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Rationale and Objective. We developed a technique that uses a multiple massive-training artificial neural network (multi-
MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nod-
ules in chest radiographs.

Materials and Methods. Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and
27 benign nodules, in 91 chest radiographs. With our current CAD scheme based on a difference-image technique and
linear discriminant analysis, we achieved a sensitivity of 82.4%, with 4.5 false positives per image. We developed the
multi-MTANN for further reduction of the false positive rate. An MTANN is a highly nonlinear filter that can be trained
with input images and corresponding teaching images. To reduce the effects of background levels in chest radiographs, we
applied a background-trend-correction technique, followed by contrast normalization, to the input images for the MTANN.
For enhancement of nodules, the teaching image was designed to contain the distribution for a “likelihood of being a nod-
ule.” Six MTANNs in the multi-MTANN were trained by using typical nodules and six different types of non-nodules
(false positives).

Results. Use of the trained multi-MTANN eliminated 68.3% of false-positive findings with a reduction of one true-
positive result. The false-positive rate of our original CAD scheme was improved from 4.5 to 1.4 false positives per
image, at an overall sensitivity of 81.3%.

Conclusion. Use of a multi-MTANN substantially reduced the false-positive rate of our CAD scheme for lung nodule de-
tection on chest radiographs, while maintaining a level of sensitivity.
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Chest radiography is the most frequently used imaging ex-
amination technique for chest diseases because of its low
cost, simplicity, and low radiation dose. Chest radiography
has been used for the detection of lung cancer because some
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evidence suggests that early detection of lung cancer may
allow a more favorable prognosis (1,2). Radiologists, how-
ever, may fail to detect lung nodules in chest radiographs in
up to 30% of cases in which nodules are visible in retrospect
(3,4). Computer-aided diagnostic (CAD) schemes for nodule
detection on chest radiographs have been investigated (5)
because the computer can improve radiologists’ detection
accuracy (6,7).

A number of researchers have developed CAD schemes
for detecting lung nodules in chest radiographs (8–23).
Giger et al. (9,10) developed a CAD scheme based on a
thresholding technique together with a rule-based classifier,

and Wu et al. (11), Xu et al. (12), and Li et al. (13) im-
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proved the performance of the CAD scheme by incorporat-
ing an artificial neural network (ANN) and linear discrimi-
nant analysis, an adaptive thresholding technique, and a mul-
tiple-template matching technique, respectively. Sankar et al.
(14) reported a CAD scheme based on the segmentation of
nodule candidates in which they used a dynamic program-
ming technique and image feature analysis. Lo et al. (15)
developed a CAD scheme based on a convolution neural
network (16), and Lin et al. (17) improved the performance
of the scheme by incorporating two-level convolution neural
networks. Carreira et al. (18) devised a CAD scheme based
on the detection of nodule candidates with normalized cross-
correlation images and classification of candidates in curva-
ture space, and Penedo et al. (19) improved the performance
of the scheme by incorporating two-level ANNs that em-
ployed cross correlation teaching images and input images in
curvature peak space. Coppini et al. (20) developed a CAD
scheme based on biologically inspired ANNs with fuzzy
coding. Other researchers, including Lampeter et al. (21),
Floyd et al. (22), and Mao et al. (23) reported on CAD
schemes to which they applied various techniques for im-
proving performance.

An observer performance study by Kobayashi et al. (7)
has demonstrated the utility of a CAD scheme for detecting
lung nodules in chest radiographs. Recently, Kakeda et al.
(24) showed that radiologists’ performance was improved by
the use of a commercial CAD system applied to chest radio-
graphs. A major challenge in current CAD schemes for
chest radiography is to achieve a low number of false-posi-
tive results, because a wide variety of normal structures re-
semble nodules in chest radiographs (25). It is difficult to
detect nodules overlapping with normal anatomic structures
such as ribs and vessels, and the majority of false-positive
findings are caused by ribs and/or vessels (12,25), which can
reduce the sensitivity as well as the specificity of a CAD
scheme, and could also reduce radiologists’ confidence in
the CAD scheme. In addition, a large number of false posi-
tives would reduce radiologists’ efficiency. Our purpose in
this study was to develop a technique for reducing false-
positive results in a CAD scheme for detecting lung nodules
in chest radiographs by using a multiple massive-training
artificial neural network (multi-MTANN).

