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a b s t r a c t

Label-equivalence-based connected-component labeling algorithms complete labeling in two or more
raster scans. In the first scan, each foreground pixel is assigned a provisional label, and label equivalences
between provisional labels are recorded. For doing this task, all conventional algorithms use the same
mask that consists of four processed neighbor pixels to process every foreground pixel. This paper pre-
sents a simple yet efficient first-scan method for label-equivalence-based labeling algorithms. In our
method, foreground pixels following a background pixel and those following a foreground pixel are pro-
cessed in a different way. By use of this idea, the pixel followed by the current foreground pixel can be
removed from the mask. In other words, the mask used in our method consists of three processed neigh-
bor pixels. Thus, for processing a foreground pixel, the average number of times for checking the pro-
cessed neighbor pixels in the first scan is reduced from 2.25 to 1.75. Because the current foreground
pixel following a background pixel or a foreground pixel can be known without any additional computing
cost, our method is efficient for any image that contains at least one foreground pixel. Experimental
results demonstrated that our method is effective for improving the efficiency of label-equivalence-based
labeling algorithms.

� 2009 Published by Elsevier B.V.
1. Introduction

Labeling all pixels of each connected component a unique label
in a binary image is indispensable for processing in pattern recog-
nition and machine intelligence (Ronsen and Denjiver, 1984;
Rosenfeld and Kak, 1982). For applications to dynamic images,
e.g., computer (robot) vision, automatic detection, and automatic
tracking, faster labeling algorithms are always demanded. Many
labeling algorithms have been proposed for addressing this issue.
For ordinary computer architectures and pixel-based representa-
tion images, there are the following two classes of labeling
algorithms:

(1) Label-equivalence-based algorithms. These algorithms pro-
cess an image in the raster scan direction at least twice. In
the first scan, a provisional label is assigned to each fore-
ground pixel. All provisional labels assigned to the same
connected component are called equivalent labels, and the
relationships between equivalent labels are called label equi-
valences. Any label equivalence is recorded as soon as found.
After the first scan, all label equivalences are resolved, which
means finding a representative label for each group of equiv-
Elsevier B.V.
alent labels. Then, they relabel the pixel by the representa-
tive label of the provisional label assigned in the first scan.
There are pixel-based algorithms that resolve label equiva-
lences between pixels and run-based algorithms that resolve
label equivalences between runs, each of which means a
block of consecutive foreground pixels in a row.
For pixel-based algorithms, there are multi-scan (Haralick,
1981; Hashizume et al., 1990), four-scan (Suzuki et al.,
2003), and two-scan (Rosenfeld and Pfalts, 1966; Rosenfeld,
1970; Lumia et al., 1983; Lumia, 1983; Shirai, 1987; Gotoh
et al., 1987; Komeichi et al., 1988; Naoi, 1995; Wu et al.,
2009; He et al., 2009) algorithms. On the other hand, the
algorithm proposed by He et al. (2008) is a run-based one.

(2) Searching and label propagation algorithms (Ballard, 1982;
Shoji and Miyamichi, 1995; Rosenfeld and Kak, 1982; Chang
et al., 2004; Hu et al., 2005; Martin-Herrero, 2007). These
algorithms first search an unlabeled foreground pixel, assign
it a new label, and then propagate the label to all foreground
pixels connected to the pixel in later processing.
Although searching and label propagation algorithms usu-
ally use the raster scan to find an unprocessed foreground
pixel in an image, they process an image in an irregular
way, depending on the shapes of connected components in
the image. Therefore, they are not suitable for pipeline pro-
cessing (Hattori, 1990), parallel implementation (Hirschberg
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et al., 1979; Nassimi and Sahani, 1980; Schiloach and Vish-
kin, 1982; Manohar and Ramapriyan, 1989; Alnuweiri and
Prasanna, 1992; Wang et al., 2003), systolic-array imple-
mentation (Nicol, 1995), or hardware implementation (Yang,
1988).

In order to assign each foreground pixel a provisional label and
record label equivalences between provisional labels in the first
scan, all conventional label-equivalence-based algorithms for pix-
el-based (as opposed to run-based) images use the same mask con-
sisting of the four processed neighbor pixels. They process every
foreground pixel in the same way.

