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An automated method for evaluating the image quality of calcified plaques with respect to motion
artifacts in noncontrast-enhanced cardiac computed tomography �CT� images is introduced. This
method involves using linear regression �LR� and artificial neural network �ANN� regression mod-
els for predicting two patient-specific, region-of-interest-specific, reconstruction-specific and tem-
poral phase-specific image quality indices. The first is a plaque motion index, which is derived
from the actual trajectory of the calcified plaque and is represented on a continuous scale. The
second is an assessability index, which reflects the degree to which a calcified plaque is affected by
motion artifacts, and is represented on an ordinal five-point scale. Two sets of assessability indices
were provided independently by two radiologists experienced in evaluating cardiac CT images.
Inputs for the regression models were selected from 12 features characterizing the dynamic, mor-
phological, and intensity-based properties of the calcified plaques. Whereas LR-velocity �LR-V�
used only a single feature �three-dimensional velocity�, the LR-multiple �LR-M� and ANN regres-
sion models used the same subset of these 12 features selected through stepwise regression. The
regression models were parameterized and evaluated using a database of simulated calcified plaque
images from the dynamic NCAT phantom involving nine heart rate/multi-sector gating combina-
tions and 40 cardiac phases covering two cardiac cycles. Six calcified plaques were used for the
plaque motion indices and three calcified plaques were used for both sets of assessability indices. In
one configuration, images from the second cardiac cycle were used for feature selection and re-
gression model parameterization, whereas images from the first cardiac cycle were used for testing.
With this configuration, repeated measures concordance correlation coefficients �CCCs� and asso-
ciated 95% confidence intervals for the LR-V, LR-M, and ANN were 0.817 �0.785, 0.848�, 0.894
�0.869, 0.916�, and 0.917 �0.892, 0.936� for the plaque motion indices. For the two sets of assess-
ability indices, CCC values for the ANN model were 0.843 �0.791, 0.877� and 0.793 �0.747, 0.828�.
These two CCC values were statistically greater than the CCC value of 0.689 �0.648, 0.727�, which
was obtained by comparing the two sets of assessability indices with each other. These preliminary
results suggest that the variabilities of assessability indices provided by regression models can lie
within the variabilities of the indices assigned by independent observers. Thus, the potential exists
for using regression models and assessability indices for determining optimal phases for cardiac CT
image interpretation. © 2007 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2804718�
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I. INTRODUCTION

In recent years, cardiac multidetector computed tomography
�CT� has been promoted as a next generation modality for
diagnosing patients with coronary artery disease in an effi-
cient and noninvasive manner. However, even with the re-
cent advancements in technology such as the introduction of
64-slice and dual-source scanners,1,2 cardiac CT images are
often plagued by motion artifacts. Artifacts due to cardiac
and respiratory motion may degrade image quality such that
the sharp delineation of the coronary arteries is lost. As a
result, physicians are responsible for not only detecting a
lesion, but also determining whether the quality of an image

is sufficient for evaluating coronary structures in light of mo-
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tion artifacts. The importance of accurately evaluating the
quality of images with respect to motion artifacts is high-
lighted by studies, which have shown that motion artifacts
can increase the variability of coronary artery calcium
scores3–6 and reduce the diagnostic performance of cardiac
CT for the detection of stenotic coronary lesions.7–9

The primary task of evaluating image quality with respect
to motion artifacts is especially challenging. First, this task is
subjective, and dependent on a physician’s perception of
whether the motion artifacts affecting the coronary structure
would hinder his or her ability to arrive at an accurate clini-
cal diagnosis. Since perceptions vary among different physi-

cians and even within a single physician over time, inter- and
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intra-observer variability may become issues. Second, this
task is potentially time consuming. This is due in part to the
task’s subjective nature, and also to the secondary task of
analyzing images of the same coronary structure at multiple
cardiac phases if the initial image is deemed to have insuffi-
cient image quality. In other words, the primary task often
leads to the secondary task of finding optimal phases for
image interpretation.

Numerous studies have been performed that provide
guidelines for rating the quality of images with respect to the
types of motion artifacts affecting a coronary structure.10–13

These studies commonly propose image quality rating scales,
which in some cases span from 1 �no motion artifacts� to 5
�severe motion artifacts�. In one study on rating images of
calcified plaques in noncontrast-enhanced CT images,
plaques with tail-shaped artifacts are given a rating of 3,
whereas plaques with star-shaped artifacts are given a rating
of 4.6 These studies are useful in that standards for rating the
quality of images are explicitly stated in terms of the types of
motion artifacts that are present.

However, since the characterizations of motion artifacts
are largely descriptive, physicians may have different per-
ceptions on how these motion artifacts affect the overall
quality of a given image. Thus, if the motion artifacts affect-
ing a plaque contain characteristics from two ratings, such as
a plaque with one long tail �rating=3� but smaller “tentacles”
that may qualify it is as star-shaped �rating=4�, it is entirely
possible that two physicians may arrive at different ratings.
As a result, image quality rating scales still retain an element
of subjectivity. Although “good” inter-observer agreeability
may be obtained for physicians who are experienced in read-
ing cardiac CT images,13,14 it may suffer for those who are
not as experienced in characterizing motion artifacts.

With respect to the secondary task of finding optimal
phases for image interpretation, many studies publish opti-
mal phases for analyzing coronary structures based on image
quality rating schemes applied to a large database of patient
images.11–13 Although the optimal phases suggested by these
studies are useful for the majority of the patient population,
they may find limited applicability for critically ill patients
with high and/or arrhythmic heart rates or those unable to
maintain adequate breath holds. For these cases, physicians
must often undertake the time-consuming task of analyzing
images at multiple phases in order to find images of accept-
able quality.

