
12 The Open Artificial Intelligence Journal, 2007, 1, 12-18

 1874-0618/07 2007 Bentham Science Publishers Ltd.

An Improvement on Sub-Herbrand Universe Computation

Lifeng He
*,1,§

, Yuyan Chao
2,§

, Kenji Suzuki
3
, Zhenghao Shi

3
 and Hidenori Itoh

4

1
Graduate School of Information Science, Aichi Prefectural University, Aichi, Japan

2
Graduate School of Environment Management, Nagoya Sangyo University, Aichi, Japan

3
Department of Radiology, The University of Chicago, Chicago, IL, USA

4
Department of Information, Nagoya Institute of Technology, Nagoya, Japan

Abstract: This paper presents an efficient algorithm for computing sub-Herbrand universes for arguments of functions

and predicates in a given clause set. Unlike the previous algorithm, which processes all clauses in the given clause set

once for computing each sub-Herbrand universe, the proposed algorithm computes all sub-Herbrand universes in the

clause set by processing each clause in the clause set only once. We prove the correctness of our algorithm, and we pro-

vide experimental results on theorem proving benchmark problems to show the power of our approach.

INTRODUCTION

 Herbrand's theorem [1] is the basis for most modern

automatic proof procedures in automated first-order theorem

proving. By Herbrand's theorem, for a given clause set S, a

special universe, called Herbrand universe, can be created

automatically. S is unsatisfiable if and only if there is an un-

satisfiable set of ground instances of clauses of S, where a

ground instance of a clause is derived by instantiating vari-

ables in the clause with elements of the Herbrand universe of

S. Herbrand's theorem enables us to make theorem proving

mechanical. However, theorem proving methods based di-

rectly on Herbrand's theorem, e.g., the multiplication method

[2], are usually inefficient, because there may be too many

ground instances that need to be considered.

 Addressing to this problem, He et al. [3] proposed a

method for computing a sub-universe of the Herbrand uni-

verse, denoted a sub-Herbrand universe, for each argument

of predicates or functions in a given clause set S, and they

proved that S is unsatisfiable if and only if there is a finite

unsatisfiable set of ground instances of clauses of S derived

by instantiating each variable, which appears as an argument

of predicate symbols or function symbols, in S over its corre-

sponding sub-Herbrand universes. Because such sub-

universes are usually smaller (sometimes considerably so)

than the Herbrand universe of S, the number of ground in-

stances that need to be considered for reasoning can be re-

duced in many cases. Their experimental results demon-

strated that this improvement is efficient for model genera-

tion theorem proving approach [4-6].

 However, the algorithm proposed in [3] is inefficient. In

order to compute a sub-Herbrand universe corresponding to

an argument in a given clause set S, it has to processes all

*Address correspondence to this author at the Graduate School of Informa-

tion Science, Aichi Prefectural University, Nagakute-cho, Aichi-gun, Aichi

480-1198, Japan; Tel: +81-561-64-1111, Ext. 3311; Fax: +81-561-64-1108;

E-mail: helifeng@ist.aichi-pu.ac.jp

§Also with Shannxi University of Science and Technology, Xianyang,

Shannxi, China.

clauses in S once. For a large clause set, it takes more than

hours to finish the computation.

 This paper presents an efficient algorithm for computing

sub-Herbrand universes in a clause set. Unlike the previous

algorithm mentioned above, the proposed algorithm com-

putes all sub-Herbrand universes in a given clause set S by

processing each clause in S only once. The experimental

results on theorem proving benchmark problems demonstrate

that the proposed algorithm is much efficient than the previ-

ous one.

 The rest of the paper is organized as follows: We review

the previous algorithm proposed in [3] in the next section,

then introduce our efficient algorithm in Section 3. Section 4

shows the correctness of our approach, and Section 5 reports

the experimental results on benchmarks. Lastly, we give our

conclusion in Section 6.