This paper presents a simple, yet efficient first-scan method for
label-equivalence-based labeling algorithms. In our method, we
process foreground pixels following background pixels and those
following foreground pixels in a different way. The mask used in
our method consists of only the three processed neighbor pixels
of the current foreground pixel in the row above. Thus, the number
of times for checking neighbor pixels can be reduced, which leads
to more efficient processing.

The rest of this paper is organized in the following way. In the
next section, we review the first-scan methods in conventional
label-equivalence-based algorithms. Section 3 introduces our
first-scan method. We show experimental results in Section 4
and provide a discussion in Section 5. Lastly, we give our conclu-
sion in Section 6.

2. Conventional first-scan methods in label-equivalence-based
algorithms

For an N �M-size binary image, we use bðx; yÞ to denote either
the pixel at ðx; yÞ in the image or the value of the pixel when the
meaning is clear from the text, and labelðx; yÞ for the label of the
pixel bðx; yÞ, where 1 6 x 6 N and 1 6 y 6 M. We assume that an
image is given in the PBM format, that is, foreground pixels and
background pixels in an image are represented by 1 and 0, respec-
tively. As is the same in most labeling algorithms, we assume that
all pixels on the border of an image are background pixels, and we
consider only eight connectivity.

For labeling a binary image, label-equivalence-based labeling
algorithms need two or more raster scans. In the first scan, they as-
sign to each foreground pixel a provisional label and record label
equivalences between provisional labels. Then, after resolving label
equivalences, all equivalent labels will have a unique representa-
tive label. Finally, each provisional label is replaced by its represen-
tative label.

In the first scan, all conventional label-equivalence-based label-
ing algorithms use the mask shown in Fig. 1 to process pixels one
by one in an image in the raster scan direction. For convenience,
b(x,y)b(x-1,y)

b(x,y-1)b(x-1,y-1) b(x+1,y-1)

the current  pixel         the pixel in the mask

x

y

Fig. 1. The mask used in conventional label-equivalence-based algorithms.
hereafter, we use c1, c2, c3, c4 to denote bðx� 1; yÞ, bðx� 1; y� 1Þ,
bðx; y� 1Þ, bðxþ 1; y� 1Þ, and use lið1 6 i 6 4Þ for the value of ci,
respectively. Except for the algorithm proposed in (He et al.,
2009), all such algorithms do the following processing: For each
current pixel bðx; yÞ, if it is a background pixel, nothing is done.
On the other hand, if it is a foreground pixel, it is assigned a new
label if there is no foreground pixel in the mask. Otherwise, the
current foreground pixel is assigned the minimal label in the mask.
Moreover, all different provisional labels (if any) in the mask are
recorded as equivalent labels.

Because such algorithms need to calculate the minimal label in
the mask, they need to check every pixel in the mask. Thus, for pro-
cessing a foreground pixel, the number of times for checking pixels
in the mask is four.

The method proposed in (He et al., 2009) is more efficient than
the algorithms mentioned above. In this algorithm, at any point in
the first scan, all equivalent labels found so far are combined in a
set, called equivalent label set, where the smallest label is referred
to as the representative label. The corresponding relation of a pro-
visional label and its representative label is recorded in a table,
called the representative table. For convenience, we use St for the
set of provisional labels with t as the representative label, and
r label½a� to represent the representative label of provisional label
a. In this way, for any provisional label f in provisional label set
St , we have r label½f � ¼ t.

In the first scan, for the current pixel bðx; yÞ, if it is a back-
ground pixel, nothing needs to be done. Otherwise, i.e., bðx; yÞ is
a foreground pixel, we check whether there are foreground pixels
in the mask. If there are, the current foreground pixel can be as-
signed any label in the mask. Moreover, when two foreground
pixels with different provisional labels, say, u and v, in the mask
become connected due to the existence of the current foreground
pixel, the label equivalence in the mask needs to be resolved. The
pseudo code for this processing, denoted as resolveðu; vÞ, is shown
as follows.

On the other hand, if there is no foreground pixel in the mask, it

means that the foreground pixel does not connect with any fore-
ground pixel having been scanned, i.e., the foreground pixel be-
longs a connected component consisting of itself only, a new
provisional label ProLabel, which is initialized to 1, is assigned to
the pixel, i.e., labelðx; yÞ ¼ ProLabel. The equivalent label set corre-
sponding to the connected component is established as
SProLabel ¼ fProLabelg, and the representative label of ProLabel is
set to itself, i.e., r label½ProLabel� ¼ ProLabel. Then, ProLabel in-
creases by 1 for consecutive processing.