Methods for selecting optimal phases based on computer-
generated indices reflecting states of high or low cardiac mo-
tion also have been developed. These methods are useful in
that they can provide suggested phases that are specific for a
given patient and scan, and may be used instead of electro-
cardiogram data for phase-correlated image
reconstruction.15–17 However, since these methods are based
on obtaining global indices reflective of the amount of mo-
tion contamination of an entire image volume or across an
entire transverse slice, they may not reflect the true motion

characteristics of specific coronary segments.
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Methods which select cardiac phases based on the veloci-
ties of well-known coronary land-marks also have been
developed.18,19 These methods are advantageous in that sug-
gested phases are selected based on the dynamic character-
istics �lowest mean velocities� of specific coronary land-
marks within a given patient. However, the manner in which
motion artifacts manifest themselves is not solely dependent
on mean velocity. Instead, motion artifacts are dependent on
a myriad of factors including the relations of the dynamic
trajectories of a moving object to the gantry angles used for
reconstruction. In fact, our studies have shown that, in some
cases, images of calcified plaques with moderate mean ve-
locities exhibit less motion artifacts than images of plaques
with lower mean velocities.

Therefore, efficient methods for characterizing cardiac CT
images with respect to motion artifacts based on multiple
quantitative indices are needed. If such methods can provide
image quality ratings that can closely mimic those provided
by physicians who are experts in evaluating cardiac CT im-
ages, these methods may be implemented as potentially more
consistent and efficient ways of accomplishing the primary
task of evaluating image quality using the implicit rating
patterns established by these experts. Moreover, these meth-
ods may be applied to the secondary task of determining
optimal phases for interpreting cardiac CT images in a much
less time-consuming manner.

In a previous publication, we have presented the use of 12
features �quantitative indices� for characterizing motion-
contaminated calcified plaques in noncontrast-enhanced car-
diac CT images.20 These features include two dynamic fea-
tures �e.g., three-dimensional �3D� velocity�, six
morphological features �e.g., irregularity�, and four intensity-
based features �e.g., mean intensity�. Although individual
features, such as 3D velocity, may be imperfect descriptors
of motion artifacts in particular and the diagnostic utility of
the image in general, linear regression �LR� and artificial
neural network �ANN� regression models may be used to
merge these features into comprehensive indices. These com-
prehensive indices, when based on physicians’ perceptions of
image quality with respect to motion artifacts, potentially can
be used to characterize the amount of motion contamination
affecting a calcified plaque in a given image as well as select
optimal phases for image interpretation in a more consistent
and less time-consuming manner. ANN classifiers have been
used in many computer-aided diagnosis schemes that involve
estimating the probability of malignancy of radiological
lesions.21–24

The purpose of this research is to develop an automated
computerized scheme for evaluating calcified plaques in
noncontrast-enhanced cardiac CT images with respect to mo-
tion artifacts. This scheme will be based on using LR and
ANN regression models for merging the temporal phase-
specific dynamic, morphological, and intensity-based fea-
tures that characterize motion artifacts affecting a calcified
plaque within a given region-of-interest �ROI� image. An
automated method for obtaining these features directly from
projection data through the rapid phase-correlated ROI �RP-

ROI� tracking algorithm as well as detailed descriptions of
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these features are included in Ref. 20. In addition to these
features, additional fixed parameters including patient-
specific �e.g., heart rate� and reconstruction-specific �e.g.,
number of sectors for gating� values also will be included in
the models. The regression models will provide two patient-
specific, ROI-specific, reconstruction-specific and temporal
phase-specific indices: a continuous plaque motion index de-
rived from the actual trajectory of the plaque, as well as an
assessability index that is analogous to the five-point image
quality rating scales �e.g., 1=excellent: minimal motion arti-
facts; 5=poor: severe motion artifacts� used in previous stud-
ies. The assessability index will reflect the degree to which a
calcified plaque within a ROI image is affected by motion
artifacts. In addition to developing and evaluating the perfor-
mance of this scheme, we will examine the potential of using
this scheme to determine optimal phases for interpreting car-
diac CT images.

This paper is organized as follows. In Sec. II, the relevant
materials and methods for developing and evaluating the
proposed scheme are discussed. In Sec. III, the results of the
proposed experiments are presented. A discussion of the re-
sults as well as implications of this research are included in
Sec. IV.

II. MATERIALS AND METHODS

The flow chart for the computerized scheme is given in

FIG. 1. Flow chart for the computerized assessment of calcified plaques. The
dotted square encompasses components of the rapid phase-correlated ROI
�RP-ROI� tracking algorithm �Ref. 20�. Mean feature values were calculated
across different plaques. LR-V, LR-M, and ANN stand for linear regression-
velocity, linear regression-multiple, and artificial neural network,
respectively.
Fig. 1. In short, images of calcified plaques were recon-
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structed and segmented using the RP-ROI algorithm.20 Fea-
tures were extracted from these images, and then selected
through a stepwise regression method. Then, LR and ANN
regression models were used to predict the plaque motion
indices and assessability indices. The performances of the
regression models in producing accurate indices were then
evaluated.

II.A. Image database

A database of 2160 simulated images of six calcified
coronary plaques from the NURBS-based cardiac-torso
�NCAT� phantom25–28 was used in this study. Two of these
plaques �LAD1 and LAD2� were extracted from the left an-
terior descending artery; one �LCX� was obtained from the
left circumflex artery; and three �RCA1, RCA2, and RCA3�
were obtained from the right coronary arteries. The LAD2
and RCA1 plaques are shown in Fig. 2. For each plaque, 360
images were reconstructed at nine heart rate/multi-sector gat-
ing combinations. These nine combinations spanned four
heart rates of 50, 66, 80, and 90 bpm. Single-sector �G1�
gating was used for all heart rates, and two-sector �G2� and
three-sector �G3� gating were implemented at and above
heart rates of 66 and 80 bpm, respectively. Forty phase-
correlated images covering two cardiac cycles at 5% R-R
intervals were obtained for each calcified plaque and heart
rate/gating combination. All images were reconstructed on a
cubic ROI. Each edge of the ROI contained 62 voxels and
spanned 24.22 mm. The rapid phase-correlated ROI �RP-
ROI� tracking algorithm was used to obtain all reconstructed
images in an automated fashion.20