MATERIALS AND METHODS

Database
The database used in this study consisted of 91 chest ra-

diographs containing 91 solitary pulmonary nodules with

subtlety ratings of subtle, relatively obvious, and obvious

192
from the Digital Image Database developed by the Japanese
Society of Radiological Technology (JSRT) (26), which is a
publicly available database. The chest radiographs were col-
lected from 14 medical institutions. The absence or presence
of nodules in the chest radiographs was confirmed by com-
puted tomography (CT). The locations of all nodules were
confirmed by three chest radiologists. The criteria for inclu-
sion of radiographs in the database were: (1) absence of
nodules larger than 35 mm, (2) absence of suspicious nod-
ules that were not confirmed by CT examination, (3) no
more than one nodule per patient, and (4) absence of nod-
ules with margins that could not be confirmed by radiolo-
gists. The chest radiographs were digitized with a 0.175-mm
pixel size, a matrix size of 2,048 x 2,048, and a 12-bit gray-
scale level. The sizes of nodules ranged from 8.9–29.1 mm,
with an average size of 17.4 mm. The database contained 64
malignant nodules and 27 benign nodules, which were con-
firmed by histologic or cytologic examination or by fol-
low-up imaging. For reducting noise and increasing compu-
tational efficiency, the size of the chest radiographs was re-
duced to 512 x 512 pixels with a 10-bit gray-scale level
through the use of averaging.

Existing CAD Scheme
Our current CAD scheme (27) for detecting lung nodules

in chest radiographs consists of four steps, as follows: (1)
pre-processing based on a difference-image technique
(9,10,12), (2) identification of initial nodule candidates by
use of a multiple gray-level thresholding technique, (3)
grouping of initial nodule candidates, and (4) the use of rule-
based and linear-discriminant classifiers for reducing false-
positive results. The difference-image technique is a tech-
nique for enhancing lung nodules and suppressing normal
background structures. The difference image was obtained
by subtraction of the nodule-suppressed image from the nod-
ule-enhanced image. Initial nodule candidates were identified
in the difference images through the use of a multiple gray-
level thresholding technique. The initial nodule candidates
were classified into 13 groups according to their detection
threshold levels. Eight image features for each group were
calculated, consisting of the effective diameter (9), degree of
circularity (9), degree of irregularity (9), growth rate of the
effective diameter (10), growth rate of the degree of circular-
ity (10), growth rate of the degree of irregularity (10), run
length (10), and contrast (9) in the original image and the
difference image. These eight image features were used as
input to the rule-based and linear discriminant classifiers.
With our current CAD scheme, a sensitivity of 82.4% (75/
91), with 4.5 (410/91) false positives per image, was

achieved for the database of 91 chest radiographs. We used
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the 75 true positives (nodules) and the 410 false positives
(non-nodules) for testing our scheme for reducing false-posi-
tive results in this study.

MTANN
Suzuki et al. have investigated supervised nonlinear im-

age-processing techniques based on artificial neural networks
(ANNs), known as “neural filters,” for reducing the quantum
mottle in X-ray images (28), a “neural edge enhancer” for
enhancing desired edges in noisy images (29,30), and a
“neural edge detector” for the supervised detection of sub-
jective edges traced by cardiologists (31). They have devel-
oped training methods (32,33), design methods (34,35), and
an analysis method (36) for these techniques. They (37,38)
have also extended these techniques to accommodate various
pattern-classification tasks, and have developed an MTANN
and applied it for reducing false-positive results in computer-
ized detection of lung nodules in low-dose CT. It is not
clear, however, whether this approach is applicable to im-
ages made with a different modality, such as chest radiogra-
phy, because a chest radiograph is a projection image whose
characteristics differ from those of an axial image such as
that acquired by CT (eg, a nodule can overlap with ribs in a
chest radiograph, whereas a nodule and ribs are separated in
a CT image).