REVIEW OF THE PREVIOUS ALGORITHM

 In this paper, the lower-case letters are used to represent

predicate symbols, function symbols and constants, while the

upper-case letters are used for atoms and variables. On the

other hand, the Greek letters are used to represent arbitrary

predicate symbols, function symbols, terms, substitutions,

and other necessary information. A predicate (function)

with n arguments is called n-place predicate (function), and

the ith (1 i n) argument of is denoted to i . is

denoted the empty set, A I means that A is a member of I.

Moreover, we view clauses as sets and assume that there is

no same variable symbol in different clauses of a given

clause set.

 Let S be a set of clauses. Similar as in [3], for conven-

ience, we use SHU to denote sub-Herbrand Universe, and

app (, i) to denote that a term appears as a value of

an argument i in S. For example, suppose if there is

p(f(a), X) in S, then we have app(a, f 1), app(f(a), p 1),

and app(X, p 2).

An Improvement on Sub-Herbrand Universe Computation The Artificial Intelligence Journal, 2007, Volume 1 13

 Definition 1 (same domain argument). Arguments that

hold the same SHU are called the same domain arguments

(SD arguments).

 Algorithm 1 (Algorithm for computing a preliminary

SHU). Let S be a set of clauses, and i , an argument in S.

The selected constant c is a constant arbitrarily selected from

S if there is any, otherwise, it is an artificial constant.

 The preliminary SHU for i is a set H derived as

follows:

1. Initially, set H = , M = { i }, and N = .

2. If M is empty, then H is the preliminary SHU for

i , and all arguments in N are SD arguments.

However, if H contains no constant, then H = H {c}.

On the other hand, if M is not empty, continue.

3. Move the first element j of M to N. For each

app(, j) in each clause C of S:

(1) if is a constant c. Let H = H {c};

(2) if is functional term with function symbol f.

Let H = H V f , where V f is the possi-

ble value set corresponding to f, whose defini-

tion will be given later;

(3) if is a variable X. For each argument k

such that there exists app(X, k) in C, add

the argument k into M if k M N.

4. Go to Step 2.

 When the above algorithm terminated, all argument in N

are SD arguments.

 Algorithm 2 (Algorithm for deriving all preliminary

SHUs). Let S be a clause set. All preliminary SHUs for the

arguments of predicate symbols and function symbols in S

can be established as follows:

1. Let T be the set of all arguments of predicate symbols

and function symbols in S, j = 0.

2. If T is empty, terminate; H1 , …, H j , are the derived

preliminary SHUs. All arguments in Nk (1 k j)

are SD arguments and have the same SHU Hk . Oth-

erwise, if T is not empty, continue.

3. Let i be the first element of T, j = j+1. Accord-

ing to Algorithm 1, derive the preliminary SHU H j

for the argument i and the set N j of the same

SHU arguments of i . Remove all elements of

N j from T, and go to Step 2.

 All SHUs of the arguments of predicate symbols and

function symbols in a set of clauses in the form of the Her-

brand universe can be generated as follows:

 Algorithm 3 (Algorithm for deriving SHUs in the form

of the Herbrand universe).

 Let S be a clause set, and f1, …, fm, all function symbols

in S, and H1 , …, Hn , the preliminary SHUs of arguments

of predicate symbols and function symbols in S derived ac-

cording to Algorithm 2. For each i such that 1 i n, let Ci

be the set of constants that appear in Hi , let Hi
*(0) = Ci ,

and for each j such that 1 j m, V *(f j , 0) = .

 Suppose that for 1 j m, f j is an hj -place function

symbol, and the SHU for the argument f j t (1 t hj) is

Hut
, where 1 ut n. For k = 0, 1, 2, …, let V *(f j , k +1)=

{ f j (1, , hj
) | 1 Hu1

* (k) , …, hj
Huhj

*
(k)), and

Hi
*(k +1) = Hi

*(k) {V *(f j , k +1) | V f j Hi }.

