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In coronary calcium scoring, motion artifacts affecting calcified plaques are commonly character-
ized using descriptive terms, which incorporate an element of subjectivity in their interpretations.
Quantitative indices may improve the objective characterization of these motion artifacts. In this
paper, an automated method for generating 12 quantitative indices, i.e., features that characterize
the motion artifacts affecting calcified plaques, is presented. This method consists of using the rapid
phase-correlated region-of-interest �ROI� tracking algorithm for reconstructing ROI images of cal-
cified plaques automatically from the projection data obtained during a cardiac scan, and applying
methods for extracting features from these images. The 12 features include two dynamic, six
morphological, and four intensity-based features. The two dynamic features are three-dimensional
�3D� velocity and 3D acceleration. The six morphological features include edge-based volume,
threshold-based volume, sphericity, irregularity, average margin gradient, and variance of margin
gradient. The four intensity-based features are maximum intensity, mean intensity, minimum inten-
sity, and standard deviation of intensity. The 12 features were extracted from 54 reconstructed sets
of simulated four-dimensional images from the dynamic NCAT phantom involving six calcified
plaques under nine heart rate/multi-sector gating combinations. In order to determine how well the
12 features correlated with a plaque motion index, which was derived from the trajectory of the
plaque, partial correlation coefficients adjusted for heart rate, number of gated sectors, and mean
feature values of the six plaques were calculated for all 12 features. Features exhibiting stronger
correlations ��r�� �0.60,1.00�� with the motion index were 3D velocity, maximum intensity, and
standard deviation of intensity. Features demonstrating stronger correlations ��r�� �0.60,1.00�� with
other features mostly involved intensity-based features. Edge-based volume/irregularity and aver-
age margin gradient/variance of margin gradient were the only two feature pairs out of 12 with
stronger correlations that did not involve intensity-based features. Automatically extracted features
of the motion artifacts affecting calcified plaques in cardiac computed tomography images poten-
tially can be used to develop models for predicting image assessability with respect to motion
artifacts. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2794172�
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I. INTRODUCTION

Recent technological advances in cardiac multidetector com-
puted tomography �CT� have revolutionized cardiac imaging.
Faster gantry rotation times, increased numbers of detector
rows, and reconstruction algorithms incorporating electrocar-
diogram �ECG�-correlated gating1–5 have allowed for the
generation of high quality images containing the entire three-
dimensional �3D� volume of the heart from scan times last-
ing much less than the time of a single breath-hold. In many
cases, the spatial and temporal resolutions of the recon-
structed images are sufficient for the accurate delineation of
coronary structures such as coronary artery segments and
lesions such as noncalcified and calcified plaques. As a re-
sult, cardiac CT represents an emerging modality for appli-
cations such as coronary artery calcium �CAC� scoring and
CT coronary angiography �CTA�.6,7

However, even with these technological advances, image

quality from cardiac CT often suffers from motion artifacts
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due to cardiac and respiratory movements. These motion ar-
tifacts appear because the projection data needed for recon-
structing a cross-sectional image of the heart are not obtained
within a small enough time window. In other words, tempo-
ral resolutions are not sufficient for “freezing” the motion of
the heart, and the inconsistencies in the projection data may
lead to streaks, blurs, positional changes, or general anatomi-
cal distortions in the reconstructed images.8

Motion artifacts are an important issue in cardiac CT be-
cause their presence may adversely affect the analysis of
critical coronary structures. For example, for the case of
CAC scoring, in which the amount of coronary calcium is
quantified from noncontrast-enhanced CT images, motion ar-
tifacts can result in streaks, blurred lesion margins, doublings
and discontinuities within calcified plaques. In CTA, the
blurred margins, streaks, and discontinuities along the ves-
sels from motion artifacts often make the task of detecting

stenotic lesions difficult. Studies have shown that motion ar-
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tifacts can increase the variability of coronary calcium
scores6,9–11 and reduce the diagnostic performance of CTA,
even with recently introduced 64-slice CT scanners.12–15

Since motion artifacts can exhibit such a dramatic effect
on image quality and overall diagnostic performance in car-
diac CT, numerous schemes have been developed that asso-
ciate types of motion artifacts to metrics representing the
overall quality of the image. For example, in a study con-
cerning the reproducibility of CAC scores, a five-point scale
�1=no motion artifacts, 5=severe motion artifacts� was in-
troduced in which calcified plaques with blurred lesion mar-
gins were assigned a score of 2, whereas plaques with tail-
shaped and star-shaped artifacts were given respective scores
of 3 and 4.11

Characterizing motion artifacts in terms of type and extent
in a manner that fits within a designated scheme is not a
straightforward task. For example, physicians may have dif-
ferent thresholds for deciding whether to designate a lesion
margin as blurred. Furthermore, some physicians may be re-
luctant to characterize a calcified plaque exhibiting a small
motion artifact as star-shaped �rating=4� when the extent of
this artifact is much smaller than the large tail-shaped artifact
�rating=3� in another image. Therefore, different physicians
may arrive at different characterizations of the same motion
artifacts affecting a given plaque. The main reasons for these
difficulties are that these schemes use subjective descriptive
terms to characterize motion artifacts, and physicians often
have differing perceptions of how these descriptive terms
relate with overall image quality. In addition, these charac-
terizations are not easily quantifiable, such that the extent of
a particular type of motion artifact commonly is not consid-
ered.

Quantitative indices have been developed and used for
characterizing certain aspects of motion artifacts affecting
coronary structures. In one study, the mean contrast of a
calcified plaque was used for determining optimal phases for
image interpretation.16 In another study, the velocities of in-
dividual coronary landmarks specified by physicians were
used for a similar purpose in CTA.17 The indices used in
these studies are useful, in that they represent quantitative
metrics that provide objective characterizations of motion
artifacts affecting a coronary structure. However, additional
indices that can be used to quantify other aspects of the mo-
tion artifacts, such as morphological image distortions, need
to be developed.

The purpose of this paper is to develop an automated
method for obtaining a comprehensive list of indices, which
will be referred to as features, that can be used to character-
ize the motion artifacts affecting a calcified plaque in
noncontrast-enhanced cardiac CT images. The method in-
cludes both a rapid phase-correlated region-of-interest �RP-
ROI� tracking algorithm for acquiring a four-dimensional
�4D� set of ROI images centered on calcified plaques with
minimal user interaction,18 and mechanisms for segmenting
and extracting features from these plaques.