By case analysis, an efficient procedure for processing a pixel
bðx; yÞ, denoted as Processingðx; yÞ, was proposed, the flowchart of
which is shown in Fig. 2. Accordingly, the first-scan procedure
can be given as follows.
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By this method, we need not calculate the minimal label in the
b(x, y)

b(x, y-1)b(x-1, y-1) b(x+1, y-1)

the current  pixel                          pixel in the mask

x

y

Fig. 3. The mask used in our first-scan method.
mask, and in most cases, we need not check all pixels in the mask.
For example, for processing a foreground pixel bðx; yÞ in the case
where bðx; y� 1Þ is a foreground pixel, the only thing needs to be
done is assigning bðx; yÞ the same label assigned to bðx; y� 1Þ. Thus,
the operations for processing foreground pixels in the first scan can
be reduced substantially.

3. The proposed first-scan method

Because we process pixels in an image in the raster scan direc-
tion, each row in the image can be considered as alternations of
contiguous background-pixel blocks and contiguous foreground-
pixel blocks. For each row, after passing all pixels in the first back-
ground-pixel block, we process the first foreground pixel in the
first foreground-pixel block. Such a foreground pixel bðx; yÞ follows
a background pixel, i.e., bðx� 1; yÞ is a background pixel. After pro-
cessing this pixel, we process all other foreground pixels (if any) in
the first foreground-pixel blocks one by one. Such a foreground
pixel bðx; yÞ follows another foreground pixel, i.e., bðx� 1; yÞ is a
foreground pixel. The remaining background-pixel blocks and fore-
ground-pixel blocks can be processed alternately in the same way.
c3 0

START

Y

N

c1 0

N

c2 0

N

c4 0

N

label(x, y)=ProLabel;
S(ProLabel)={ProLabel};
r_label[ProLabel]=Prolabel;
ProLabel=ProLabel+1;

END

label(x, y

Y
label(x, y)=l1;

label(x, y)=l4;
Y

Y
label(x, y)=l2;

res

b(x, y) 0
N

Y

Fig. 2. The flowchart for processing a foreground pixel in the
By the above discussion, during the first scan, we can divide
foreground pixels into two classes: (1) those following a back-
ground pixel, and (2) the others, i.e., those following a foreground
pixel. For each foreground pixel bðx; yÞ in class (1), we know that
bðx� 1; yÞ is a background pixel. On the other hand, for each fore-
ground pixel bðx; yÞ in class (2), we know that bðx� 1; yÞ is a fore-
ground pixel. Thus, for processing a foreground pixel bðx; yÞ in the
first scan, because we already know whether bðx� 1; yÞ is a fore-
ground pixel or not, we need not check pixel bðx� 1; yÞ again. In
other words, pixel bðx� 1; yÞ can be removed from the mask.
Therefore, the mask used in our method consists of the remaining
three pixels, bðx� 1; y� 1Þ, bðx; y� 1Þ and bðxþ 1; y� 1Þ (i.e., c2, c3

and c4), as shown in Fig. 3.
)=l3;

c4 0

resolve(l1, l4);
c4 0

olve(l2, l4);

Y

Y
N

N

first scan in the algorithm proposed in (He et al., 2009).



Table 1
Operations in the eight configurations where the current foreground pixel follows a
background pixel.

c2 c3 c4 Operations

(1) 0 0 0 labelðx; yÞ ¼ ProLabel, SProLabel ¼ fProLabelg,
r label½ProLabel� ¼ ProLabel, ProLabel ¼ ProLabelþ 1

(2) 1 0 0 labelðx; yÞ ¼ l2
(3) 0 1 0 labelðx; yÞ ¼ l3
(4) 1 1 0 labelðx; yÞ ¼ fl2 or l3g
(5) 0 0 1 labelðx; yÞ ¼ fl4g
(6) 1 0 1 labelðx; yÞ ¼ fl2 or l4g; resolveðl2; l4Þ
(7) 0 1 1 labelðx; yÞ ¼ fl3 or l4g
(8) 1 1 1 labelðx; yÞ ¼ fl2; l3; or l4g

(1)                   (2)                   (3)                 (4)                   (5)                  (6)                 (7)                  (8)  

the current pixel            object pixel background pixel

Fig. 4. Eight possible configurations for a foreground pixel in our mask.

