the 12th Conference on Numerical Mathematics and
Computing, vol. 37, University of Manitoba, Winnipeg, 1982, pp. 257–276.

[26] M. Taminen, H. Samet, Efficient octree conversion by connectivity labeling, in:
Proceedings of the SIGGRAPH 84 Conference, ACM, Minneapolis, MN, 1984, pp.
43–51.

[27] H. Samet, Computing geometric properties of images represented by linear
quadtrees, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 (2) (1985) 229–240.

[28] H. Samet, M. Tamminen, An improved approach to connected component
labeling of images, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Miami, Florida, 1986, pp. 312–318.

[29] H. Samet, M. Taminen, Efficient component labeling of images of arbitrary
dimension represented by linear bintrees, IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-10 (4) (1988) 579–586.

[30] J. Hecquard, R. Acharya, Connected component labeling with linear octree,
Pattern Recognition 24 (6) (1991) 515–531.

[31] M.B. Dillencourt, H. Samet, M. Tamminen, A general approach to connected-
component labeling for arbitrary image representations, J. ACM 39 (2) (1992)
253–280.

[32] S.N. Srihari, Hierarchical representations for serial section images, in:
Proceedings of the 5th International Conference on Pattern Recognition, 1980,
pp. 1075–1080.

[33] C.L. Jackins, S.L. Tanimoto, Octrees and their use in representing 3D objects,
Comput. Graphics Image Process. 14 (3) (1980) 249–270.

[34] H. Samet, The quadtree and related hierarchical data structures, Comput. Surv.
16 (2) (1984).

[35] D.S. Hirschberg, A.K. Chandra, D.V. Sarwate, Computing connected components
on parallel computers, Commun. ACM 22 (8) (1979) 461–464.

[36] D. Nassimi, S. Sahani, Finding connected components and connected ones on
a mesh connected parallel compute, SIAM J. Comput. 9 (4) (1980) 744–757.

[37] Y. Schiloach, U. Vishkin, An o(log n) parallel connectivity algorithm, J. Algorithms
3 (1982) 57–67.

[38] L.W. Tucker, Labeling connected components on a massively parallel tree
machine, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Miami, Florida, 1986, pp. 124–129.

[39] M. Manohar, H.K. Ramapriyan, Connected component labeling of binary images
on a mesh connected massively parallel processor, Computer Vision Graphics
Image Process. 45 (2) (1989) 133–149.

[40] H.M. Alnuweiri, V.K. Prasanna, Parallel architectures and algorithms for image
component labeling, IEEE Trans. Pattern Anal. Mach. Intell. 14 (10) (1992)
1024–1034.

[41] S. Olariu, J.L. Schwing, J. Zhang, Fast component libeling and convex hull
computation on reconfigurable meshes, Image Vision Comput. 11 (7) (1993)
447–455.

[42] A. Choudhary, R. Thakur, Connected component labeling on coarse grain parallel
computers: an experimental study, J. Parallel Distributed Comput. 20 (1994)
78–83.

[43] P. Bhattacharya, Connected component labeling for binary images on a
reconfigurable mesh architectures, J. Syst. Archit. 42 (4) (1996) 309–313.

[44] L. He, Y. Chao, K. Suzuki, A linear-time two-scan labeling algorithm, in: 2007
IEEE International Conference on Image Processing (ICIP), San Antonio, Texas,
USA, September 2007, pp. V-241–V-244.

[45] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[46] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM 22
(2) (1975) 215–225.

[47] K. Mehlhorn, Data Structures and Algorithm 1: Sorting and Searching, Springer,
Berlin, 1984.

[48] R.E. Tarjan, J.V. Leeuwen, Worst-case analysis of set union algorithms, J. ACM
31 (2) (1984) 245–281.

[49] M. Karnaugh, The map method for synthesis of combinational logic circuits,
Trans. AIEE. pt I 72 (9) (1953) 593–599.

[50] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans.
Syst. Man Cybernet. 9 (1979) 62–66.

[51] C. Fiorio, J. Gustedt, Two linear time union-find strategies for image processing,
Theoret. Comput. Sci. 154 (2) (1996) 165–181.

[52] C.J. Nicol, Design of a connected component labeling chip for real time image
processing, in: Proceedings of the IEEE Asia–Pacific Conference on Circuits and
Systems, Sydney, Australia, December 1992, pp. 142–147.

[53] C.J. Nicol, A systolic approach for real time connected component labeling,
Comput. Vision Image Understanding 61 (1) (1995) 17–31.