 Then, V *(f j ,) is the set of the possible values of f j ,

and Hi
*() is the form of the Herbrand universe of Hi .

 The above algorithm for computing SHUs in a give

clause set S is not efficient. According to Algorithm 1, to

computer an SHU corresponding to an argument i , it

processes all clauses in S once, and at that time, it matches

i with every argument in S. For this reason, when the

number of arguments in S and the number of SHUs in S are

large, it will take too long time to finish the computation. For

example, there are many problems in TPTP library

(http://www.cs.miami.edu/~tptp/), a theorem proving

benchmark problem library, such that the running times for

their SHUs computation exceed 300 sec, which is the limita-

tion time of general theorem proving contests (see

http://www.cs.miami.edu/~tptp/CASC/).

THE PROPOSED ALGORITHM

 We present an efficient algorithm that computes all SHUs

in a given clause set S by processing each clause in S only

once.

 Definition 2 (Arguments corresponding to a variable).

Let C be a clause in a set S of clauses. Every occurrence of a

variable X in C is an argument of a predicate or a function in

C. Such arguments are called the arguments corresponding

to variable X.

 For example, in clause ¬p(X, f(Y)) q(X) r(Y), the

arguments corresponding to variable X are p 1 and q 1 ,

and those for variable Y are f 1 and r 1 .

 Lemma 1. All arguments corresponding to a variable in a

clause are SD arguments.

 Because all arguments corresponding to a variable in a

clause are certainly substituted by the same term during rea-

soning, Lemma 1 is obviously true.

 Lemma 2. Let D1 and D2 be two sets of SD arguments.

If D1 and D2 contain a common argument, then all argu-

ments in D1 and D2 are SD arguments.

 According to Definition 1, the proof of Lemma 2 is trivial.

Obviously, if D1 and D2 contain the same argument, then

they can be combined.

14 The Open Artificial Intelligence Journal, 2007, Volume 1 He et al.

 Algorithm 4 (Algorithm for computing the sets of SD

arguments in a clause). Let C be a clause. The sets of SD

arguments in C can be derived as follows:

1. Let X1 , …, Xn be the variables in C. For each Xi (1

 i n), let D1 , …, Dm be the candidate sets of SD

arguments that have been established (initially none),

and D the set of SD arguments corresponding to Xi .

Suppose that D j 1
, …, D ju

 (1 jt m ,1 t u) are

the sets of SD arguments such that there is a common

argument in D and Djt
. Remove D j 1

, …, D ju
, and

add D D j 1
… D ju

 as a new candidate set of

SD arguments. However, if there is no such argument,

just add D as a new candidate set of SD arguments.

2. For each of constants and functions in C, it is an oc-

currence of an argument, say, , in C. If does not

belong to any of the candidate sets of SD arguments

that have been derived, then add the set { } as a new

candidate set of SD arguments in C.

 After all variables, constants, and functions have been

processed, the derived candidate sets of SD arguments are

the sets of SD arguments in C.

 Algorithm 5 (Algorithm for computing the sets of SD

arguments in a clause set). Let S be a clause set,C1 , …,Cn ,

the clauses in S. All sets of SD arguments in S can be derived

by processing Ci (1 i n) one by one as follows:

 Let D1 , …, Dm be the candidate sets of SD arguments

being established (initially none), and F1 , …, Ft , the sets of

SD arguments in Ci . For each Fj (1 j t), let Dp1
, …,

Dpu
 (1 pk t, 1 k u) be the sets of SD arguments such

that there is a common argument in Fj and Dpk
. Remove

Dp1
, …, Dpu

, and add Fj Dp1
… Dpu

 as a new can-

didate set of SD arguments. If there is no such argument,

simply add Fj as a new candidate set of SD arguments.

 After all clauses are processed, the derived candidate sets

of SD arguments are the sets of SD arguments in S.