1001

0

0

0

1

1

1

1

0

0

0

0 0 0 0

c4

c2

c3

Fig. 5. Karnaugh map for the operation resolve for processing a foreground pixel
following a background pixel.

Table 2
Operations in the eight configurations where the current foreground pixel follows a
foreground pixel.

c2 c3 c4 Operations

(1) 0 0 0 labelðx; yÞ ¼ l1
(2) 1 0 0 labelðx; yÞ ¼ l1
(3) 0 1 0 labelðx; yÞ ¼ l1
(4) 1 1 0 labelðx; yÞ ¼ l1
(5) 0 0 1 labelðx; yÞ ¼ l1; resolveðl1; l4Þ
(6) 1 0 1 labelðx; yÞ ¼ l1; resolveðl1; l4Þ
(7) 0 1 1 labelðx; yÞ ¼ l1
(8) 1 1 1 labelðx; yÞ ¼ l1
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Fig. 6. Karnaugh map for the operation resolve for processing a foreground pixel
following a foreground pixel.
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For a foreground pixel, there are eight configurations in our
mask, as shown in Fig. 4.

For a foreground pixel following a background pixel, we can
summarize the operations for each configuration in Table 1. Be-
cause the operation resolve takes much time compared with other
operations, we should avoid it as much as possible. The Karnaugh
map (Karnaugh, 1953) for the operation resolve is shown in Fig. 5.
The condition under which operation resolve takes place can be de-
rived as

c2 � c3 � c4;

where ciðciÞ is true if ci is (not) a foreground pixel, and (�) denotes
the logical multiplication (‘AND’).

By use of the same method proposed in (He et al., 2009), the
first-scan procedure for processing a foreground pixel following a
background pixel, denoted as procedure 1, can be derived as fol-
lows:

On the other hand, for a foreground pixel bðx; yÞ following an-

other foreground pixel, i.e., where bðx� 1; yÞ is a processed fore-
ground pixel, we can assign the pixel’s label to bðx; yÞ, i.e.,
labelðx; yÞ ¼ l1, directly without checking other pixels in the mask,
and then consider whether operation resolve is necessary. The
operations for each configuration shown in Fig. 4 can be summa-
rized in Table 2. The Karnaugh map for the operation resolve is
shown in Fig. 6. The condition under which operation resolve is
necessary can be derived as
c3 � c4:

Thus, the procedure for processing a foreground pixel following a
foreground pixel in the first-scan, denoted as procedure 2, can be
summarized as follows:

Notice that in procedure 2 we do not check pixel c2, i.e.,

bðx� 1; y� 1Þ. In other words, in this case, we need not consider
pixel bðx� 1; y� 1Þ.
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Finally, our first-scan procedure can be summarized as follows:

It is obvious that the current foreground pixel following a back-

ground pixel or a foreground pixel is found without any additional
computing cost.
1 http://ocrlnx03.iis.sinica.edu.tw/dar/Download%20area/ccl.php3.
2 http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm.
3 http://sipi.usc.edu/database/.
4 http://www1.cs.columbia.edu/CAVE/software/curet/index.php.
4. Comparative evaluation

By use of our proposed first-scan algorithm, after the first scan,
every foreground pixel is assigned a provisional label and all provi-
sional labels assigned to a connected component are combined in
an equivalent label set with a unique representative label. Thus,
during the second scan, for a background pixel, we assign 0 to it,
and for a foreground pixel bðx; yÞ, we replace the provisional label
assigned to it, i.e., labelðx; yÞ with the representative label of
labelðx; yÞ, i.e., r label½labelðx; yÞ�. Thus, all pixels belonging to a con-
nected component will be assigned a unique label.

For convenience to explain, we have used bðx; yÞ for denoting
the input image and labelðx; yÞ for output image. However, because
each foreground pixel is assigned a provisional label larger than 1,
and all background pixels are assigned 0, for checking whether a
pixel bðx; yÞ is a foreground pixel or not, we can use the value of
either bðx; yÞ or its label labelðx; yÞ. That is, if the value of either
bðx; yÞ or its label labelðx; yÞ is not 0, bðx; yÞ is a foreground pixel,
otherwise a background pixel. In this way, for recording provi-
sional labels, instead of using an additional 2D array labelð ; Þ we
can reuse bð ; Þ, i.e., we can use bð ; Þ for both the input image
and output image. This allows us to save the memory for
labelðx; yÞ and to do the second scan more efficiently.