[54] J.K. Udupa, V.G. Ajjanagadde, Boundary and object labeling in three-dimensional
images, Comput. Vision, Graphics, Image Process. 51 (3) (1990) 355–369.

[55] T. Hattori, A high-speed pipeline processor for regional labeling based on a
new algorithm, in: Proceedings of the International Conference on Pattern
Recognition, NJ, June 1990, pp. 494–496.

[56] K.B. Wang, T.L. Chia, Z. Chen, Parallel execution of a connected component
labeling operation on a linear array architecture, J. Inf. Sci. Eng. 19 (2003)
353–370.

[57] X. D. Yang. Design of fast connected components hardware, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor,
MI, June 1988, pp. 937–944.

About the Author—LIFENG HE received the B.E. degree from the Northwest Institute of Light Industry, China, in 1982, the second B.E. degree from Xian Jiaotong University,
China, in 1986, and the M.S. and Ph.D. degrees computer science from Nagoya Institute of Technology, Japan, in 1994 and 1997, respectively. He is an associate professor
at the Aichi Prefectural University, Japan, and a guest professor at the Shaanxi University of Science and Technology, China. From September 2006 to May 2007, he worked
at the University of Chicago (USA) as a research associate. His research interests include image processing, automated reasoning, and artificial intelligence.

About the Author—YUYAN CHAO received the B.E. degree from the Northwest Institute of Light Industry, China, in 1984, and the M.S. and Ph.D degrees from the Nagoya
University, Japan, in 1997 and 2000, respectively. From 2000 to 2002, she was a special foreign researcher of the Japan Society for the Promotion of Science at the Nagoya
Institute of Technology. She is an associate professor at the Nagoya Sangyo University, Japan, and a guest professor at the Shaanxi University of Science and Technology,
China. Her research interests include image processing, graphic understanding, CAD, and automated reasoning.

About the Author—KENJI SUZUKI received his B.S. (Magna Cum Laude) and M.S. (Summa Cum Laude) degrees in electrical and electronic engineering from Meijo University,
Nagoya, Japan, in 1991 and 1993, respectively, and his Ph.D. degree (by Published Work) in information engineering from Nagoya University, Nagoya, Japan, in 2001.
From 1993 to 1997, he worked in the Research and Development Center at Hitachi Medical Corporation as a researcher. From 1997 to 2001, he worked in the Faculty of
Information Science and Technology at Aichi Prefectural University, Japan, as a faculty member. In 2001, he joined the Kurt Rossmann Laboratories for Radiologic Image
Research in the Department of Radiology, Division of the Biological Sciences at The University of Chicago, as Research Associate. He was promoted to Research Associate
(Instructor) in 2003, and to Research Associate (Assistant Professor) in 2004. Since 2006, he has been Assistant Professor in the Department of Radiology, the Committee of
Medical Physics, and the Cancer Research Center.



Author's personal copy

L. He et al. / Pattern Recognition 42 (2009) 1977 -- 1987 1987

Dr. Suzuki has published more than 120 scientific papers (including 55 peer-reviewed journal papers) in the fields of medical image analysis, machine learning, computer
vision, and pattern recognition. He has been serving as a referee for more than 25 journals in these fields, including IEEE Transactions on Medical Imaging, IEEE Transactions
on Biomedical Engineering, IEEE Transactions on Information Technology in Biomedicine, IEEE Transactions on Image Processing, IEEE Transactions on Signal Processing,
IEEE Transactions on Systems, Man and Cybernetics, and Image and Vision Computing. He has received awards for his research, including a Paul C. Hodges Award from
The University of Chicago in 2002, a Certificate of Merit Award from the RSNA in 2003, a Research Trainee Prize from the RSNA in 2004, a Young Investigator Award from
the Cancer Research Foundation in 2005, an Honorable Mention Poster Award at the SPIE International Symposium on Medical Imaging in 2006, and a Certificate of Merit
Award from the RSNA in 2006. He was elected as a Senior Member of the IEEE in 2004. He is a member of IEICE, IEEJ, IPSJ, JNNS, and JCS.

About the Author—KESHENG WU is a Staff Computer Scientist at Lawrence Berkeley National Lab. He is the key developer of a number of software packages including
FastBit and TRLan. The work on FastBit bitmap indexes has received a patent on the compression method, a best paper award from International Supercomputer Conference
2005, and an R&D 100 Award in 2008. Kesheng owned his Ph.D. in Computer Science from University of Minnesota. His research interests include data management, data
analyses, visualization, scientific computing, and performance tuning. He has published more than 50 articles in scientific journals, conferences and books.