II.B. Image features

Twelve features were extracted from each of these images
using the methodology provided in Ref. 20. These features,
which are listed in Table I, were classified into the following
three categories of dynamic, morphological, and intensity-
based features. Plaque 3D velocity �VEL� and 3D accelera-
tion �ACC� were the dynamic features. Morphological fea-
tures included edge-based volume �VOL-E�, threshold-based

FIG. 2. Transverse slices of the NCAT phantom through the following cal-
cified plaques: �a� LAD2 and �b� RCA1. In each image, a solid white arrow
points to the calcified plaque. L: 50 HU/W: 400 HU.
volume �VOL-T�, sphericity �SPHER�, irregularity �IRREG�,
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average margin gradient �MG�, and variance of margin gra-
dient �VMG�. The intensity-based features consisted of
maximum intensity �MAX INT�, mean intensity �MEAN
INT�, minimum intensity �MIN INT�, and the standard de-
viation of intensity �STD INT�. Note that square roots of the
3D velocity and 3D acceleration features, as well as the
square of the sphericity feature, were used, since a previous
study had shown that these transformations improved the
linearity of the relationships between these features and the
plaque motion index described below.20

II.C. Ground truths

II.C.1. Plaque motion index

For a plaque image reconstructed at a given cardiac phase
�̄, the plaque motion index was defined as the maximum
distance between any two points of the actual plaque trajec-
tory mapped out over the phase interval required for recon-
struction �single-sector, two-sector, or three-sector� divided
by the time window for single-sector short-scan
reconstruction.20 Since a phantom was used for this study,
the trajectory of the plaque was known for all phases. The
motion index was calculated for images from all six plaques
in the database.

II.C.2. Assessability index

Assessability indices were assigned by two independent
radiologists experienced in examining cardiac CT images,
and ranged on an ordinal scale from one to five as shown in
Table II. A score of one referred to images of excellent qual-
ity, in which the margins of the calcified plaques were well
defined and no motion artifacts were apparent. A score of
two signified good quality images with well-defined margins
and minimal motion artifacts, such as minor blurring. A score
of three was assigned to moderate quality images, in which
calcified plaques were clearly visible but were affected by
moderately sized tail-shaped artifacts. A score of four was
given to images of calcified plaques that had poorly defined

TABLE I. Twelve features characterizing the motion-contaminated calcified
plaques.

Feature Feature type Feature description

VEL Dynamic 3D Velocity
ACC Dynamic 3D Acceleration

VOL-E Morphological Edge-based volume
VOL-T Morphological Threshold-based volume
SPHER Morphological Sphericity
IRREG Morphological Irregularity

MG Morphological Margin gradient
VMG Morphological Variance of margin

Gradient
MAX INT Intensity-based Maximum intensity

MEAN INT Intensity-based Mean intensity
MIN INT Intensity-based Minimum intensity
STD INT Intensity-based Standard deviation of

intensity
margins and more severe tail-shaped and smearing artifacts.
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A score of five was assigned to images of calcified plaques
that were affected by such excessive motion artifacts that the
plaques became fragmented into rather disjointed regions.

Each of the two radiologists provided a separate set of
assessability indices for 540 images corresponding to the
first cardiac cycle of the LAD2, LCX, and RCA1 plaques.
For each plaque, 180 images covering all nine heart rate/
gating combinations were rated. The radiologists were pre-
sented with images at separate sessions on a computerized
interface developed in our lab. Within this interface, images
were presented in a random fashion across the three plaques,
nine heart rate/gating combinations, and 20 cardiac phases.
The radiologists were able to window the images and extract
attenuation values in Hounsfeld Units �HU� from all of the
voxels within the images. However, they were not provided

FIG. 3. Ordinal assessability indices and continuous plaque motion indices.
Relationship between the set of assessability indices from observer one and
the continuous plaque motion index. The point-polyserial coefficient be-

TABLE II. Assessability indices and representative examples.
tween the two indices was 0.798.
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with any other information. In this article, the two sets of
assessability indices were designated as sets from observer
one and observer two.

In order to double the number of images with assessabil-
ity indices for this study, assessability indices assigned to
images within the first cardiac cycle were directly mapped to
those corresponding to the second cardiac cycle. As a result,
all 1080 images corresponding to the LAD2, LCX, and
RCA1 plaques had assessability indices. Although slight
variations in indices may have existed for cases in the second
cardiac cycle, it is important to note that plaque motion in-
dices of corresponding cases between these two cycles
should be identical.

II.C.3. Truth comparisons

Point-polyserial correlation coefficients29 between the
continuous plaque motion index and each set of assessability
indices were 0.798 and 0.767. Both correlations had p values
of less than 0.01 with respect to null hypotheses of zero
correlations. However, a given assessability index value of-
ten corresponded to a wide range of motion indices, as
shown for the case of observer one in Fig. 3. In terms of the
agreeability between the two sets of assessability indices pro-
vided by the two observers, a repeated measures concor-
dance correlation coefficient �CCC� and associated 95%
bootstarp confidence interval of 0.689 �0.648, 0.727� was
obtained.30–32 As discussed in Sec. II G 1, this statistic was
used because it was able to take into account the clustered
nature of the feature and truth values, in which all values
corresponding to a given plaque were considered repeated
measurements and therefore inherently correlated. The mean
and standard deviation of the differences in assessability in-
dices between observers one and two were also calculated
and determined to be −0.541±0.667. Although the assess-

TABLE III. Table showing how the database of plaque images was divided
into feature selection, training, and testing groups based on cardiac cycle. In
configurations C1 and C2, images in the testing group were taken from the
first and second cardiac cycles, respectively.