 Because there are only finite arguments of predicates and

functions as well as finite clauses in a set of clauses, the

above algorithm certainly terminates finitely. Moreover, be-

cause all sets of SD arguments that contain a common argu-

ment are combined whenever they are found, when the

above algorithm terminates, each argument in the given

clause set belongs and only belongs to a set of SD arguments.

 Example 1. Let S be the following clause set:

 p1 (c).

 p2 (f(c)).

 p1 (X) p2 (X).

 By the algorithm given in Algorithm 4, for clause ¬ p1 (c),

we can derive a set of SD arguments: D1 = { p1 1 }; for

clause ¬ p2 (f(c)), we can derive two sets of SD arguments:

D2 = { p2 1 }, and D3 = { f 1 }; and for clause p1 (X)

p2 (X), we can derive a set of SD arguments: D4 = { p1 1 ,

p2 1 }.

 By the algorithm given in Algorithm 5, after processing

clause ¬ p1 (c), we have one candidate set of SD arguments

D1 = { p1 1 }; after processing clause ¬ p2 (f(c)), we have

three candidate set of SD arguments D1 = { p1 1 }, D2 =

{ p2 1 } and D3 = { f 1 }. When processing the clause

p1 (X) p2 (X), because there are p1 1 D1 and

p1 1 D4 , as well as p2 1 D2 and p2 1 D4 , D1 ,

D2 and D4 are removed, and D5 = D1 D2 D4 = { p1 1 ,

p2 1 } is added.

 As a result, we finally derive two sets of SD arguments in

S, renamed as: G1 = { f 1 }, G2 = { p1 1 , p2 1 }.

 Definition 3 (The constant set and function set corre-

sponding to a set of SD arguments). Let S be a clause set,

and G a set of SD arguments in S. The constant set C (func-

tion set F) corresponding to G is the set of constant c (func-

tion f) such that there is app(c,) (app(f,)) and G.

However, if C is empty, let C = {a}, where a can be an arbi-

trary constant occurring in the Herbrand universe of S.

 Example 2. Let S be the clause set, G1 and G2 the de-

rived sets of SD arguments in Example 1.

 By Definition 3, the constant set and function set corre-

sponding to G1 are {c} and , respectively, and those corre-

sponding to G2 are {c} and {f}, respectively.

 All SHUs (in the form of Herbrand Universe) of argu-

ments of predicates and functions in a set of clauses can be

generated as follows:

 Algorithm 6 (Algorithm for computing SHUs in a clause

set). Let S be a clause set. Let G1 , …, Gn be the sets of SD

arguments in S derived by the algorithm given in Algorithm

5, Ci and Fi (1 i n), the constant set and function set

corresponding to Gi , respectively.

 For each i such that 1 i n, let Hi (0) = Ci , and for

each function f such that f Fi , let V(f, 0) = .

 Suppose that f is an h-place function, and f t Gut
,

where 1 t h, 1 ut n. For k = 0, 1, 2, …, let V(f, k+1) =

V(f, k) {f(1 , …, h) | t Hut
(k) }, and Hi (k+1) =

Hi (k) {V(f, k+1) | f Fi }.

 Then Hi () is the SHU (in the form of Herbrand Uni-

verse) for the arguments in Gi .

 Example 3. Let S be the clause set given in Example 1.

From Example 1, we have two sets of SD arguments: G1 =

An Improvement on Sub-Herbrand Universe Computation The Artificial Intelligence Journal, 2007, Volume 1 15

{ f 1 }, G2 = { p1 1 , p2 1 }. From Example 2, we have

C1 = {c}, F1 = , C2 = {c}, and F2 = {f}.

 By the algorithm given in Algorithm 6,

 V(f, 0) = ,

 H1 (0) = C1 = {c},

 H 2 (0) = C2 = {c};

 V(f, 1) = {f(c)},

 H1 (1) = H1 (0) = {c},

 H 2 (1) = H 2 (0) V(f, 0) = {c, f(c)};

 V(f, 2) = {f(c)},

 H1 (2) = H1 (1) = {c},

 H 2 (2) = H 2 (1) V(f, 2) = {c, f(c)};

 V(f,) = {f(c)},

 H1 () = {c},

 H 2 () = {c, f(c)}.