The features included in this paper can be divided into the

following three categories: dynamic features, morphological
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features, and intensity-based features. These features will
serve as computerized descriptors of a calcified plaque in a
manner analogous to the features used for characterizing ra-
diological lesions in computer-aided diagnosis
applications.19–21 Moreover, since these features can be ex-
tracted from images of plaques at different cardiac phases,
they will be temporally phase-correlated features. The appli-
cation of these features in a computerized scheme for evalu-
ating the quality of calcified plaques in cardiac CT images
with respect to motion artifacts is discussed elsewhere.22

This paper is organized as follows. In Sec. II, the materi-
als and methods are provided. Results are presented in Sec.
III, and a discussion of these results is included in Sec. IV.

II. MATERIALS AND METHODS

In this section, the NURBS-based cardiac-torso �NCAT�
phantom16,23–25 used in the simulation studies is first dis-
cussed. The RP-ROI tracking algorithm for generating a 4D
set of ROI images centered on the calcified plaques and an
edge-based method for segmenting calcified plaques in these
images are then presented. Methods for extracting the 12
features characterizing calcified plaques are described. Fi-
nally, techniques for evaluating these features are discussed.
A simple flow chart of these steps is shown in Fig. 1.

II.A. Materials

II.A.1. NCAT phantom

The digital NCAT phantom was used to produce a tempo-
ral series of 3D attenuation maps of the thorax at 32 cardiac
phases evenly spaced throughout the cardiac cycle.23–25 No
respiratory motion was present, and contrast agent was not
included in the cardiac chambers or coronary vasculature. A
voxel size of 0.6 mm, which falls within the range of spatial

FIG. 1. Comprehensive scheme for obtaining phase-correlated features of
calcified plaques. The dotted square encompasses portions of the scheme
that are part of the rapid phase-correlated ROI �RP-ROI� tracking algorithm,
which generates a 4D set of ROI images centered on calcified plaques.
resolutions for cardiac CT scanners, was used for all maps.
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Generating 3D attenuation maps of the thorax at this voxel
size was extremely computationally demanding, and so the
voxel size was not decreased any further.

Separate attenuation maps were also generated for six cal-
cified coronary plaques. Two were located in the left anterior
descending �LAD� artery; one was located in the left circum-
flex �LCX� artery; and three were present in the right coro-
nary artery �RCA�. These maps were constructed at the same
cardiac phases as those used above for the thorax, but with a
voxel size of 0.2 mm. Since this study was concerned with
characterizing calcified plaques, this higher spatial resolution
was used to decrease the likelihood that discretization errors
from “voxelizing” the plaque prior to projection data acqui-
sition would affect the extracted features. Examples of trans-
verse slices of the NCAT phantom with the calcified plaques
labeled LAD1, LAD2, LCX, RCA1, RCA2, and RCA3 are
shown in Fig. 2.

II.A.2. Projection data acquisition

Projection datasets of the NCAT phantom were acquired
using a circular cone-beam scanning geometry defined by a
focal length of 57 cm, a source-to-detector distance of
104 cm, and a 50 cm reconstruction field of view �FOV�.
The flat panel detector consisted of a 1024 by 84 array with
an isotropic square bin size of 0.54 mm when scaled to iso-
center. The gantry rotation time �RT� was set to 0.4 s.

Projection datasets were acquired at heart rates of 50, 66,
80, and 90 bpm over multiple cardiac cycles. A cardiac phase
delay algorithm17 was incorporated in order to take into ac-
count the effects of different heart rates on the lengths of
phases within the cardiac cycle. Since the attenuation maps
for the thorax and calcified plaque components of the NCAT
phantom were generated at different spatial resolutions, pro-
jection datasets of the thorax and calcified plaques were ac-
quired independently and then summed together. Poisson

6
noise based on an initial intensity of 1.0�10 photons/
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detector element was added to the summed projection
datasets. Photon intensities of similar orders have been used
in other CT simulation studies.26,27

II.B. Rapid phase-correlated ROI „RP-ROI… tracking
algorithm

In this section, an automated method for rapidly acquiring
a temporal series of phase-correlated ROI images centered
on a moving calcified plaque is presented. This method,
which we refer to as the rapid phase-correlated ROI tracking
algorithm, requires two inputs for obtaining a time-resolved
4D set of ROI images. First, the projection dataset is ac-
quired with the calcified plaque remaining in the reconstruc-
table FOV over all cardiac phases of interest. Second, the
user specifies the location �seed point� of the plaque at an
initial phase. The rest of the method for generating the 4D set
of plaque images is automated.18

The RP-ROI algorithm is based on the reconstruction,
segmentation, and seed point definition framework included
in Fig. 1. In short, an initial image of the entire phantom is
reconstructed from the projection dataset at an initial phase.
A seed point is placed by the user on the calcified coronary
plaque. A cubic ROI image centered on the seed point at an
advanced cardiac phase is then obtained by using a recon-
struction algorithm incorporating either single-sector or
multi-sector gating. The calcified plaque is segmented within
this ROI image using edge-based methods. Finally, the center
of mass �geometric center or centroid� of the calcified plaque
is calculated from the segmentation results and defined as the
seed point. The reconstruction, segmentation, and seed point
definition processes are then repeated over advancing cardiac
phases until a 4D dataset of phase-correlated ROI images is
obtained over all phases of interest. The three components
included in the framework are described in more detail

FIG. 2. Transverse slices of the NCAT
phantom through the following calci-
fied plaques: �a� LAD1, �b� LAD2, �c�
LCX, �d� RCA1, �e� RCA2, and �f�
RCA3. In each image, a solid white
arrow points to the calcified plaque. L:
50 HU /W: 400 HU.
below.
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II.B.1. Phase-correlated image reconstruction

Phase-correlated �gated� reconstruction refers to the ac-
quisition of images corresponding to specific phases within
the cardiac cycle. For the RP-ROI algorithm, images are re-
constructed with a weighted filtered backprojection
algorithm.28,29 This algorithm is used instead of the conven-
tional Feldkamp, Davis, and Kress algorithm30,31 because the
weighting function, which takes into account the redundancy
of the projection data in the plane of the circular source
trajectory, is applied after the filtration step. Therefore, the
projection data obtained at a scanning angle need to be fil-
tered only once, even though the filtered data can be used to
reconstruct multiple images over a range of cardiac phases.
As is commonly done in cardiac imaging, a weighting func-
tion, which requires data spanning a short-scan angular range
��=�+fan angle, is used.

The percent R-R interval �%R-R interval� is commonly
used for designating phases within a given cardiac cycle,
which spans one heartbeat and covers phases of cardiac con-
traction �systole� and expansion �diastole�. However, in order
to designate phases across multiple cardiac cycles, our study
uses the symbol �, which is related to the %R-R interval by
the expression %R-R=� mod 1. Thus, cardiac phases with
equivalent %R-R intervals but from different cardiac cycles,
such as phases of �=0.5 and �=1.5, can be differentiated
from one another �see Fig. 3�.