Group C1 C2

Feature selection 2nd 1st
Training 2nd 1st
Testing 1st 2nd
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ability indices assigned by the two observers were somewhat
precise, the indices assigned by observer one were lower on
average than those from observer two.

II.D. Experimental design

II.D.1. Experiment A: Prediction of plaque motion
indices

The complete database involving all six calcified plaques
�2160 images� was divided into three groups for purposes of
feature selection, training �parameterization� and testing of
the regression models. The following two configurations
shown in Table III were used. In the first configuration �C1�,
the feature selection and training groups consisted of the
1080 images corresponding to the second cardiac cycle,
whereas the testing group consisted of all 1080 images cor-
responding to the first cardiac cycle. For the cases within the
second cardiac cycle, one-quarter of the cases were selected
for feature selection and three-quarters of the cases were
used for training. In the second configuration �C2�, associa-
tions between the three groups and two cardiac cycles were
reversed.

II.D.2. Experiment B: Prediction of observer-
assigned assessability indices

All 1080 images involving the LAD2, LCX, and RCA1
plaques were divided into training and testing groups based
on the C1 and C2 configurations discussed above. However,
since the feature selection results from the previous experi-
ment �experiment A� were used for this experiment, the fea-
ture selection groups were merged into the training groups.
The two sets of assessability indices provided by the two
radiologists were used as separate sets of truths so that the
robustness of the regression models against different truths
could be evaluated.

II.D.3. Agreeability of feature values over both
cardiac cycles

Since the training and testing groups discussed above dif-
fered solely in terms of cardiac cycle, differences of motion
artifacts and feature values between the two cardiac cycles
were evaluated. As seen in Fig. 4, motion artifacts and fea-
ture values of the RCA1 plaque �H66/G1� at corresponding
phases of the %R-R interval often differed quite noticeably
between the two cardiac cycles. Repeated measures CCCs

FIG. 4. Reconstructions, selected feature values, and
truth values for images of the RCA1 plaque �H66/G1�
at selected cardiac phases �̄ spanning two cardiac
cycles. Values for the 3D velocity VEL �mm/s�, edge-
based volume VOL-E �mm3�, mean intensity MEAN
INT �HU�, and average margin gradient MG features
are given. Truths include the plaque motion index
�mm/s� and the two sets of assessability indices. Note
that assessability indices assigned to the first five im-
ages on the left were mapped to the corresponding five
images on the right.
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comparing feature values from all cases in the first cardiac
cycle with those from the second were also calculated. As
shown in Table IV, the seven features of edge-based volume,
threshold-based volume, sphericity, irregularity, maximum
intensity, mean intensity, and standard deviation of intensity
had repeated measures CCCs greater than or equal to 0.866.
The five features of 3D velocity, 3D acceleration, average
margin gradient, variance of margin gradient, and minimum
intensity had CCCs less than or equal to 0.620. The CCC for
the plaque motion index was 0.992.

II.E. Feature selection

Input features for the LR-multiple �LR-M� and ANN re-
gression models discussed below were selected from the 12
available features by applying a stepwise regression
method33,34 to the feature selection databases. In the stepwise
regression method, the continuous plaque motion index was
modeled as the dependent variable. The independent vari-
ables consisted of the subset of 12 features selected in and
out of the regression model as well as seven additional pa-
rameters. Two of these were fixed parameters of patient heart
rate and the number of sectors used for gating �1, 2, 3�. An
additional five binary-valued dummy coded variables repre-
senting the six plaques were used to take into account differ-
ences of mean feature values across the six plaques.35 These
seven parameters were retained in the stepwise regression
model over all iterations.

Since the stepwise regression model can produce variable
results depending on the data, this method was repeated 5000
times through a bootstrap resampling scheme, in which cases
from the feature selection databases discussed above were
sampled with replacement.36 For each configuration, the fea-
ture combination selected with the greatest frequency was
used in the LR-M and ANN regression models. In order to
determine how strongly the selected features correlated with
each other, partial correlation coefficients adjusted for heart
rate, number of sectors for gating, and mean feature values
for all possible pairs of selected features were analyzed.20

II.F. Regression models

Two implementations of a linear regression �LR� model
and one implementation of an ANN regression model were

TABLE IV. Repeated measures concordance correlation coefficients �CCC�
for individual features comparing cases from all six plaques obtained during
the first cardiac cycle with those obtained from the second. The CCC for the
plaque motion index was 0.992.

Feature CCC Feature CCC

VEL 0.517 ACC 0.620
VOL-E 0.887 IRREG 0.866
VOL-T 0.953 MG 0.588
SPHER 0.906 VMG 0.442

MAX INT 0.928 MIN INT 0.497
MEAN INT 0.954 STD INT 0.929
used for predicting plaque motion indices and assessability
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indices. With respect to the linear regression model,35 LR-
velocity �LR-V� used the 3D velocity feature as its key in-
dependent variable, whereas LR-multiple �LR-M� used the
feature combinations that were selected with the stepwise
regression method discussed above. The ANN regression
model37 also used these same feature combinations.

The three regressions were parametrized using the train-
ing cases, and evaluated with the testing cases. Fixed param-
eters of heart rate, number of gated sectors, as well as mean
feature values for a given plaque, heart rate, and gating com-
bination were included as independent variables in order to
adjust for these covariates. Mean feature values were in-
cluded only for those features implemented in a given regres-
sion model. Furthermore, separate mean feature values were
calculated for images in the training and testing groups.
Dummy codes were not used in order to ensure that regres-
sion models parametrized with one subset of plaque images
could be applied to another subset of images from different
plaques.