 That is, the SHU for f 1 is H1 (), and that for p1 1

and p2 1 is H 2 ().

CORRECTNESS

 For convenience, similarly in [3], we use D to de-

note the set of SD arguments that contains argument ,

H[D] the SHU for the arguments in D , and

C[D] and F[D], the constant set and the function set

corresponding to D , respectively.

 Definition 4 (SHU ground instance). Let S be a set of

clauses, and C a clause in S. An SHU ground instance of C is

a clause obtained by replacing each variable X in C by a

member of the SHU for the arguments corresponding to X.

 Lemma 3. Any SHU ground instance of a clause C is a

ground instance of C.

 Proof. According to the algorithm given in Algorithm 6

and Definition 3, only the constants and functions occurring

in S are used for generating SHUs, therefore, any SHU is a

subset of Herbrand universe of S, and then an SHU ground

instance of a clause C is a ground instance of C (but the con-

verse is not always true).

 Definition 5 (Depth of a ground term). Let be a

ground term. The depth of , denoted by dep , is defined

as follows:

1. dep =1 if is a constant;

2. dep

f (1,…, n) =h+1, where h is the maximum

value among dep 1 , … , dep n .

 For example, dep f (a,b) = 2, dep f (a, g(b, c) = 3,

and dep f (a, g(b,h(c)) = 4.

 Algorithm 7 (Algorithm for driving an unsatisfiable set

of ground instances). Let S be an unsatisfiable set of clauses.

Then the empty clause can be derived from S by resolution.

We can obtain an unsatisfiable set of ground instances of

clauses of S by recording the clauses used in resolution as

follows:

1. When deriving a factor C of a clause C, instead of

deleting all repeated literals from C , we underline

each of them;

2. When deriving a resolvent, instead of deleting the two

literals resolved up, we underline each of them.

 The underlined literals will not be used in further resolu-

tion. However, they are instantiated by substitutions used in

resolution. If we ignore underlines, a resolvent can be con-

sidered as a disjunction of instances of the clauses in S. A

clause with all literals underlined corresponds to the empty

clause. When such a clause, called an extended empty clause,

is derived, for each variable X that remained in the clause (if

any), let be an argument corresponding to X. We substi-

tute X with a constant in C[D]. Let E be the resulting

clause. If we ignore all underlines, E is a disjunction of

ground instances the clauses in the given clause set. Let SE

be the set of such ground instances. Then SE is an unsatis-

fiable set of ground instances of clauses of S.

 Example 4. Let S be the following unsatisfiable set of

clauses:

p(f(a, X1), X2) (1)

p(a, X3) p(X4 , X3) (2)

p(X5 , X6) p(f(X5 , b), X6) (3)

 By the algorithm given in Algorithm 7, the empty clause

can be derived as follows:

i) from clause (2), by we can derive a factor, p(a,

X3) p(a, X3) (4)

ii) by resolve (4) and (3), we have, p(a, X3)

p(a, X3) ¬ p(a, X3) p(f (a,b), X3) (5)

iii) by resolve (5) and (1), we have, p(a, X3)

p(a, X3) ¬ p(a, X3) p(f (a,b), X3)

¬p(f (a,b), X3) (6)

 Because all literals in clause (6) are underlined, clause

(6) is an extended empty clause. By Definition 3, because

there is not any constant c such that there is app(c, p 2) in

S, we take C[D p 2] = {a} (Of course, we could also take

C[D p 2] = {b}). Substituting all variable X3 in clause

(6) with constant a, we can obtain clause E:

16 The Open Artificial Intelligence Journal, 2007, Volume 1 He et al.

p(a,a) p(a,a) ¬ p(a,a) p(f (a,b),a)

¬p(f (a,b),a) (7)

 Then the unsatisfiable set
E
S of ground instances of

clauses of S derived from clause (7) is:

¬p(f (a,b),a) …… a ground instance of clause (1)

p(a,a) p(a,a) …… a ground instance of clause (2)

¬ p(a,a) p(f (a,b),a) …… a ground instance of clause (3)

 Lemma 4. Let S be a set of clauses, T a factor or a resol-

vent derived in resolution on S, and X a variable in T. Then

all arguments corresponding to X in T are SD arguments.