Since each image is reconstructed from a projection data
sector covering a short-scan angular range, each recon-
structed image also corresponds to a short-scan phase inter-
val ��min,�max�, which is centered on the average cardiac
phase �̄= ��min+�max� /2. The average cardiac phase �̄ of a
reconstructed image is referred to as phase for brevity in the
discussions that follow. The range spanned by the phase in-
terval ��=�max−�min corresponds to the time window for
single-sector reconstruction tr=RT��� /2�.

Multi-sector reconstruction is a method commonly used
for improving the temporal resolution and suppressing mo-
tion artifacts for patients with stable heart rates.2–4 This

FIG. 3. Schematic depicting how cardiac phase � is defined with respect to
the %R-R interval over two cardiac cycles. Phases � of 0.5 and 1.5 both
correspond to the same %R-R interval of 50%. The shaded boxes centered
on both of these phases depict the short-scan phase interval ��min,�max�
needed for reconstructing images at average phases �̄= ��min+�max� /2 of
0.5 and 1.5. In two-sector reconstruction, data from both shaded areas are
used for reconstructing images corresponding to an average phase �̄ of 0.5.
method consists of using phase-correlated data sectors from
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two or more cardiac cycles for reconstructing a single image,
as shown in Fig. 3. The gated data sectors have overlapping
%R-R intervals, such that the range of the cardiac phase
interval �� is decreased. For this algorithm, multi-sector re-
construction is performed in a manner similar to that de-
scribed in Ref. 32.

II.B.2. Edge-based segmentation

In our previous study, the RP-ROI algorithm utilized a
threshold-based segmentation algorithm for defining seed
points corresponding to the locations of calcified plaques.18

This segmentation method involved thresholding the plaque
at 130 HU. Although this method was reliable for larger
plaques undergoing lower levels of motion, it often failed to
define accurate seed points for smaller plaques undergoing
higher levels of motion, such as those located in the right
coronary arteries. As a result, the RP-ROI tracking algorithm
often failed to retain the plaque within the reconstructed ROI
throughout the cardiac phases of interest.

In this study, an edge-based segmentation method is in-
corporated into the RP-ROI algorithm. This method is used
not only for defining more accurate seed points for plaques
undergoing a high degree of motion, but also is capable of
better capturing the motion artifacts affecting calcified
plaques in general. As a result, the features used to charac-
terize motion artifacts affecting calcified plaques are ex-
tracted directly from the segmentation results.

The segmentation method is illustrated in Fig. 4, and is
discussed as follows. First, voxels corresponding to known
extraneous structures with attenuation values above 130 HU,
such as the sternum, are removed from the reconstructed
image. Then, transverse slices of the reconstructed volumet-
ric image are passed through two edge-based filters. The first
is a Laplacian filter, which is applied in order to extract
prominent edges within each entire slice. A constant param-
eter ILap is used to threshold the Laplacian filtered image in
order to create a binary mask. Since this type of edge-based
filter is extremely sensitive to image noise, the original im-
age is smoothed before being processed by the Laplacian
filter. Smoothing is performed with a 3�3 pixel boxcar fil-
ter.

The second edge-based filter is a Sobel filter, which is
used to extract a region covering an area somewhat larger
than the plaque and its associated motion artifacts. A con-
stant parameter ISob is also used in order to create a binary
mask for the Sobel filtered image. The following three steps
are then taken to process the resulting Sobel filtered image.
First, regions of the Sobel binary mask are identified through
connected-component labeling based on 26-point connectiv-
ity. Regions corresponding to prominent edges between the
heart and lung are eliminated based on the criteria that these
regions have mean intensities below 0 HU. Second, a con-
tingency check is performed to ensure that a minimum of
number of voxels NSob are included in the Sobel binary
mask. If the number of voxels is less than NSob, histogram
analysis is performed to select the NSob voxels with the great-

est values from the Sobel filtered image. These voxels are



4864 King et al.: Feature-based characterization of motion-contaminated calcified plaques 4864
included in the Sobel binary mask. Third, since the binary
mask of the Sobel-filtered image often contains holes within
the central region of the plaque, a dilation operator with a
cross-shaped structuring element is used to expand this bi-
nary mask. The deletion of regions in the Sobel binary mask
corresponding to prominent edges between the heart and
lung is necessary prior to performing this dilation step. Oth-
erwise, for cases in which the plaque is very close to the
edge of the heart, the dilation step would cause these two
regions to merge and subsequently become deleted. Further
details of the segmentation methods discussed above can be
found in image processing textbooks.33,34

The binary mask from the Laplacian filter and the dilated
binary mask from the Sobel filter are then multiplied �voxel-
by-voxel product� together in order to obtain a third binary
mask of the calcified plaque. In order to ensure that no por-
tions of a calcified plaque with attenuation values greater
than 130 HU are missed, a voxel-by-voxel union is per-
formed between this third binary mask and a fourth mask
obtained by thresholding the reconstructed slice at 130 HU
with the known extraneous structures such as the sternum
removed.

Connected-component labeling based on 26-point connec-
tivity is then applied across all slices of the edge-based seg-

FIG. 4. Flow chart for the edge-based segmentation method described in
Sec. II B 2. TS and ES stand for threshold-based �130 HU� and edge-based
segmentation results, which are enclosed by the dashed squares. Edge elimi-
nation refers to the removal of prominent edges between the heart and lung.
Fragment elimination refers to the removal of volumetric fragments with
mean intensities, numbers of voxels, and center of mass distances less than
their defined cutoffs. Notice how the motion artifacts are better captured in
ES than in TS.
mentation result in order to identify distinctly separated
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volumetric fragments. Fragments with mean intensities,
voxel numbers, and center of mass distances from the seed
point, which are less than mean intensity Īc, voxel number
Nedge,c and center of mass distance DISTc cutoff values, are
removed in order to obtain the final segmentation result.
Fragments with these properties are often extracted from
edges that are not part of calcified plaques or their associated
motion artifacts, and removing these fragments reduces the
amount of clutter in the final segmentation result.

The edge-based segmentation methodology described
above requires six empirically determined parameters to be
specified. Two parameters are the ILap and ISob threshold val-
ues used for obtaining the binary masks from the Laplacian
filtered and Sobel filtered images, respectively. The third is
the minimum number of voxels included in the Sobel seg-
mentation result prior to dilation, NSob. The final three are the
mean intensity Īc, voxel number Nedge,c, and distance DISTc

cutoffs used for eliminating volumetric fragments before ob-
taining the final segmentation result.

II.B.3. Seed point definition

The seed point of the plaque at the next cardiac phase is
defined by calculating the center of mass of the image region
corresponding to the edge-based segmentation result. If no
fragments are present in the edge-based segmentation result,
the seed point is left unchanged. If the plaque no longer
remains within the reconstructed ROI after a certain phase
due to inaccurate seed points, the RP-ROI algorithm is said
to have failed. In this case, a new seed point is defined at the
first cardiac phase in which the computer’s segmentation al-
gorithm is capable of clearly identifying the plaque.