The data structures for equivalent label sets and the representa-
tive label table are exactly the same as shown in (He et al., 2008,
2009), and our algorithm can be implemented in a similar way.

We mainly compared our algorithm (the in-place version) with
the following five recently proposed labeling algorithms: (1) the
Contour-Tracing connected-component Labeling (CTL) algorithm
proposed in (Chang et al., 2004); (2) the Hybrid Object Labeling
(HOL) algorithm proposed in (Martin-Herrero, 2007); (3) the Scan
plus Array-based Union-Find (SAUF) algorithm proposed in (Wu et
al., 2009); (4) the Run-based Two-Scan (RTS) algorithm proposed
in (He et al., 2008); and (5) the Fast Connected-component Label-
ing (FCL) algorithm proposed in (He et al., 2009). The program of
the CTL algorithm was downloaded from the authors’ web site,1

and the others were provided by the authors.
All algorithms used for our comparison were implemented in

the C language and compiled with the same command, and all
experimental results presented in this section were obtained by
averaging of the execution time for 5000 runs on a PC-based work-
station (Intel Pentium D 930 3.0 GHz + 3.0 GHz CPUs, 2 GB Mem-
ory, Mandriva Linux OS) by use of one CPU core.

Images used for testing were the same as used in (He et al.,
2008, 2009), which are composed of four types: artificial images,
natural images, texture images, and medical images.

Artificial images contain specialized patterns (stair-like, spiral-
like, saw-tooth-like, checker-board-like, and honeycomb-like
connected components) (Suzuki et al., 2003) and noise images.
Forty-one noise images of each of five sizes (32� 32, 64� 64,
128� 128, 256� 256, and 512� 512 pixels) were used for testing
(a total of 205 images). For each size, the 41 noise images were gen-
erated by thresholding of the images containing uniform random
noise with 41 different threshold values from 0 to 1000 in steps of 25.

On the other hand, 50 natural images, including landscape, aer-
ial, fingerprint, portrait, still-life, snapshot, and text images, ob-
tained from the Standard Image Database (SIDBA) developed by
the University of Tokyo2 and the image database of the University
of Southern California,3 were used for realistic testing of labeling
algorithms. In addition, seven texture images, which were down-
loaded from the Columbia-Utrecht Reflectance and Texture Data-
base,4 and 25 medical images obtained from a medical image
database of The University of Chicago were used for testing. All of
these images were 512 � 512 pixels in size, and they were trans-
formed into binary images by means of Otsu’s threshold selection
method (Otsu, 1979).

Because connected components in the noise images described
above have complicated geometrical shapes and complex connec-
tivity, we use these images to make severe evaluations of labeling
algorithms. The maximum and average execution times of the six
algorithms are shown in Fig. 7a and b, respectively.

http://ocrlnx03.iis.sinica.edu.tw/dar/Download%20area/ccl.php3
http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
http://sipi.usc.edu/database/
http://www1.cs.columbia.edu/CAVE/software/curet/index.php
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Fig. 8. Execution time [ms] of labeling algorithms for the selected six images: (a) a text image; (b) a fingerprint image; (c) a portrait image; (d) a snapshot image; (e) a texture
image; (f) a medical image.
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From Fig. 7, we know that either the maximum or minimum
execution time of every algorithm is linear versus image size,
and that our algorithm is superior to others.
Natural images, medical images, texture images, and artificial
images with specialized shape patterns were used for comparisons
in terms of the maximum, mean, and minimum execution times.
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Table 3
Comparison of various execution times [ms] on various kinds of images.

Image
type

CTL HOL SAUF RTS FCL Ours

Natural max. 3.84 3.37 3.23 2.90 2.33 2.18
mean 2.34 2.04 2.07 1.71 1.49 1.32
min. 1.13 1.13 1.29 0.95 0.95 0.87

Medical max. 2.59 1.63 2.28 1.71 1.47 1.31
mean 1.92 1.25 1.89 1.37 1.21 1.09
min. 1.52 0.79 1.54 1.19 0.93 0.90

Textural max. 3.69 2.70 2.87 2.54 2.03 1.80
mean 2.66 2.10 2.57 1.67 1.56 1.38
min. 1.58 1.56 2.37 1.17 1.14 1.05

Special max. 7.42 4.80 2.24 2.48 1.78 1.53
mean 3.87 2.07 1.21 1.53 0.90 0.83
min. 1.13 0.46 0.33 0.76 0.29 0.26
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The results for six selected images are illustrated in Fig. 8,
where the foreground pixels are displayed in black. Based on our
experimental results, our algorithm was the fastest of all algo-
rithms for all of the test images. The results are shown in Table 3.