II.F.1. Linear regression models

For the continuous plaque motion index, both LR-V and
LR-M were based on ordinary least squares regression. For
the assessability indices, the LR-V and LR-M used ordinal
logistic regression formulated in terms of the proportional
odds model. Since assessability indices represented an ordi-
nal dependent variable, the ordinal logistic regression model
was better suited for predicting assessability indices.35,38,39

II.F.2. Artificial neural network regression

The ANN regression model37 was used because this
model was capable of mapping local nonlinearities between
the selected features and a given truth. The ANN regression
model consisted of a three-layer backpropagation network
with a sigmoidal activation function in the hidden layer and
a linear activation function in the output layer. The linear
output activation function was used, because an ANN using
this type of activation function was better capable of repro-
ducing the entire range of output values in regression tasks.
For an ANN with a sigmoidal output activation function,
which is used in classification tasks, output values near both
extremes of this range would have been much more difficult
to reproduce.40 The ANN model used the same independent
variables as the LR-M. Either the plaque motion index or
assessability index served as the dependent variable. The
manner in which the ANN was implemented differed based
on the truth that was used.

For the continuous plaque motion index, an Nin-20-1
�number of input-hidden-output units� structure was utilized.
The Nin input units corresponded to the number of indepen-
dent variables, and the one output unit represented the value
of the continuous truth. The 20 hidden units were used to
generate mappings between the input and output units. The
number of training epochs was set to 2000. The number of
hidden units and the number of training epochs were tuned
using the repeated measures CCC as a metric of regression

model performance.
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The ANN regression models for obtaining assessability
indices used an Nin-10-5 structure. Since assessability indi-
ces were defined on a five-point ordinal scale, the five output
units were used to represent assessability indices using “ther-
mometer” code.41 In thermometer code, each of the five units
represented a binary variable. The value of the assessability
index was equivalent to the number of consecutive nodes
beginning from the first node that were set to one. For ex-
ample, an assessability index of two was represented by the
first two nodes being set to one and the rest of the nodes set
to zero. The ANN regression model was trained with ther-
mometer code using 500 training epochs, and then imple-
mented on the testing database. Since the values for the out-
put units of the testing cases were continuous, these values
first were rounded and then summed up to re-obtain assess-
ability indices on the five-point scale. The values were not
summed and then rounded in order to prevent the accumula-
tion of small deviations from zero and one across the five
nodes from affecting the final result. The ten hidden units
and 500 training epochs were tuned by using the repeated
measures CCC as a metric of regression model performance.
Although the numbers of hidden units and training epochs
were less than those used for the continuous plaque motion
indices, it is important to remember that the assessability
indices were defined on an ordinal scale.

II.G. Evaluation

II.G.1. Performance evaluations of regression
models

The three regressions were evaluated using the repeated
measures concordance correlation coefficient �CCC�30–32 and
metrics from Bland–Altman analysis.42

II.G.1.a. Repeated measures concordance correlation co-
efficient The repeated measures CCC was used to evalu-
ate how well the predicted values for the plaque motion in-
dex and assessability index, as obtained from the three re-
gressions, matched with their respective actual and assigned
values for cases in the testing group. The nonoverlapping
block bootstrap resampling technique43,44 was used to obtain
a mean and 95% confidence interval for each CCC value. In
this re-sampling scheme, 5000 bootstrap samples of nonover-
lapping blocks consisting of images at five consecutive
phases were obtained from both the training and testing
groups. Confidence intervals were computed using the per-
centile method.45,46

In experiment A, which involved the prediction of plaque
motion indices, one CCC value was calculated for each of
the three regressions and two configurations C1 and C2.
Each CCC value was calculated from the 1080 test images
involving all six plaques. For experiment B, which involved
the prediction of assessability indices, two CCC values were
calculated for each of the three regressions and two configu-
rations. The two values corresponded to the sets of assess-
ability indices from observers one and two. All CCC values
in Experiment B were calculated from the 540 test images

corresponding to the LAD2, LCX, and RCA1 plaques. Re-
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peated measures CCCs were also used to compare the per-
formances of the three regressions for each of the nine heart
rate/gating combinations.

II.G.1.b. Bland–Altman analysis The accuracy and pre-
cision of the predicted plaque motion and assessability indi-
ces were calculated using metrics from Bland–Altman analy-
sis in the following manner. First, differences � between the
predicted and actual/assigned values for each truth were cal-
culated. The accuracy was represented as the mean of these
differences, whereas the precision was represented by the
standard deviation of these differences. For the continuous
plaque motion indices, Bland–Altman plots showing the re-
lationships of differences � to the means of the predicted and
actual values were created.42 These plots were not created for
the assessability indices due to their ordinal nature.

II.G.2. Comparative evaluation of predicted indices
and their corresponding images

Individual graphs showing temporal relationships of
plaque motion indices and assessability indices versus car-
diac phase were created for different plaque, heart rate, and
gating combinations. For each combination, predicted mo-
tion and assessability indices were compared with actual mo-
tion and assigned assessability indices, respectively. Images
with low values of plaque motion and/or assessability indices
were of special interest, since these images possibly corre-
sponded to optimal phases for image interpretation.

III. RESULTS

III.A. Feature selection

Table V shows the top three feature combinations selected
by the bootstrapped stepwise regression method discussed in
Sec. II E. For the C1 configuration, the following six features
of 3D velocity, 3D acceleration, edge-based volume,
threshold-based volume, sphericity, and standard deviation of
intensity were selected the greatest number of times �1446
out of 5000 trials�. For the C2 configuration, the following
eight features of 3D velocity, 3D acceleration, edge-based
volume, threshold-based volume, sphericity, mean intensity,
standard deviation of intensity and variance of margin gradi-
ent were selected the greatest number of times �464 out of
5000 trials�.

In terms of correlations between the selected features, the
feature pair of 3D velocity and standard deviation of inten-
sity exhibited the highest partial correlation coefficient in
terms of absolute value of 0.640 for the features selected
from the C1 configuration. For the features selected from the
C2 configuration, the feature pair of mean intensity and stan-
dard deviation of intensity had the highest partial correlation
coefficient in terms of absolute value of 0.744.