II.B.4. Implementation of the RP-ROI algorithm

In this study, the RP-ROI algorithm was applied to the six
calcified plaques using the nine heart rate/multi-sector gating
combinations shown in Table I. These nine combinations
spanned four heart rates of 50, 66, 80, and 90 bpm. Single-
sector �G1� gating was used for all heart rates, and two-
sector �G2� and three-sector �G3� gating were implemented
at and above heart rates of 66 and 80 bpm, respectively. In
total, 54 4D image sets were acquired. Images were recon-

¯

TABLE I. Nine heart rate/multi-sector gating combinations used for recon-
structing images of the calcified plaques using the RP-ROI algorithm.

Label HR/Multi-Sector Gating Combination

H50/G1 Heart rate 50 bpm/Single-sector gating
H66/G1 Heart rate 66 bpm/Single-sector gating
H66/G2 Heart rate 66 pbm/Two-sector gating
H80/G1 Heart rate 80 bpm/Single-sector gating
H80/G2 Heart rate 80 bpm/Two-sector gating
H80/G3 Heart rate 80 bpm/Three-sector gating
H90/G1 Heart rate 90 bpm/Single-sector gating
H90/G2 Heart rate 90 pbm/Two-sector gating
H90/G3 Heart rate 90 bpm/Three-sector gating
structed at advancing cardiac phase intervals ���0.01 over
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250 phases on 24.22 mm cubic ROIs with voxel sizes of
0.39 mm. This voxel size was chosen based on the recon-
struction of 512�512 cardiac CT slices covering a 200 mm
FOV. Note that this voxel size was almost twice as large as
the original voxel size of 0.2 mm used for generating the
calcified plaques.

The following parameters were used for all edge-based
segmentations in the RP-ROI algorithm: ILap=−10 HU; ISob

=−708 HU; NSob=50 voxels; Īc=50 HU; Nedge,c=50 voxels;
and DISTc=15 mm. The RCA1 plaque moving at 90 bpm
underwent a substantial amount of motion throughout the
cardiac cycle and was used for tuning these parameters. Al-
though the RCA3 plaque was successfully tracked using the
above parameters, visual assessments showed that these
edge-based segmentations often failed to capture the mor-
phologies of the motion artifacts affecting this plaque, espe-
cially at higher heart rates. As a result, the RCA3 plaques
were re-segmented with ILap and ISob threshold values of
−5 HU and −776 HU. Note that segmentation results were
not compared to radiologists’ outlines due to the potential for
large inter-observer variability in the outlining of these mo-
tion artifacts.

II.C. Feature extraction

In this section, the extraction of phase-correlated features
from each of the 4D image sets is described. As shown in
Fig. 1, extracted features are categorized into dynamic fea-
tures, morphological features, and intensity-based features.
These features are listed in Table II.

II.C.1. Dynamic features

The two dynamic features are 3D velocity �VEL� and 3D
acceleration �ACC�. The seed points obtained from the RP-
ROI tracking algorithm are used as phase-correlated posi-
tional vectors for the plaque. From these positional vectors,
the 3D displacement of the plaque from a central point, as
well as the 3D velocity and 3D acceleration features are cal-

TABLE II. Twelve features characterizing the motion-contaminated calcified
plaques.

Feature Feature type Feature description

VEL Dynamic 3D velocity
ACC Dynamic 3D acceleration

VOL-E Morphological Edge-based volume
VOL-T Morphological Threshold-based volume
SPHER Morphological Sphericity
IRREG Morphological Irregularity

MG Morphological Margin gradient
VMG Morphological Variance of margin

gradient
MAX INT Intensity-based Maximum intensity

MEAN INT Intensity-based Mean intensity
MIN INT Intensity-based Minimum intensity
STD INT Intensity-based Standard deviation of

intensity
culated. The 3D velocity is obtained by smoothing each Car-
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tesian component of the positional vectors using a box-car
filter over cardiac phase �̄, calculating the instantaneous ve-
locity vectors by taking the first derivative of each Cartesian
component, and then obtaining the norm of these instanta-
neous velocity vectors. The feature 3D acceleration is ob-
tained from the velocity vectors in an analogous manner. For
this study, a boxcar filter width of 10 is used in all calcula-
tions.

II.C.2. Morphological features

Two of the morphological features are volume descrip-
tors. The first descriptor of edge-based volume �VOL-E� is
simply the volume of the edge-based segmentation result.
This feature is calculated by summing the number of voxels
included in the edge-based segmentation result, and multi-
plying this number by the voxel volume. The second descrip-
tor of threshold-based volume �VOL-T� is the volume of a
segmentation result obtained by counting the number of vox-
els included in the edge-based segmentation result with in-
tensity values above or equal to 130 HU. This descriptor is
closely related to volume-based methods for quantifying
coronary calcium.35

Shape-based features of sphericity �SPHER� and irregu-
larity �IRREG� are included in the set of morphological fea-
tures. Sphericity is defined as the ratio of the lesion volume
within a sphere of effective diameter deff to the entire lesion
volume. The center of mass of the edge-based segmentation
result is used as the central point for the sphere. The effective
diameter deff is defined as

deff = 2�3 3 · Lesion volume

4�
. �1�

The sphericity feature ranges from zero to one, in which a
value of one indicates that the plaque is a perfect sphere. The
irregularity feature is given by 1−�deff

2 /surface area, where
the surface area is defined as the number of voxels included
in the segmentation result that have at least one adjacent
voxel not included in the segmentation result. Adjacent vox-
els are determined based on 26-point connectivity. The ir-
regularity feature also ranges from zero to one, in which a
value of zero indicates a perfect sphere.

Two features are related to margin sharpness.19 The aver-
age margin gradient �MG� of the plaque is defined as the
mean of the plaque margins normalized by the mean inten-
sities along the margins. The variance of margin gradient
�VMG� is the variance of the plaque margins normalized by
the square of the mean intensities along the margins. Plaque
margins are voxels that belong to the surfaces of the edge-
based segmentation results and contribute to plaque surface
areas in the irregularity calculation discussed above.