The MTANN is a highly nonlinear filter that can be
trained by the use of input images and corresponding teach-
ing images. The MTANN consists of a modified multilayer
ANN (39,40) that is capable of operating on image data di-
rectly, as shown in Figure 1. First, a region of interest (ROI)
including a nodule or non-nodule is extracted automatically
from a chest radiograph on the basis of the location of the

Figure 1. Architecture and training of an MT
in chest radiographs. In this procedure, a back
contrast normalization is applied to an ROI. Th
ROI in a chest radiograph are entered as input
corresponding to the center pixels in the input
contains a 2D gaussian distribution of gray lev
levels.
nodule or non-nodule identified by our CAD scheme. The
inputs to the MTANN are pixel values in a sub-region, RS,

of the ROI. The output of the MTANN is a continuous
value that corresponds to the center pixel in the sub-region,
and is »

f�x, y� � NN�g�x � i, y � j��i, j � RS�, (1)

where f(x,y) is an estimate for the teaching value, x and y
are the indices of coordinates, NN{●} is the output of the
modified multilayer ANN, and g(x,y) is an input pixel
value. The output image is obtained by scanning of an
input image with the MTANN.

Preprocessing of ROIs
The background trends in the ROIs in a chest radiograph

are, in general, different from those at other locations in the
same image, those in another patient’s image, and those in
an image acquired under different acquisition conditions. In
order to reduce these effects, we applied a background-
trend-correction technique (41) to the ROIs in our database
images. The background-trend-correction technique is a tech-
nique that involves subtracting, from the original ROI, a
two-dimensional (2D) surface that is fitted to gray levels in
the ROI. We used a 2D nth order polynomial as the 2D sur-
face, as follows:

Fn�x, y� � �
k�1

n�1

�
m�1

k

a�k�1�k⁄2�mxk�mym�1, (2)

where ak is the kth coefficient, and k and m are variables.

for distinguishing nodules from non-nodules
d-trend-correction technique followed by

el values in sub-regions extracted from an
e MTANN. The MTANN outputs single pixels
regions. The teaching image for a nodule
nd that for a non-nodule contains zero gray
ANN
groun
e pix
to th
The coefficients of the 2D polynomial are determined by
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use of the least-squares method. The background trend in
the ROI is corrected by the following equation:

gB�x, y� � g�x, y� � Fn�x, y�. (3)

Contrast normalization is then performed on the back-
ground-trend-corrected ROI. All pixel values in the ROI are
divided by the average pixel value in a circle region, RC,
represented by

gC�x, y� �
gB�x, y�

�
x,y�RC

gB�x, y� ⁄ N
, (4)

where N is the number of pixels in RC. The diameter of
the circle region was determined to be 40 pixels, which
corresponds to the maximum size of nodules to be de-
tected. The pixel values gC(x,y) of the ROI are normalized
such that a pixel value of –200 is zero and a pixel value
of 200 is one, with these numbers corresponding, respec-
tively, to the mean for the minimum pixel values in the
ROIs and the mean for the maximum pixel values in the
ROIs.

Training of the MTANN
The training of the MTANN for distinguishing between

nodules and non-nodules in chest radiographs is illustrated in
Figure 1. For distinguishing between nodules and non-nod-
ules, the teaching image is designed to contain the distribu-
tion for a “likelihood of being a nodule” (ie, the teaching
image for nodules contains a 2D gaussian distribution of
gray levels with standard deviation �T, and that for non-
nodules contains zero gray levels. The training region RT in
the input image is divided on a pixel-by-pixel basis into a
large number of overlapping sub-regions. The MTANN is
trained by presenting each of the input sub-regions together
with each of the corresponding teaching single pixels. The
error to be minimized by training is defined by

E �
1

2P�
p

�T�p� � f�p��2, (5)

where p is a training pixel number, T(p) is the pth training
pixel in the training regions RT in the teaching images, f(p)

is the pth training pixel in the training region RT in the
output images, and P is the number of training pixels.
The training region may be determined so as to cover
nodules sufficiently. The MTANN is trained by a modi-

fied back-propagation algorithm (39,40), which was de-
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rived for the modified multilayer ANN in the same way
as the original back-propagation algorithm (42,43). After
training, the MTANN is expected to generate a higher
likelihood value for a nodule, and a lower value for a
non-nodule.