 Proof. We prove Lemma 4 by induction on the following

statement: I(n): Suppose that Tn is the clause derived in the

n-th step in resolution. Then all arguments corresponding to

a variable X in Tn are SD arguments.

 Base case: Show I(0). T0 is a clause in S. According to

Lemma 1, all arguments corresponding to a variable X in T0

are SD arguments.

 Induction step: Suppose that I(0), …, I(n); to show that

I(n+1). Tn+1 is a factor of a clause C (a resolvent of two

clauses C1 and C2), where C (each of C1 and C2) is a

clause derived before I(n+1).

 Because X is a variable in Tn+1 , X is certainly a variable

in C (C', where C' is either C1 or C2). For the appearances

app(X, 1 i1), …, app(X, r ir) in Tn+1 such that there are

also app(X, 1 i1), …, app(X, r ir) in C (C'), by the in-

duction assumption, 1 i1), …, r ir are SD arguments.

 The remaining appearances of X in Tn+1 are generated by

substituting other variables, say, Y1 , …, Yt , in C (
1
C or

C2) with X. For each
k
Y (1 k t), there is a sequence of

app(X, 1 j1), app(Ys1 , 1 j1), app(Ys1 , 2 j2),

app(Ys2 , 2 j2), app(Ys2 , 3 j3), …, app(Ysu , u ju),

app(Yk , u ju), where 1 sv t , sv k , 1 v u , and

l jl (1 l u) is an argument in C (C1 and/or C2).

 Let D, Ds1
, …, Dsu

, and Dk be the sets of SD arguments

corresponding to the variables X, Ys1 , …, Ysu , and Yk , re-

spectively. Then D and Ds1
 contain the common argument

1 j1 , Ds1
 and Ds2

 contain the common argument 2 j2 ,

…, Dsu
 and Dk contain the common argument u ju . By

Lemma 2, all of arguments in D, Ds1
, …, Dsu

, and Dk are

SD arguments.

 Therefore, all arguments corresponding to variable X in

Tn+1 are SD arguments, and I(n+1) is true.

 For example, let C1 be clause p(X, Y) q(Y, Z), and C2 ,

¬p(U, U). Then, the resolvent of C1 and C2 is p(X,

X) q(X, Z) ¬p(X, X). For variable Y in C2 , which is sub-

stituted to X in resolution, there is a sequence app(X, p 1),

app(U, p 1), app(U, p 2), and app(Y, p 2). By Algo-

rithm 4, the set of arguments corresponding to variables X, Y

and U are DX = {p 1 } , DY = {p 2 ,q 1 } , and

DU = {p 1 , p 2 } , respectively. By Lemma 2, all arguments

in DX , DY , and DU are SD arguments. The set of all such

arguments is just the set of the arguments corresponding to

variable X in the resolvent.

 Lemma 5. Let S be a clause set, f (c) a function (con-

stant) in S. Then, if there is app(f,) (app(c,)) in our

proposed resolution, there is f F[D] (c C[D]).

 Proof. For any app(f,) in S, by Definition 3,

f F[D] , and for any app(c,)) in S, by Algorithm 6,

c C[D] .

 If a variable X is substituted to a functional term with

function f in resolution, then, by Lemma 4, all arguments

corresponding to variables X, say, 1 , …, n , are SD argu-

ments. Moreover, for some argument i (1 i n), there

are app(Y, i) and app(f, i) in S, where Y is either X itself

in S or a variable substituted to X in the resolution. By Defi-

nition 3, f F[D i] . Because D 1 = ··· = D n , we

have f F[D 1] , …, f F[D n] .