III.B. Experiment A: Prediction of plaque motion
indices

In Table VI, repeated measures CCCs are presented for
the three regressions from the C1 and C2 configurations. For

both C1 and C2 configurations, the ANN provided higher
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CCC values than those from the LR-M and LR-V. However,
CCC values between the ANN and LR-M were quite com-
parable. The LR-V, on the other hand, produced much lower
CCC values. For a given regression, the CCC values and
confidence intervals also differed slightly between the C1
and C2 configurations. The different sets of features chosen,
as shown in Table V, and variations in the training and test-
ing cases may have accounted for some of these disparities.

Table VI also provides means and standard deviations of
differences � between predicted and actual plaque motion
indices from the three regressions. Although no distinct
trends were observed in the mean differences, the standard
deviations were the smallest for the ANN and the largest for
the LR-V over both C1 and C2 datasets. The results for the
ANN were the most precise. In the Bland–Altman plots
shown in Fig. 5 for the C1 configuration, the differences �
were more tightly clustered around zero for the ANN and
were more scattered for the LR-V. Also, for the LR-V, the
differences seemed to exhibit a pronounced nonlinear trend
with respect to the mean values of the predicted and actual
motion indices.

Figure 6�a� contains a graph of CCC values for the three
regressions over the nine heart rate/gating combinations for
the C1 configuration. As seen in this figure, the ANN was
associated with the highest CCC values over most combina-

TABLE V. Bootstrap resampling �N=5000� of the step
in Sec. II E. The tables in �a� and �b� show the top t
C1 and C2 configurations, respectively.

Selected features

�a� VEL, ACC, VOL-E, VOL-T, SPHER, ST
VEL, ACC, VOL-E, VOL-T, SPHER, IR
INT
VEL, ACC, VOL-E, VOL-T, SPHER, M
INT
Selected features

�b� VEL, ACC, VOL-E, VOL-T, SPHER, M
INT, VMG
VEL, ACC, VOL-E, VOL-T, SPHER, IR
INT,
STD INT, VMG
VEL, ACC, VOL-T, STD INT

TABLE VI. Experiment A: Regression model performance for the prediction o
�CCC� with 95% confidence intervals, as well as means and standard deviat
and standard deviations of differences � are provided as metrics of accuracy
�LR-V�, linear regression-multiple �LR-M�, and the artificial neural network

Model

CCC

C1 Configuration C2 Config

LR-V 0.817�0.785, 0.848� 0.816 �0.784
LR-M 0.894 �0.869, 0.916� 0.904 �0.885
ANN 0.917 �0.892, 0.936� 0.911 �0.888
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tions. However, the CCC values from the LR-M were quite
comparable, especially for the H80/G2, H80/G3, and
H90/G2 combinations. The LR-V, on the other hand, per-
formed worse than the LR-M over all combinations.

III.C. Experiment B: Prediction of assembility indices

CCC values for both sets of assessability indices are pro-
vided in Table VII. As seen in this table, both LR-M and
ANN were capable of providing indices that matched with
the assessability indices from both sets of observers quite
well. Although mean CCC values for the ANN were greater
than those for the LR-M, the 95% confidence intervals dem-
onstrated considerable overlap for both configurations and
sets of indices. The CCC values for the LR-V, on the other
hand, were lower than those obtained from the other regres-
sions.

In terms of means and standard deviations of differences
� between predicted and assigned assessability indices,
Table VII also shows that all three regressions were associ-
ated with low mean differences for most conditions consid-
ered. In terms of precision, the LR-V tended to exhibit the
largest standard deviations. The standard deviations between
the LR-M and ANN, on the other hand, were much more
comparable.

regression method for feature selection, as discussed
eature combinations selected by this method for the

No. of selected
features Frequency

T 6 1446
, STD 7 454

INT, STD 7 384

No. of selected
features

Frequency

INT, STD 8 464

, MEAN 9 347

4 264

que motion indices. Repeated measures concordance correlation coefficients
of differences � between predicted and actual indices, are included. Means
recision, respectively. Values are included for the linear regression-velocity
N� regressions for the C1 and C2 configurations.

Difference �

n C1 Configuration C2 Configuration

45� 0.074±9.170 0.211±9.232
20� −0.017±6.902 0.070±6.549
31� −0.237±5.598 −0.101±6.116
wise
hree f

D IN
REG

EAN

EAN

REG
f pla
ions
and p
�AN

uratio

, 0.8
, 0.9
, 0.9
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In Figs. 6�b� and 6�c�, graphs of CCC values for both sets
of assessability indices are shown for the nine heart rate/
gating combinations. In both graphs, the performances of the
LR-M and ANN seemed quite comparable. The LR-V, on the
other hand, had the lowest CCC values over all combina-
tions.

In Fig. 7, the percentages of images with specified differ-
ences between ANN-predicted and assigned assessability in-

FIG. 5. Bland–Altman plots of predicted and actual plaque motion indices
for the �a� linear regression-velocity �LR-V�, �b� linear regression-multiple
�LR-M�, and �c� ANN regressions. In each plot, the two dashed lines repre-
sent the 95% confidence interval for the differences in predicted and actual
motion indices.
dices for the two sets of assessability indices under the C1
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and C2 configurations are shown. As seen in this table, the
majority of the images were assigned the correct assessabil-
ity index, whereas most of the images with discrepancies had
differences of −1 or 1. No images had differences of more
than 2 in magnitude.

III.D. Comparative evaluation of predicted indices and
their corresponding images

In Fig. 8, graphs showing the temporal relationships of
ANN-predicted plaque motion indices and ANN-predicted
assessability indices versus cardiac phase are provided for
the LAD2 and RCA1 plaques at 66 bpm.