Multi-MTANN
In order to distinguish between nodules and various types

of non-nodules, we have extended the capability of a single
MTANN and developed a multi-MTANN (37). The archi-
tecture of the multi-MTANN is shown in Figure 2. The
multi-MTANN consists of several MTANNs arranged in
parallel. Each MTANN is trained independently by use of
the same nodules and a different set of non-nodules. Each
MTANN acts as an expert system for distinguishing nodules
from non-nodules of a specific non-nodule type.

When an original image for the sth nodule candidate is
entered into the nth trained MTANN, the output image
for the sth nodule candidate is obtained by scanning of
the original image with the trained MTANN. The distinc-
tion between a nodule and a non-nodule is determined by
use of a score defined from the output image of the nth
trained MTANN, described as

sns � �
x,y�RE

fG��n;x, y� � fns�x, y�, (6)

where Sns is the score of the nth trained MTANN for the
sth nodule candidate, RE is the region for evaluation,
fns(x,y) is the output image of the nth trained MTANN for
the sth nodule candidate, whose center corresponds to the
center of RE, fG(�n;x,y) is a 2D gaussian function with the
standard deviation �n where its center corresponds to the
center of RE, and n is the MTANN number in the multi-
MTANN. A higher score would indicate a nodule and a
lower score would indicate a non-nodule. The distinction
between a nodule and the specific type of non-nodule is
determined by thresholding of the score with a different
threshold for each trained MTANN, because the appropri-
ate threshold for each trained MTANN may be different
according to the type of non-nodule used for training it.
The thresholds may be determined so as not to remove
any nodules, but to eliminate the imaging of non-nodules
to the maximum extent possible. The outputs of the ex-
pert MTANNs are combined by use of the logical multi-
plication (AND) operation in such a way that each of the
trained MTANNs eliminates no nodules but removes
some of the specific types of non-nodule for which the

MTANN was trained.
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RESULTS

Training
Figure 3 illustrates the effect of background-trend

correction and contrast normalization on the distinction
of nodules from non-nodules. Because the variations in
the backgrounds and degrees of contrast of the original
ROIs are large, as shown in Figure 3, it is difficult to
distinguish nodules from non-nodules in these original
ROIs. Background-trend correction and contrast nor-
malization substantially reduce the variations in the
backgrounds and degrees of contrast, as also shown in
Figure 3. The contrast of nodules with their back-
grounds is relatively constant in the processed ROIs. It
is apparent that the distinction between nodules and
non-nodules in the processed ROIs is better than that
in the original ROIs.

We classified false positives (non-nodules) reported
by our CAD scheme into six groups by using a method
for selecting training samples for a multi-MTANN
(38). With this method, training samples for each
MTANN were determined on the basis of the rankings
of scores in the free-response receiver-operating char-
acteristic (FROC) (44) space. As training samples for
each MTANN, we used 12 typical nodules selected by
one of the authors (K.S.) and 12 non-nodules deter-

Figure 2. Architecture of a multi-MT
ranged in parallel. Each MTANN is tra
nodule, but with the same nodules. E
distinguishing nodules from a specific
MTANN is integrated by the logical m
mined by use of the selection method (38) from each
of the 6 CAD-reported false-positive groups. Figure 4
shows 4 of the 12 training samples for nodules and
non-nodules for six MTANNs in the multi-MTANN.
These ROIs (45 x 45 pixels of each ROI are shown in
the figure) were extracted from chest radiographs. The
six sets of non-nodules included: (1) low-contrast ribs
with lung vessels, (2) soft-tissue opacities with higher
gray levels, (3) right ribs, (4) small round opacities, (5)
left ribs or ribs with horizontal orientations, and (6)
soft-tissue opacities. Each set was used for training the
MTANN, with the number in the multi-MTANN (eg,
set 1) corresponding to the MTANN number (num-
ber 1).