 Now, consider the case where a variable X is substituted

to a constant c. By Lemma 4, all arguments in the clause

corresponding to variables X, say, 1 , …, m , are SD argu-

ments. If the substitution occurs in our proposed resolution,

for some argument j (1 j n), there are app(Y, j) in S,

where Y is either X or a variable substituted to X in the reso-

lution. By Definition 3, we have c C[D j] . On the other

hand, when a variable X in the extended empty clause de-

rived by our proposed resolution is substituted to a constant

c, by Algorithm 68, we also have c C[D k] , where (1 k

 m). Because D 1 = ··· = D m , for both cases, we have

c C[D 1] , …, c C[D m] . Therefore, Lemma 5 is

true.

 Lemma 6. Let S be an unsatisfiable set of clauses, and

SE the unsatisfiable set of ground instances of clauses of S

derived by the algorithm given in Algorithm 7. Then each

clause of SE is an SHU ground instance of S.

 Proof. Because there is no variable in SE , all terms in

SE are ground. We prove Lemma 6 by showing the follow-

ing statement: for each ground term , if there is app(,)

in SE , then H[D] . We do the proof by induction on

dep .

An Improvement on Sub-Herbrand Universe Computation The Artificial Intelligence Journal, 2007, Volume 1 17

 Basically, dep = 1, is a constant. By Lemma 5,

c C[D] , by Algorithm 6, H[D] .

 Assume that the above statement holds when dep = i,

1 i t, show that it holds when dep = t+1.

 Without loss of generality, suppose that = f(1 , …,

u), where dep j t, 1 j u. By the induction hypothe-

sis, j H[D j] ; By Lemma 5, f F[D] ; and by Algo-

rithm 6, f(1 , …, u) C[D] . That is, H[D]

holds for dep = t+1. Therefore, each clause in SE is an

SHU ground instance of some clause in S.

 Theorem 1 (Correctness). A set S of clauses is unsatis-

fiable if and only if there is a finite unsatisfiable set S* of

the SHU ground instances of clauses of S.

 Proof. () Suppose that S is unsatisfiable. Then by the

algorithm given in Algorithm 7, we can derive an unsatis-

fiable set SE of ground instances of clauses of S. By Lemma

6, each clause of SE is an SHU ground instance of some

clause of S. Let S* = SE ; then S* is an unsatisfiable set of

SHU ground instances of clauses of S. () Suppose that

there is a finite unsatisfiable set S* of SHU ground instances

of clauses of S. By Lemma 3, each SHU ground instance

clause of S is a ground instance clause of S, by Herbrand's

theorem, S is unsatisfiable.

EXPERIMENTAL RESULTS

 The reason that the previous algorithm is inefficient is

that for calculating each SHU in a given clause set S, it proc-

esses all clauses in the given problem once. During process-

ing, it matches the argument under considering to each ar-

gument in the problem. Suppose that there are m SHUs and n

arguments in S, then the number of matching times will be

m n. When m and n are large, it will take a long time to

complete calculation of SHUs. On the other hand, the pro-

posed algorithm is efficient since it calculates all SHUs in a

problem by processing each clause in the problem only once.

It calculates provisional SHUs for each clause independently,

and then combines those provisional SHUs that are corre-

sponding to SD arguments. Suppose that there are k clauses

in S, then the average number of arguments in each clause

will be n/k. Suppose further that there are averagely h SHUs

in each clause, where h m, then the number of the argu-

ment match in the proposed algorithm will be h n/k. Since

h is usually much smaller m, the number of matching times

in the proposed algorithm is at least k times least than that in

the previous algorithm.