III.D.1. LAD2 plaque

For the LAD2 plaque at 66 bpm, the predicted plaque
motion indices compared very well with the actual motion
indices for both G1 and G2 cases, as shown in Figs. 8�a� and
8�b�. As seen in these figures, the ANN model was able to

FIG. 6. Bar plots of repeated measures concordance correlation coefficients
�CCC� for �a� predicted and actual plaque motion indices, and predicted and
assigned assessability indices from observers �b� one and �c� two over the
nine heart rate/gating combinations. The darkest bars correspond to LR-V
regression. The semidark bars are associated with LR-M regression. The
lightest bars with the dark hashes correspond to ANN regression.
predict assessability indices that differed from their assigned
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value by a value of one for most cases. The predicted assess-
ability index for image C in panel �b� was two values lower
than the assigned index, although the motion artifacts affect-
ing the plaque did not seem to be much greater in severity.
Images A and E in panel �a� had the lowest predicted assess-
ability indices, and low levels of motion artifacts. For the G2
images in panel �b�, images A, B, D, and E had the lowest
predicted assessability indices, and seemed to exhibit lower
levels of motion artifacts.

TABLE VII. Experiment B: Regression model performance for the prediction
Repeated measures concordance correlation coefficients �CCC� with 95% c
between predicted and assigned indices, are included.

Model

CCC

C1 Configuration C2

�a� LR-V 0.761�0.715, 0.802� 0.72
LR-M 0.834 �0.794, 0.868� 0.78
ANN 0.843 �0.791, 0.877� 0.80

Model

CCC

C1 Configuration C2

�b� LR-V 0.692 �0.643, 0.735� 0.67
LR-M 0.782 �0.738, 0.820� 0.70
ANN 0.793 �0.747, 0.828� 0.74

FIG. 7. Percentages of images �out of 540� with shown differences between
ANN-predicted and assigned assessability indices from observers �a� one
and �b� two. The darkest bars correspond to images from the C1 configura-
tion, and the lighter bars correspond to images from the C2 configuration.

No images had absolute differences that were greater than two.
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III.D.2. RCA1 Plaque

Figures 8�c� and 8�d� contained graphs and reconstruc-
tions of the RCA1 plaque at 66 bpm. Similar to the previous
case, the predicted and assigned assessability indices
matched quite well, especially for the G2 case. Predicted and
assigned assessability indices differed by a value of one at
most. For the G1 case, images B and D in panel �c� had the
lowest predicted assessability indices. These images also
seemed to contain the least amounts of motion artifacts. For
the G2 case, images B and D had the lowest predicted as-
sessability indices and the clearest plaque margins.

IV. DISCUSSION

In this paper, a computerized scheme for evaluating cal-
cified plaques with respect to motion artifacts in noncontrast-
enhanced cardiac CT images has been presented. The linear
regression �LR� and artificial neural network �ANN� regres-
sion models were used to predict the continuous plaque mo-
tion indices and ordinal assessability indices. LR-velocity
�LR-V� used 3D velocity as its main independent variable,
whereas LR-multiple �LR-M� and ANN regressions used
multiple features selected through stepwise regression. The
results of this study show that the ANN provided the most
agreeable plaque motion and assessability indices in terms of
the repeated measures concordance correlation coefficient
�CCC�. Also, this model was the most precise in terms of
having the smallest standard deviations of differences be-
tween the predicted and actual values of these two indices.
However, the LR-M performed quite comparably in predict-
ing both plaque motion and assessability indices. Further-
more, it did not require the additional training time associ-
ated with the ANN model.

The lower performance of the LR-V was expected, since
it only used the 3D velocity feature for predicting motion
and assessability indices. The LR-M and ANN models used
multiple features, which can allow for better predictive per-

two sets of assessability indices provided by observers �a� one and �b� two.
ence intervals, as well as means and standard deviations of differences �

Difference �

figuration C1 Configuration C2 Configuration

75, 0.776� −0.145±0.759 −0.037±0.843
33, 0.827� −0.063±0.606 0.018±0.710
64, 0.846� −0.052±0.582 −0.061±0.682

Difference �

figuration C1 Configuration C2 Configuration

28, 0.717� −0.013±0.712 0.043±0.756
21, 0.762� −0.006±0.586 −0.030±0.686
96, 0.788� 0.007±0.568 0.032±0.660
of the
onfid

Con

7 �0.6
6 �0.7
8 �0.7

Con

6 �0.6
3 �0.6
5 �0.6
formance. The slightly better performance of the ANN with
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FIG. 8. Graphs showing relationships
between assessability indices from ob-
server one and cardiac phase, as well
as plaque motion indices and cardiac
phase, for the �a�-�b� LAD2 plaque at
66 bpm and �c�-�d� RCA1 plaque at
66 bpm. Panels �a� and �c� correspond
to G1 reconstructions, whereas panels
�b� and �d� correspond to G2 recon-
structions. In all plots, the dark solid
lines represent predicted values from
the ANN regression model, and the
light dashed lines represent the actual
motion indices or assigned assessabil-
ity indices.
Medical Physics, Vol. 34, No. 12, December 2007
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respect to the LR-M may be due in part to the ANN’s natural
ability for mapping local nonlinearities between independent
�feature� and dependent �truth� variables.

In terms of assessability indices, separate regression mod-
els were trained for the two sets of indices provided by the
two radiologists. For the C1 configuration, CCC values and
95% confidence intervals for the ANN model were 0.843
�0.791, 0.877� and 0.793 �0.747, 0.828� for the two sets of
indices. These two CCC values were statistically greater than
the CCC value of 0.689 �95% confidence interval �0.648,
0.727��, which was obtained by comparing the two sets of
assessability indices with each other. These preliminary re-
sults suggest that the variabilities of assessability indices as-
signed by the ANN model can lie within the variabilities of
the indices assigned by independent observers.