A three-layer structure was used as the structure of
each MTANN because any continuous mapping can be
realized approximately by three-layer ANNs (45,46). The
size of the sub-region RS of the MTANN, the standard
deviation �T of the 2D gaussian distribution, and the size
of the training region RT in the teaching image were de-
termined empirically to be 9 x 9 pixels, 5.0 pixels, and
19 x 19 pixels, respectively. We determined the number
of hidden units of the MTANN by using a method for
designing the structure of an ANN (34). The method is a
sensitivity-based pruning method (ie, the sensitivity to the
training error was calculated when a certain unit was re-
moved experimentally, and the unit with the smallest

consisting of several MTANNs ar-
by use of a different type of non-
TANN acts as an expert system for
of non-nodule. The output of each

ication (AND) operation.
ANN
ined
ach M
type
training error was removed). Removing the redundant
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hidden units and retraining the MTANN for recovering
the potential loss from this removal were performed alter-
nately, resulting in a reduced structure from which redun-
dant units were removed. As a result, the number of hid-
den units was determined to be 20. Thus, the numbers of
units in the input, hidden, and output layers were 81, 20,
and 1, respectively. With the parameters given above, the
training of each MTANN in the multi-MTANN was per-
formed 500,000 times. The training took a CPU time of
29.8 hours on a PC-based workstation (CPU: Pentium IV,
1.7 GHz; Dell Inc., Round Rock, TX), while the time for
applying the trained MTANN to nodule candidates was
negligibly small.

Evaluation
Figure 4 shows the output images of the trained

MTANNs for the cases used in training. The nodules in the
output images are represented by the light distribution near
the centers of ROIs, whereas the non-nodules in the output
images are largely dark around the center. This result indi-
cated that the MTANNs had properly learned the training
images. Figure 5 shows non-training nodules, and the corre-
sponding output images of the trained single MTANN 1.

Figure 3. Effect of background-trend c
tions of original ROIs including nodules e
ground-trend–corrected ROIs for these n
nodules, original ROIs including non-nod
for the non-nodules, and the contrast-no
Various nodules are represented by light distributions. Figure
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6 shows input images and the corresponding output images
of each of the six MTANNs for non-training cases. The
nodules in the output images of each MTANN were repre-
sented by light distributions near the centers of the nodules,
whereas non-nodules in the corresponding group for which
the MTANN was trained were mainly dark around the cen-
ter in the output images, as expected. It is apparent that the
distinction between nodules and non-nodules in the output
images of the MTANN is superior to that in the original
images.

We applied the trained multi-MTANN to the 75 true pos-
itives (nodules) and 410 false positives (non-nodules) pro-
duced by our CAD scheme. The scoring method was ap-
plied to the output images of the MTANNs, where the stan-
dard deviation �n was determined empirically to be within
the range from 4.5–7.7. Figure 7 shows the relationships
between the scores for the images from two MTANNs in
the multi-MTANN. The results show that each MTANN
could remove different non-nodules without removing any
true-positive nodule; accordingly, use of the multi-MTANN
could eliminate various non-nodules. For example, if a
threshold of 0.64 is used for thresholding the scores from
MTANN 1 (Fig. 7a, vertical axis), all nodules can be distin-

tion and contrast normalization. Illustra-
ted from chest radiographs, the back-
s, the contrast-normalized ROIs for the
the background-trend-corrected ROIs
ed ROIs for the non-nodules.
orrec
xtrac
odule
ules,
guished from about 30% of non-nodules. If a threshold of
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0.49 is used for thresholding the scores from MTANN 2
(Fig. 7a, horizontal axis), another 10% of non-nodules can
be removed without the loss of any nodules. By combining
these thresholds, 40% of non-nodules can be removed. Thus,
the use of 6 different thresholds for thresholding the scores
from 6 MTANNs could eliminate many non-nodules.

The performance of the multi-MTANN was evaluated by
FROC curves, as shown in Figure 8. The FROC curve ex-
presses an overall sensitivity as a function of the number of

Figure 4. (a) Training samples of nodule
sponding output images of the trained M
nodules (four images for each MTANN)
trained MTANNs.

Figure 5. Illustrations of various non-training n
trained MTANN 1.
false positives per image at a specific operating point on the
curve. With the multi-MTANN, the number of false posi-
tives was reduced, and at a certain operating point on the
FROC curve, it was reduced to 31.7% (130/410), with a
reduction of 1 true positive. The multi-MTANN reduced the
false-positive rate of our original CAD scheme from 4.5 to
1.4 (130/91) false positives per image, at an overall sensitiv-
ity of 81.3% (74/91).