 There are 8013 problems in the TPTP library version

3.1.1. Among them, 4365 problems are non-range-restricted.

The number of the problems from which 2 or more SHUs

can be derived by our approach is 709. The maximum num-

ber of arguments in a problem is 1542050 (SYN826-1), and

the average number of arguments in all problems is 26131.

The maximum number of clauses in a problem is 2004

(SYN826-1), and the average number of clauses in all prob-

lems is 128.

 We implemented the previous algorithm and the pro-

posed algorithm in SCIS Prolog, and run them on all 709

problems on an Intel PentiumIII/980MHZ workstation,

512MB. The result of the two algorithms is the same for

each problem. The numbers of transferred problems for the

two algorithms in a limited time 2, 5, 10, 50, 100, 200, 300

seconds, respectively, are shown in Table 1.

Table 1. Experimental Results: The Number of Problems

Solved Within Various Limited Times

Running Time (sec) 2 5 10 50 100 200 300

The previous algorithm 404 579 609 634 642 646 654

The proposed algorithm 637 663 681 691 694 707 709

Table 2. Execution Time Versus the Number of Arguments

The Number of Arguments The Number of Problems The Previous Algorithm (sec) The Proposed Algorithm (sec)

 0 10000 642 3.66 1.43

 10001 20000 8 21.45 2.07

 20001 30000 5 455.64 2.43

 30001 40000 0

 40001 50000 9 4518.87 4.27

 50001 60000 1 > 10000.00 6.56

 60001 70000 10 > 10000.00 7.35

 70001 80000 3 > 10000.00 8.42

 80001 200000 5 > 10000.00 13.07

 200001 500000 9 > 10000.00 31.18

 500001 1000000 15 > 10000.00 147.46

1000001 1600000 2 > 10000.00 244.34

18 The Open Artificial Intelligence Journal, 2007, Volume 1 He et al.

 The execution time versus the number of arguments in a

problem for the two algorithms is shown in Table 2, where

the time limitation is 10000 seconds. We can find that the

previous algorithm could not give a result in the limited time

when the number of arguments is larger than 50000, and the

proposed algorithm can give results for all problems within

250 seconds.

CONCLUSION

 In this paper, we proposed an efficient algorithm for cal-

culating sub-Herbrand universes in a clause set. The experi-

mental results on theorem proving benchmark problems

demonstrated that the proposed algorithm is much efficient

than the previous one.

 However, we could not give the exactly complexity

analysis for the two algorithms. It remains for future work.

ACKNOWLEDGEMENTS

 This work was supported in part by The TOYOAKI

Scholarship Foundation, and the Grants-in-Aid for Scientific

Research, Japan Society for the Promotion of Science.

REFERENCES

[1] J. Herbrand, “Recherches sur la théorie de la demonstration”, PhD
thesis, University of Paris, 1930.

[2] P.C. Gilmore, “A proof method for quantification theory: Its justi-
fication and realizaéon”, IBM J. Res. Develop., pp.28-35, 1960.

[3] Y. Chao, L. He, Z. Shi, T. Nakamura, K. Suzuki, and H. Itoh, “An
Improvement of Herbrand Theorem and Its Application to Model

Generation Theorem Proving”, J. Comp. Sci. Technol., Vol. 22, No.
4, pp.541-553, 2007.

[4] R. Manthey, and F. Bry, “SATCHMO: a theorem prover imple-
mented in prolog”, Proceedings of 9th Intl. Conf. on Automated

Deduction, Argonne, Illinois, USA, 1988, pp. 415-434.
[5] L. He, “I-SATCHMO: an Improvement of SATCHMO”, J. Auto-

mated Reasoning, 27, pp. 313-322, 2001.
[6] L. He, Y. Chao, T. Nakamura, and Itoh H, “R-SATCHMO: Re-

finements on I-SATCHMO”, J. Logic Comput., Vol. 14, pp.117-
143, 2004.

Received: August 15, 2007 Revised: November 7, 2007 Accepted: November 12, 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