The graphs depicting temporal relationships between the
continuous plaque motion indices and cardiac phase for dif-
ferent plaques and heart rate/gating combinations �see Fig. 8�
show that the ANN regression model was capable of predict-
ing motion indices that matched with the actual indices quite
well over multiple cardiac phases. For the two-sector �G2�
and three-sector �G3� �not shown� reconstructions, the pre-
dicted motion indices followed the actual indices very
closely. For the single-sector �G1� reconstructions, small de-
viations between the predicted and actual indices slightly
distorted the overall trends of the indices for some plaques.
In terms of the five-point assessability indices, the predicted
indices provided by the ANN model matched the assigned
indices for the majority of the cases �see Fig. 7�. Differences
from the assigned indices usually spanned a factor of one,
although differences of two were found in a smaller percent-
age of cases. Despite these differences, the predicted assess-
ability indices were useful in that cases with lower levels of
motion artifacts could be identified. Our results show that
assessability indices potentially can be used to select optimal
phases for image interpretation.

The regression models achieved better performance in
terms of the repeated measures CCC for the motion indices
than for the assessability indices. One key reason was that
the motion and assessability indices were defined on differ-
ent scales. Since plaque motion indices were defined on a
continuous scale, the computer may have been able to better
differentiate images with more subtle differences in extracted
feature characteristics during parameterization of the regres-
sion models. Assessability indices were provided on a five-
point ordinal scale, and the regression models may not have
been able to differentiate these subtle differences. Second,
the assessability indices assigned by the radiologists con-
tained an extra element of uncertainty due to the subjective
nature of rating images with respect to motion artifacts. For a
few cases, this uncertainty may have presented itself as in-
consistent ratings between images with similar types and ex-
tents of motion artifacts.

The following limitations should be noted when interpret-
ing the results of this study. First, although this study showed
that the LR-M and ANN regression models could assign ac-
curate motion and assessability indices to different plaques at

different heart rate/gating combinations, the feature selec-
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tion, training, and testing groups used in this study were not
completely independent. These groups drew from repeated
measurements of the same six plaques obtained using nine
heart rate/gating combinations over two cardiac cycles. The
main difference between the cases in the training and testing
groups were that they were drawn from different cardiac
cycles. It is shown in Table IV and Fig. 4 that the features at
the same %R-R intervals between the two cardiac cycles
were related but not absolutely agreeable. However, addi-
tional studies involving truly independent training and test-
ing groups of plaques with widely varying properties such as
size, shape, and intensity are needed in order to validate the
proposed techniques. Given that the regression models in this
study used between six and eight independent features, re-
peated measurements of over 100 independent plaque
samples may be needed to build regression models that can
handle completely independent training and testing groups.

A second limitation is that both the LR-M and ANN re-
gression models used the same set of features selected
through stepwise regression. ANN-specific methods for vari-
able selection, such as node pruning,47 may be well suited for
larger plaque databases. A third limitation is that this scheme
was applied to simulated calcified plaque images instead of
clinical images.

In terms of potential clinical applications, one key benefit
of this proposed scheme, which integrates image reconstruc-
tion, image segmentation, feature selection, and regression,
is that it is completely automated. The only required user
interaction is the specification of the plaque location at an
initial cardiac phase. As described in Ref. 20, the rapid
phase-correlated ROI �RP-ROI� tracking algorithm uses this
location to produce phase-correlated reconstructions of the
plaque through advancing cardiac phases. From these recon-
structions, the computer can automatically segment the im-
ages, extract the relevant features, and provide values of mo-
tion indices or assessability indices based on already trained
regression models. For the assessability indices, if the phy-
sicians who assigned these indices are expert observers, the
assessability indices provided by the ANN model potentially
may be used as an aid by other physicians for evaluating
image quality with respect to motion artifacts or finding op-
timal phases for image interpretation.

The proposed scheme potentially can find immediate ap-
plicability for coronary calcium scans obtained with retro-
spective gating, such as those using low-dose protocols.48

Once a physician specifies the location of the calcified
plaque at an initial cardiac phase, the scheme can output
graphs showing the temporal relationships of motion indices
or assessability indices to cardiac phase, as shown in Fig. 8.
In addition, a select group of images with low motion indices
or assessability indices can be displayed on the screen. The
physician would only need to evaluate a few images with
low assessability indices rather than search through images
at multiple cardiac phases in order to find diagnostic images.
Substantial time savings potentially can be achieved.

The greatest clinical benefit of the proposed scheme may
be for patients with highly varying or arrhythmic heart rates.

Since current suggestions of optimal phase for image inter-
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pretation, such as phases in mid-diastole for lower heart rate
patients and late systole for higher heart rate patients,12 may
not apply to these cases, physicians must often spend a great
deal of time searching for these optimal phases. By using the
proposed computerized scheme, which assigns assessability
indices on an image-by-image basis, the physicians could
obtain optimal phases for evaluating calcified coronary
plaques much more quickly. Assessability indices have the
potential to become a patient-specific, ROI-specific,
reconstruction-specific and temporal phase-specific method
for evaluating image quality with respect to motion artifacts.

Our future work involves applying our methodology to
clinical images of calcified plaques at multiple cardiac
phases, and validating this methodology using independent
training and testing databases. Furthermore, our group will
attempt to extend this proposed framework for evaluating
contrast-enhanced coronary arteries in CT coronary
angiography.

V. CONCLUSION

We have investigated computerized image analysis meth-
ods, which output assessability indices characterizing the
levels of motion artifacts affecting calcified plaques in
noncontrast-enhanced cardiac CT scans. The results of this
study suggest that the assessability indices obtained from
these methods fall within the range of inter-observer variabil-
ity. Furthermore, output from such eventual online analyses
of computer-extracted features is expected to provide opti-
mal phases for the interpretation of calcified plaques in car-
diac CT.
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