II.C.3. Intensity-based features

Four intensity-based features based on the maximum in-
tensity �MAX INT�, mean intensity �MEAN INT�, minimum
intensity �MIN INT�, and standard deviation of intensity
�STD INT� of voxels present within the edge-based segmen-

tation result are defined.
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II.D. Evaluation methods

The dynamic, morphological, and intensity-based features
were extracted from the 4D image sets obtained through the
RP-ROI algorithm and evaluated in the following manner.
Dynamic features were evaluated by comparing how well
these features matched with their actual values, as deter-
mined from the NCAT phantom. In addition, root mean
square �rms� errors were used to quantitatively determine the
accuracies of the phase-correlated positional vectors, which
were used to calculate the 3D velocity and 3D acceleration
features. The rms errors for a given 4D image set were cal-
culated for each of the three Cartesian components of the

FIG. 5. Plaque motion index MI under three possible plaque trajectories
�solid arrow� during the phase interval ��min,�max�. Note that images are
indexed by the average cardiac phase �̄= ��min+�max� /2. The motion index
is defined as the maximum distance between any two points for a given
plaque trajectory mapped out over this phase interval.

FIG. 6. Plaque motion indices of selected 4D image sets. In �a�, motion indi
H66/G2 �dashed line� combinations, respectively. The hashed line with tria
corresponding to the RCA1 plaque with G1 reconstructions are plotted for
dashed line�, and 50 bpm �thick dashed line�. In �c�, motion indices are plot
RCA3 �thin dashed line�, RCA2 �dash-dot-dashed line�, LAD2 �thick dashe

dashed line�.
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positional vectors. The norm of these three errors was then
reported as the rms error for a given plaque and heart rate/
gating combination.

Morphological and intensity-based features were evalu-
ated by comparing these feature values to reconstructed im-
ages of the six plaques. The relationships between these fea-
tures and cardiac phase were also examined for different
plaques, heart rates, and gating combinations. Strengths of
associations between these features and the plaque motion
index discussed below were assessed as well.

II.D.1. Plaque motion index

The plaque motion index, which served as a truth for
evaluating individual features, is a metric that quantifies the
amount of plaque motion pertaining to an image at a cardiac
phase �̄= ��min+�max� /2. This motion index �MI� is defined
as the maximum distance between any two points of the
actual plaque trajectory mapped out over the phase interval
��min,�max� used for reconstruction divided by the time win-
dow required for single-sector reconstruction tr. Figure 5
shows examples of this motion index for three plaque
trajectories.

re obtained from images of the RCA1 plaque with H66/G1 �solid line� and
represents the plaque’s true instantaneous velocity. In �b�, motion indices

rates of 90 bpm �solid line�, 80 bpm �thin dashed line�, 66 bpm �dash-dot-
r the following plaques under the H66/G1 combination: RCA1 �solid line�,
�, LCX �hashed line with triangles�, and LAD1 plaques �dash-dot-dot-dot-
ces a
ngles
heart
ted fo
d line
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The reason that the motion index is used instead of instan-
taneous plaque velocity is that the motion index incorporates
information from the entire plaque trajectory corresponding
to the phase interval ��min,�max�. For example, if the plaque
undergoes an abrupt change in direction, the motion index
does not approach zero as it would if instantaneous velocity
were used. Furthermore, instantaneous velocity would pro-
vide nearly equivalent values for images of the same plaque
reconstructed with single-sector and two-sector gating. The
plaque motion index, on the other hand, would always pro-
vide lower motion indices for images obtained with two-
sector gating, because the range of the phase interval ��
=�max−�min is shorter for two-sector gating than it is for
single-sector gating. As a result, the plaque motion index
would be a better indicator of image quality with respect to
motion artifacts.

Graphs between plaque motion indices and cardiac phase
are included in Fig. 6. As seen in the first graph, which
shows motion indices for the RCA1 plaque at 66 bpm,
plaque motion indices for the G2 reconstructions were lower
than those for the G1 reconstructions. This phenomenon was
expected due to the smaller phase intervals �� covered by
the G2 reconstructions. In addition, the peaks and valleys for
both G1 and G2 curves tended to correlate well with those
found in the instantaneous velocity curve. The graph shown
in Fig. 6�b� compares motion indices for different heart rates
corresponding to the G1 reconstructions of the RCA1 plaque.
As expected, motion indices were greater for higher heart
rates. The plot in Fig. 6�c� illustrates how the plaque motion
indices varied between each of the six calcified plaques with
Medical Physics, Vol. 34, No. 12, December 2007
the same H66/G1 combination. As seen in this figure, motion
indices for the plaques in the right coronary arteries were
much greater than those in the left coronary arteries.

II.D.2. Correlations of features to plaque motion

In order to identify features that demonstrated noticeable
nonlinear relationships with the plaque motion index, scatter
plots, residual scatter plots, and histograms were created for
features corresponding to individual plaques. For features
exhibiting strong nonlinear relationships for multiple
plaques, log, square root, and power transformations were
visually examined to determine if these transformations im-
proved linearity. Transformations involving the square roots
of 3D velocity and 3D acceleration, and the square of sphe-
ricity, managed to improve linearity for many plaques and
were used in all subsequent calculations.

Partial correlation coefficients36 were used to analyze
strengths of associations between the 12 features and the
plaque motion index. The partial correlation coefficients
were calculated for each of the plaques individually and
across all six plaques. By using partial correlation coeffi-
cients, correlations between features and motion indices were
adjusted for differences in heart rate, number of gated sec-
tors, and mean values of features between different calcified
plaques. Adjusting for these three factors was important,
since they served as covariates that could confound the rela-
tionship between a given feature and the motion index. In
order to adjust for differences in mean values of features

FIG. 7. Phase-correlated ROI reconstructions of the �a�
LAD2 and �b� RCA1 plaques �H66/G1� at advancing
cardiac phase intervals ��̄�0.01. The phase for a
given image is obtained by adding the numbers next to
the rows and columns corresponding to the image. L:
50 HU /W: 400 HU.

FIG. 8. Sample reconstructions and segmentations for
the �a� LAD2 and �b� RCA1 plaques for different heart
rate/gating �H/G� combinations, as specified in Table I.
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between the different plaques, five binary-valued dummy
variables were included in the calculations of the partial cor-
relation coefficients across all six plaques.37

Relationships between pairs of individual features were
also evaluated by calculating pairwise partial correlation co-
efficients for the 12 features across all six plaques. Pairs of
features exhibiting stronger correlations ��r�� �0.60,1.00��
were noted. For the calculation of all partial correlation co-
efficients, the number of samples per plaque was 1854 �nine
HR/gating combinations * 206 phases�.

III. RESULTS

The RP-ROI algorithm successfully retained the plaque
within the reconstructed ROI over all cardiac phases of in-
terest for the six calcified plaques obtained with the nine
heart rate/gating combinations. However, for the RCA3
plaque with the H80/G3 combination, the RP-ROI algorithm
was unable to detect the plaque for seven consecutive recon-
structions due to the faintness of this plaque during phases of
high cardiac motion. As a result, no new seed points were
defined for these reconstructions. Fortunately, the segmenta-
tion algorithm was capable of finding the plaque on the
eighth reconstruction without user intervention. Examples of
phase-correlated reconstructions of the LAD2 and RCA1
plaques moving at 66 bpm with single-sector gating are
shown in Fig. 7. As seen in this figure, the morphologies of
motion artifacts for a given plaque gradually transformed
over advancing cardiac phases.