5. Comparison with conventional label-equivalence-based
algorithms

For a foreground pixel bðx; yÞ, there are 16 possible configura-
tions for the four processed neighbor pixels, as shown in Fig. 9.

As described in Section 2, for processing a foreground pixel in
the first scan, except for the algorithm proposed in (He et al.,
2009), all label-equivalence-based labeling algorithms need to cal-
culate the minimal label in the mask consisting of the four pro-
cessed neighbor pixels, as shown in Fig. 1; thus, the number of
times for checking pixels in the mask is four.

For the algorithm proposed in (He et al., 2009), by its first-
scan procedure described in Section 2, the number of times for
checking pixels in the mask is one for configurations (5), (6),
(7), (8), (13), (14), (15), and (16); three for configurations (2),
(4), (10), and (12); and four for configurations (1), (3), (9), and
(11). The average number of times is (1 � 8 + 3 � 4 + 4 � 4)/
16 = 2.25.
Table 4
Number of times for checking the processed neighbor pixels.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FCL 4 3 4 3 1 1 1 1 4
Ours 3 2 3 2 1 1 1 1 3
Others 4 4 4 4 4 4 4 4 4
In comparison, our mask, as shown in Fig. 3, consists of three
processed neighbor pixels in the row above the foreground pixel.
For a foreground pixel following a background pixel, by procedure
1, the number of times for checking pixels in the mask is one for
configurations (5), (7), (13), and (15), and three for configurations
(1), (3), (9), and (11). On the other hand, for a foreground pixel fol-
lowing another foreground pixel, by procedure 2, the number of
times for checking pixels in the mask is one for configurations
(6), (8), (14), and (16), and two for configurations (2), (4), (10),
and (12). The average number of times is (1 � 8 + 3 � 4 + 2 � 4)/
16 = 1.75.

Finally, for each of the 16 configurations shown in Fig. 9, for
processing a foreground pixel in the first scan, the number of
times for checking the neighbor pixels in the FCL algorithm,
our algorithm and other conventional label-equivalence-based
labeling algorithms, is shown in Table 4. Note that, for any con-
figuration, the number of times for checking neighbor pixels in
our algorithm is smaller than or equal to those in the other
two methods. Moreover, for an image with at least one fore-
ground pixel, configuration (1) will occur at least once; thus,
our method should be effective for all images with more than
one foreground pixel.
(10) (11) (12) (13) (14) (15) (16) Avg.

3 4 3 1 1 1 1 2.25
2 3 2 1 1 1 1 1.75
4 4 4 4 4 4 4 4
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We used the 512 � 512 noise images to investigate the number
of times needed for checking the processed neighbor pixels in the
first scan for the three methods. The results are shown in Fig. 10.

On the other hand, the run-based label-equivalence-based
labeling algorithm proposed in (He et al., 2008), i.e., the RTS algo-
rithm, does not use a mask for assigning provisional label and re-
cord label equivalences in the first scan. However, it needs to
find and record run data in an image. Because the process of the
second scan in the FCL algorithm, the RTS algorithm and our algo-
rithm are exactly the same, we use the 512 � 512 noise images to
compare the execution times of the first scan for the three meth-
ods. The results, shown in Fig. 11, demonstrate that our algorithm
is superior to the other two algorithms.

6. Conclusion

In this paper, we proposed a simple, yet efficient first-scan
method for label-equivalence-based labeling algorithms. The
experimental results demonstrated that our method is efficient
for various types of images. Like other conventional label-equiva-
lence-based labeling algorithms, our method is suitable for pipeline
processing, parallel implementation, systolic-array implementa-
tion, and/or hardware implementation.

According to the experimental results, our algorithm is more
efficient than other labeling algorithms if we only do the labeling
task. However, in the case where the contours of connected com-
ponents are necessary, the CTL algorithm (Chang et al., 2004)
should be selected, because it can provides such a work with al-
most no additional cost.
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