In order to investigate the effect of the background-
trend correction on the performance of the MTANN, we

p left four images) and the corre-
1, and (b) training samples of non-

the corresponding output images of the

s and the corresponding output images of the
s (to
TANN
and
conducted experiments under four conditions: (1) no
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background-trend correction, (2) use of the first-order
polynomial in the background-trend correction, (3) use of
the second-order polynomial, and (4) use of the third-
order polynomial. The performance of the MTANN was
evaluated by ROC analysis (47,48). Figure 9 shows the
ROC curves for the MTANNs under the four conditions.
The result showed that the background-trend correction
was required for the MTANN for chest radiographs. Sta-
tistical analyses of ROC curves showed that differences
between MTANNs without correction and each of the
other three conditions, and also between the first-order
polynomial and the third-order polynomial, were statisti-
cally significant, but that differences between other com-
binations were not. The values of Az, the area under the
ROC curve (49), for the MTANN with use of the back-
ground-trend correction with the first-order polynomial
and for the MTANN with the second-order polynomial
were very similar (both Az � 0.75). However, the perfor-
mance of the MTANN with the first-order polynomial at
higher sensitivities was better than that with the second-
order polynomial. Therefore, we used the first-order poly-
nomial in the background-trend correction.

To investigate the generalization ability (performance for

Figure 6. (a) Non-training nodules and the corresponding output
the corresponding output images of the trained MTANNs.
non-training cases) of the multi-MTANN, we evaluated its
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performance with non-training cases alone (ie, the training
samples for 12 nodules and 72 non-nodules were excluded
from the evaluation). Because the distinction between nod-
ules and non-nodules in the output images of the multi-
MTANN for training cases shown in Figure 4 was similar to
that for the non-training cases shown in Figure 6, the perfor-
mance of the multi-MTANN for non-training cases would
be similar to that for training cases. We defined the number
of false positives per image in this evaluation as

FPS �
RFP

NIMG �
TFP � FPT

TFP

, (7)

where RFP is the number of remaining false positives
after application of a false-positive reduction method,
NIMG is the number of images in the complete database,
TFP is the total number of false positives reported by the
CAD scheme, and FPT is the number of false positives
used as training samples, with the result that the use of
some false positives for training the multi-MTANN does
not artificially reduce the overall false-positive rate. The

es of the trained MTANNs, and (b) non-training non-nodules and
imag
performance of the multi-MTANN for non-training cases
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was similar to its performance for the complete database,
as shown in Figure 8.

DISCUSSION

We used 75 true-positive nodules from our original
CAD scheme for testing MTANNs in this study. The
performance of MTANNs with the false negatives (16

Figure 7. Relationships between scores from two MTANNs in th
circles). (a) Relationship between MTANNs 1 and 2, (b) relationsh
5 and 6.
nodules) in our original scheme is of interest. Because
the nodules that produced false-negative results were
relatively small and of low-contrast, it might be diffi-
cult for MTANNs to detect these false-negative nod-
ules. However, the results of our experiments with CT
images (37) indicated a relatively high level of perfor-
mance of MTANNs on the database, including false-
negative nodules that were small and of low-contrast.
Therefore, we believe that the performance of

lti-MTANN for nodules (white circles) and non-nodules (black
tween MTANNs 3 and 4, and (c) relationship between MTANNs
e mu
ip be
MTANNs for such false-negative nodules would be
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comparable to their performance on the true-positive
nodules in the present study.

Use of the multi-MTANN technique substantially re-
duced the false-positive rate with our CAD scheme for
lung-nodule detection in chest radiographs, while preser-

Figure 8. FROC curve (thick solid
of 6 MTANNs for 75 true positives (n
nodules), and FROC curve (dotted c
training cases (ie, the training sampl
The FROC curve of the multi-MTAN
and a reduction in the false-positive

Figure 9. Effect of background-trend correction on the perfor-
mance of an MTANN. The ROC curves are shown of the MTANNs
for four conditions: (1) no background-trend correction, (2) use of
the first-order polynomial in the background-trend correction, (3)
use of the second-order polynomial in the background-trend cor-
rection, and (3) use of the third-order polynomial in the back-
ground-trend correction.
bving a high level of sensitivity.
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