Figure 8 shows reconstructions and segmentations of the
LAD2 and RCA1 plaques at all multi-sector gating combi-
nations involving heart rates of 66 and 90 bpm. As expected,
motion artifacts became more pronounced at higher heart
rates. Also, increasing the number of sectors for gating man-

aged to suppress motion artifacts over many cardiac phases.

Medical Physics, Vol. 34, No. 12, December 2007
Instead of the usual streaks and blurs, motion artifacts be-
came more contained when multi-sector gating was imple-
mented. However, for phases of high cardiac motion, the
motion artifacts were still noticeable and exhibited a
smudge-like appearance.

III.A. Dynamic features

Graphs showing the relationships of measured and actual
3D displacement, 3D velocity, and 3D acceleration values to
cardiac phase for the RCA1 plaque moving at 66 bpm are
shown in Fig. 9. In general, measurements obtained from the
two-sector �G2� reconstructions were more accurate than
those from the single-sector �G1� reconstructions. In addi-
tion, the 3D displacement plots seemed to be the most accu-
rate, whereas the 3D acceleration plots seemed to be the least
accurate. These results were expected, as small deviations in
measured positions became amplified in the derivative opera-
tions used to obtain the 3D velocity and 3D acceleration
values.

Figure 10 shows the relationships of rms errors of posi-
tion for the plaques under different heart rate/gating combi-
nations. The rms errors for the three plaques in the right
coronary arteries were much greater in general than those in
the left coronary arteries. Also, rms errors tended to become
smaller as heart rates decreased and the numbers of sectors
used for reconstruction increased. However, in certain cases,
rms errors for the H90/G2 and H90/G3 reconstructions were
lower than those for the H80/G2 and H80/G3 reconstruc-
tions, respectively. A likely explanation is that the temporal
resolutions for the G2 and G3 reconstructions at 90 bpm
were better than the corresponding temporal resolutions at
80 bpm due to greater desynchronization of the 0.4 s gantry
rotation time and the heart rate at 90 bpm.4 The rms error of
the H80/G3 combination for the RCA3 plaque was substan-

FIG. 9. Dynamic measurements of �a� 3D displacement,
�b� 3D velocity �VEL�, and �c� 3D acceleration �ACC�
vs cardiac phase for the RCA1 plaque moving at
66 bpm. In each plot, the solid line represents actual
values; the dashed line represents results obtained with
single-sector gating �G1�; and the hashed line with tri-
angles represents results obtained with two-sector gat-
ing �G2�.
tially higher than the rms error for the H80/G2 combination
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since, as discussed earlier, the RP-ROI algorithm failed to
detect the plaque over seven consecutive phases and the seed
points were left unchanged during these phases.

III.B. Morphological and intensity-based features

In Figs. 11 and 12, reconstructions and segmentations of
the six calcified plaques with the 66 bpm/single-sector gating
combination along with corresponding values of selected
features are shown for specified phases over two cardiac
cycles. These figures are included in order to illustrate how
values for the selected features were associated with the dif-
ferent types of motion artifacts affecting each of the calcified
plaques. For a given plaque, values for a specific feature
varied over a wide range depending on the extents to which
motion artifacts affected the plaque. In addition, plaques with
lower motion indices tended to exhibit lower levels of mo-
tion artifacts than plaques with higher motion indices.

Figure 13 shows graphs of the following morphological
and intensity-based features obtained from G1 and G2 recon-
structions of the RCA1 plaque at 66 bpm: edge-based vol-
ume, threshold-based volume, sphericity, irregularity, mean
intensity, and average margin gradient. Note that all of these

features exhibited a semiperiodic nature over the two cardiac
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cycles shown. The periodicity of the features tended to cor-
relate with the systolic and diastolic phases of the heart, and
many of the features obtained from the G2 reconstructions
seemed to exhibit a more periodic nature than those from the
G1 reconstructions. In addition, feature values at equivalent
%R-R intervals often differed between the two cycles. Mo-
tion artifacts of corresponding plaques also appeared quite
differently, as shown in Figs. 11 and 12. These results dem-
onstrate that even though the plaque underwent the exact
same trajectory between the two periods, the differing orien-
tations of the rotating gantry with respect to the moving
plaque between the two cardiac cycles were sufficient for
generating noticeably different motion artifacts.

The values for features between different plaques also
varied considerably. Table III shows means and standard de-
viations of the 12 features using values from all heart rate/
gating combinations for each of the six calcified plaques. The
data in this table show that different plaques had different
properties in terms of dynamics, size, shape, intensity, and
margin sharpness. The RCA2 plaque, for example, covered a
much smaller volume on average than the other five plaques.
The standard deviations of individual features also differed

FIG. 10. Root-mean-square �rms� error plots of plaque
position vs the number of gated sectors for the �a�
LAD1, �b� LAD2, �c� LCX, �d� RCA1, �e� RCA2, and
�f� RCA3 plaques at heart rates of 50 �asterisk�, 66
�square�, 80 �diamond�, and 90 �triangle� bpm. Note the
differing scales for rms error between plots in �a�–�c�
and �d�–�f�.
between plaques.
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III.C. Correlations of features to the plaque motion
index

Figure 14 shows plots of two features �square root of 3D
velocity and average margin gradient� versus the plaque mo-
tion index for the RCA1 plaque with the H66/G1 combina-
tion. These plots are shown to illustrate how these features
varied with respect to the motion index. The motion index
demonstrated a linear relationship with the 3D velocity
square root and the average margin gradient. Respective
Pearson’s correlation coefficients were 0.888 and −0.790.

In Table IV, partial correlation coefficients between indi-
vidual features and the plaque motion index for the six
plaques are listed. Partial correlation coefficients using data
from all six plaques are also included. Features with stronger
correlations ��r�� �0.60,1.00�� for data encompassing all six

FIG. 11. Table depicting reconstructions, segmentations, and selected fea-
ture values for the �a� LAD1, �b� LAD2, and �c� LCX plaques �H66/G1� at
phases �̄ spanning two cardiac cycles. Values for 3D velocity VEL �mm/s�,
edge-based volume VOL-E �mm3�, mean intensity MEAN INT �HU�, sphe-
ricity SPHER, average margin gradient MG, and motion index MI �mm/s�
are given.
plaques included 3D velocity, maximum intensity, and stan-
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dard deviation of intensity. Mean intensity was a feature
which demonstrated a stronger correlation with the motion
index for each individual plaque. Other features, such as
edge-based volume, threshold-based volume, sphericity, ir-
regularity, average margin gradient, and variance of margin
gradient had stronger correlations with motion index for
some plaques but not others. Correlations for these features
varied quite noticeably between different plaques. The mini-
mum intensity feature exhibited a poor correlation with mo-
tion index. For the RCA1 and RCA2 plaques, the minimum
intensity failed to show statistically significant correlations
with the plaque motion index �p�0.05 with respect to null
hypotheses of zero correlations�.

Partial correlation coefficients between features are listed
in Table V. Of the 12 feature pairs with stronger correlations

FIG. 12. Table depicting reconstructions, segmentations, and selected fea-
ture values for the �a� RCA1, �b� RCA2, and �c� RCA3 plaques �H66/G1� at
phases �̄ spanning two cardiac cycles. Values for 3D velocity VEL �mm/s�,
edge-based volume VOL-E �mm3�, mean intensity MEAN INT �HU�, sphe-
ricity SPHER, average margin gradient MG, and motion index MI �mm/s�
are given.
��r�� �0.60,1.00��, ten of these involved intensity-based fea-
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tures. Only the average margin gradient/variance of margin
gradient and the edge-based volume/irregularity pairs did not
include an intensity-based feature.

IV. DISCUSSION

In this study, methods for generating a comprehensive set
of quantitative features that can be used to characterize mo-
tion artifacts affecting calcified plaques in noncontrast-
enhanced cardiac CT scans have been discussed. These
methods include the RP-ROI tracking algorithm for generat-
ing 4D sets of ROI images centered on calcified plaques as
well as the segmentation and feature extraction techniques
necessary for obtaining phase-correlated dynamic, morpho-
logical, and intensity-based features. As stated earlier, the
methods introduced in this paper are being used for develop-
ing an automated scheme for evaluating calcified plaques in
cardiac CT images with respect to motion artifacts.22

The RP-ROI algorithm introduced in this paper is impor-
tant because it serves as a mechanism for obtaining the fea-
tures that characterize calcified plaques in an automated
manner directly from the projection data acquired during a
cardiac CT scan. With respect to automation, the user only
needs to specify the location of the plaque at an initial car-
diac phase. The RP-ROI algorithm then automatically pro-

duces a series of small 4D ROI images centered on the
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plaque over multiple cardiac cycles. If this algorithm were
not used, the user would need to specify the locations of
plaques from images reconstructed at each cardiac phase of
interest.

The algorithm’s computational efficiency stems from its
basic premise of using an edge-based segmentation method
for dictating the location of the ROI image that is recon-
structed at a subsequent cardiac phase. Since the approxi-
mate location of the plaque is known, smaller-sized ROIs
whose lengths are on the order of a couple of centimeters can
be reconstructed. As a result, more phase-correlated ROI im-
ages can be reconstructed in the same amount of time re-
quired to reconstruct a single image covering a much larger
FOV. It is important to note that a similar method has been
proposed in cardiac magnetic resonance imaging, in which
image processing techniques are used to prospectively select
locations of slices at which images are acquired during sub-
sequent cardiac phases.38,39

However, the RP-ROI algorithm is susceptible to failure
when tracking smaller plaques undergoing abrupt large-scale
movements. For example, for the RCA3 plaque with the
80 bpm heart rate and three-sector gating combination, the
segmentation algorithm was not capable of detecting the
plaque over seven consecutive reconstructions. Fortunately,

FIG. 13. Graphs showing relationships between phase-
correlated features and cardiac phase for the RCA1
plaque �H66/G1�. The phase-correlated features are �a�
edge-based volume, �b� threshold-based volume, �c�
sphericity, �d� irregularity, �e� mean intensity, and �f�
average margin gradient. In each plot, the dark solid
line represents features from single-sector gating, and
the light dashed line represents features from two-sector
gating. For comparison purposes, the actual volume of
the plaque is 36.7 mm3.
for this particular case, the algorithm was able to detect the
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plaque on the eighth reconstruction. However, more intelli-
gent methods involving adaptive modifications of the seg-
mentation parameters may be needed to increase the robust-
ness of the RP-ROI algorithm.

The RP-ROI algorithm requires the presence of a continu-
ous phase-correlated projection dataset from which images
can be reconstructed in a retrospective fashion. However,
images obtained for CAC scoring applications are most often
obtained in a prospective fashion, in which images can be
reconstructed only during a small portion of the cardiac cycle
due to the small time window spanned by the projection
dataset. Although the RP-ROI algorithm, as discussed in this
paper, cannot be used for these datasets, the RP-ROI algo-
rithm potentially can be applied to datasets which allow for
retrospective reconstruction including those acquired through
low-dose methods.40,41

In terms of future work, the RP-ROI algorithm could be
applied toward cases of multiple calcified plaques located
along a short segment of the coronary artery. These cases are
commonly found in patients with more severe coronary ar-
tery disease. Applying the RP-ROI algorithm to these cases
would be more challenging, as multiple seed points within a
small region would be needed. The RP-ROI algorithm could
also play a valuable role in applications involving contrast-
enhanced CTA, in which specific coronary landmarks at mul-

TABLE III. �a� Means and �b� standard deviations of features for individual

VEL ACC VOL-E VOL-T SPHER

LAD1 0.44 5.23 46.14 37.86 0.64
LAD2 2.37 24.00 42.35 28.96 0.54
LCX1 1.61 16.20 50.84 38.35 0.59
RCA1 5.17 55.27 89.21 34.76 0.46
RCA2 4.32 67.45 7.68 0.92 0.34

�a� RCA3 4.90 72.46 56.26 11.08 0.33

VEL ACC VOL-E VOL-T SPHER

LAD1 0.28 3.76 3.45 1.51 0.01
LAD2 1.60 18.38 9.76 3.09 0.07
LCX1 0.98 11.20 13.16 6.35 0.04
RCA1 3.66 45.64 23.20 10.26 0.13
RCA2 4.08 54.53 2.29 0.99 0.12

�b� RAC3 4.81 68.45 21.85 5.43 0.08
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tiple phases throughout the cardiac cycle may be recon-
structed with minimal user interaction. However, segmenting
and registering coronary landmarks at multiple phases in the
presence of motion artifacts would be a much more difficult
task. In addition, the algorithm would need to handle cardiac
scans incorporating ECG-dose modulation, in which the tube
current is decreased during phases of higher cardiac
motion.42

With respect to the features, previous studies have used
individual features, such as plaque contrast16 and velocity,17

for characterizing the motion artifacts affecting coronary
structures. However, this paper evaluates a more comprehen-
sive set of features �Table II� that can be used to characterize
motion artifacts. In particular, properties of the plaque such
as its kinetics, volume, shape, margin sharpness, and inten-
sity, can be described by the two dynamic, six morphologi-
cal, and four intensity-based features discussed in this paper.

In terms of values for individual features, edge-based vol-
umes were always greater than threshold-based volumes �see
Table III and Figs. 13�a� and 13�b�� for the following rea-
sons. First, edge-based segmentation results often included
pixels whose intensities were lower than the 130 HU used
for obtaining the threshold-based segmentations. Second, as

ed plaques. Feature identifiers are listed in Table II.

REG
MAX
INT

MEAN
INT

MIN
INT

STD
INT MG VMG

0.35 429.64 230.33 36.46 101.05 3.78 3.27
0.34 399.78 190.16 31.01 86.61 3.50 3.40
0.35 386.53 198.00 33.15 81.67 3.49 2.50
0.52 279.30 128.06 8.27 56.53 3.27 3.29
0.02 161.16 88.89 32.21 29.37 3.19 2.88
0.45 236.07 98.43 7.78 48.67 3.30 3.86

REG
MAX
INT

MEAN
INT

MIN
INT

STD
INT MG VMG

0.02 13.40 13.79 9.33 4.68 0.13 0.49
0.06 42.47 29.27 13.22 14.82 0.36 0.81
0.07 41.61 29.59 17.42 13.35 0.50 0.74
0.07 71.28 27.51 16.37 19.23 0.48 1.53
0.12 46.36 16.13 9.48 10.94 0.36 1.22
0.13 64.17 26.14 28.88 17.80 0.57 2.09

FIG. 14. Graphs showing the relationships between se-
lected features and the plaque motion index for the
RCA1 plaque �H66/G1�. In �a�, the square root of 3D
velocity �VEL� is plotted against motion index. In �b�,
average margin gradient �MG� is plotted against motion
index. Linear regression lines are included in both plots.
Corresponding Pearson’s correlation coefficients are
0.888 and −0.790, respectively.
calcifi

IR

IR
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discussed in Sec. II B 2, all pixel values included in the
threshold-based segmentation result were also included in
the edge-based segmentation results.

For small plaques such as the RCA2 plaque, sphericity
and irregularity features sometimes fell outside of the range
of acceptable values. For example, as seen in Fig. 12�b�, the
RCA2 plaque at a phase �=0.70 had a sphericity of 0.00. In
this particular case, the plaque consisted of two major frag-
ments, and the center of mass for this plaque fell directly
between these two fragments. Since the volume of this
plaque was extremely small, the sphere of effective diameter
deff used to calculate sphericity failed to cover any voxels
corresponding to these two fragments. In Table III�a�, the
extremely low mean irregularity of 0.02 for the RCA2
plaque as well as its standard deviation of 0.12 highlights the
fact that irregularity values for the RCA2 plaque at many
cardiac phases were negative. The RCA2 plaque was very
thin, and its width often spanned only a single voxel. As a
result, the surface area was abnormally low and resulted in a
negative irregularity value. Negative irregularity values were
also obtained during phases at which small plaques exhibited
a high sphericity. Alternative methods for calculating sphe-
ricity and irregularity based on numbers of exposed edges

TABLE IV. Correlations between features and the plaque motion index. Part
sectors, and mean feature values, are reported for individual plaques
� �0.600,1.000�� are in bold. Correlations with single asterisks �*� corre
correspond to p�0.050. P-values are defined with respect to null hypothese

VEL ACC VOL-E VOL-T SPHER IRR

LAD1 0.788 0.227 0.656 0.320 0.286 0.4
LAD2 0.819 0.121 0.773 0.526 −0.822 0.8
LCX1 0.864 0.100 0.802 0.578 −0.496 0.8
RCA1 0.836 0.201 0.505 −0.530 −0.746 0.6
RCA2 0.521 0.374 −0.200 −0.643 −0.332 −0.2
RCA3 0.691 0.461 0.369 −0.753 −0.126 0.2
ALL 0.664 0.322 0.408 −0.334 −0.490 0.2

TABLE V. Correlations between individual features. Partial correlation coef
feature values, are reported using data from all six plaques. Features with
asterisks �*� correspond to p-values p� �0.001,0.050�. Correlations with do
null hypotheses of zero correlations. Feature identifiers are listed in Table I

VEL ACC VOL-E VOL-T SPHER

VEL
ACC 0.217

VOL-E 0.360 −0.136
VOL-T −0.254 −0.144 0.144
SPHER −0.472 0.024* −0.393 0.133
IRREG 0.177 −0.044 0.682 0.055 −0.292

MAX INT −0.631 −0.053 −0.500 0.275 0.520
MEAN INT −0.585 −0.002** −0.655 0.136 0.546
MIN INT −0.135 0.038 −0.429 −0.020* 0.157
STD INT −0.640 −0.028 −0.513 0.168 0.527

MG −0.517 0.013** −0.362 −0.020* 0.378
VMG −0.389 0.008** −0.187 0.230 0.178
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instead of numbers of voxels may prevent the acquisition of
negative irregularity values for small plaques.

In this study, partial correlation coefficients adjusted for
heart rate, numbers of gated sectors, and mean feature values
of the six plaques were used to evaluate the strengths of
associations between individual features and the plaque mo-
tion index. As shown in Table IV, the partial correlation co-
efficients for a given feature and the motion index varied
rather substantially between different plaques. For the RCA2
plaque, for example, edge-based volume and irregularity fea-
tures exhibited negative correlations with plaque motion,
whereas for the other five plaques these two features demon-
strated positive correlations. In terms of the partial correla-
tion coefficients using data from all six plaques, the 3D ve-
locity, maximum intensity, and standard deviation of
intensity exhibited stronger correlations ��r�� �0.60,1.00��
with the plaque motion index, whereas the minimum inten-
sity correlation demonstrated the weakest correlation. In
terms of correlations between different features �Table V�,
many of the stronger feature-to-feature correlations ��r�
� �0.60,1.00�� involved intensity-based features �maximum
intensity, mean intensity, and standard deviation of intensity�

rrelation coefficients, which were adjusted for heart rate, number of gated
across all six plaques �ALL�. Features with stronger correlations ��r�
d to p-values p� �0.001,0.050�. Correlations with double asterisks �**�
zero correlations. Feature identifiers are listed in Table II.
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being correlated with each other as well as with other fea-
tures including 3D velocity, edge-based volume, average
margin gradient, and variance of margin gradient. Only two
feature pairs �edge-based volume/irregularity and average
margin gradient/variance of margin gradient� had stronger
correlations that did not include intensity-based features.

Although the feature-motion index correlations and
feature-feature correlations discussed in this paper provide
useful information regarding how strongly these indices were
associated with one another, these coefficients were based on
six simulated calcified plaques. Our future work includes ap-
plying the methodologies presented in this paper to calcified
plaques from clinical datasets. In particular, methods for
characterizing calcified plaques from both prospective and
retrospective scans will be examined.
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