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Extraction of Left Ventricular Contours From Left
Ventriculograms by Means of a Neural Edge Detector
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Abstract—We propose a method for extracting the left ventric-
ular (LV) contours from left ventriculograms by means of a neural
edge detector (NED) in order to extract the contours which accord
with those traced by a cardiologist. The NED is a supervised edge
detector based on a modified multilayer neural network, and is
trained by use of a modified back-propagation algorithm. The NED
can acquire the function of a desired edge detector through training
with a set of input images and the desired edges obtained from the
contours traced by a cardiologist. The proposed contour-extrac-
tion method consists of 1) detection of “subjective edges” by use of
the NED; 2) extraction of rough contours by use of low-pass fil-
tering and edge enhancement; and 3) a contour-tracing method
based on the contour candidates synthesized from the edges de-
tected by the NED and the rough contours. Through experiments,
it was shown that the proposed method was able to extract the con-
tours in agreement with those traced by an experienced cardiolo-
gist, i.e., we achieved an average contour error of 6.2% for left ven-
triculograms at end-diastole and an average difference between the
ejection fractions obtained from the manually traced contours and
those obtained from the computer-extracted contours of 4.1%.

Index Terms—Contour extraction, neural network, subtle edge,
supervised edge detection.

I. INTRODUCTION

EXTRACTION of left ventricular (LV) contours (borders)
from left ventriculograms is the most fundamental task

in the assessment of cardiac functions of the heart such as LV
volume, and ejection fraction. Accordingly, many investigators
have developed a number of methods for the automated extrac-
tion of the contours from left ventriculograms [1]–[8]. In left
ventriculograms, the density within the left ventricle is not uni-
form because of the following: contrast medium in the left ven-
tricle may be diluted with blood from the mitral valve; it is not
possible to use a large amount of contrast medium without in-
creasing the risk for the patient. Therefore, most edges of the
LV contours are subtle, i.e., they are not clear edges with uni-
form contrast (such edges are referred to as “subtle edges” in
this paper).
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In clinical applications, a cardiologist may manually modify
some parts of the LV contours extracted by an automated
method, with which he/she does not agree. Therefore, the
development of a method for extracting the LV contours in
agreement with the cardiologist’s decision is needed by cardi-
ologists. Our purpose in this study was to develop a method for
extracting the LV contours that accord with the cardiologist’s
decision.

Various methods for extracting LV contours have been devel-
oped for X-ray images [1]–[8], ultrasonic images [9]–[15], com-
puted tomography (CT) images or MRIs [16]–[21], and emis-
sion CT images [22]–[24]. Most methods consisted of detection
of edges (or boundaries) and integration of these as a contour.
The detection of edges was performed by use of an edge de-
tector or a thresholding technique. The integration of edges was
performed by use of a searching technique or a deformable con-
tour model such as the Snakes [25]. Therefore, the performance
of contour extraction in terms of agreement with the contours
traced by a cardiologist would depend on the performance of
the edge detection method.

In the field of computer vision, many edge detectors have
been proposed [26]–[32]. These edge detectors could detect
edges effectively from various kinds of images, including
medical images such as left ventriculograms [3], [4], echocar-
diograms [9], [13], cardiac CT [16], cardiac MRI [17], or
nuclear images [22]. However, the conventional edge detectors
cannot detect the “subjective edges” that are judged when a
person tries to trace the contour of an object in an image, e.g.,
the LV contour traced by a cardiologist. The subjective edges
can differ when different persons trace them. Therefore, the
detected edges would not necessarily accord with the contours
traced by a certain cardiologist, because they do not have the
function of training, i.e., the edges are determined by certain
criteria (or a definite model) in these edge detectors.

Recently, in the field of signal processing, nonlinear filters
based on a multilayer neural network (NN), called neural fil-
ters, have been studied [33]–[42]. Suzuki et al. have developed
training methods [38], [39], design methods [36], [40], and an
analysis method [42] for neural filters, and applied them for re-
duction of the quantum mottle in radiologic images [37], [41].
The neural filters can acquire the function of the desired filter
by training with a set of input images and the desired images.

In this paper, we extend the use of neural filters and propose a
supervised edge detector, called a neural edge detector (NED),
for detecting the subjective edges, and develop a method for
extracting LV contours from left ventriculograms by means of
the NED in order to extract the contours that agree with those
traced by a cardiologist. We evaluated the effectiveness of the
proposed method in extracting the LV contours in comparison
to those traced by an experienced cardiologist.
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Fig. 1. Method for extracting LV contours from left ventriculograms by means
of the NED.

II. PREVIOUS WORK

Edge detectors based on various NN models can be classified
into the following four broad classes.

1) Edge detectors based on cellular NNs [43]–[45].
2) Edge detectors based on self-organizing maps [46]–[48].
3) Edge detectors based on Hopfield networks [49]–[51].
4) Edge detectors based on multilayer NNs [52]–[54].

Because the above edge detectors except those in class 4 are un-
supervised ones, they cannot necessarily detect the subjective
edges detected by a cardiologist. As for the edge detectors in
class 4, since the NNs are used as a classifier that classifies di-
rectly whether a certain pixel belongs to the class, an edge or
the background, they cannot handle continuous values such as
edge magnitude and the fluctuation of a cardiologist’s tracing.
The capability of handling the edge magnitude is important for
extracting the subjective edges including the cardiologist’s fluc-
tuation from subtle edges, because it is difficult for NN-based
edge detectors to learn various edges having different gradients
and widths as a uniform thin edge where the width is one pixel.

III. CONTOUR-EXTRACTION METHOD

A block diagram of the proposed contour-extraction method
is shown in Fig. 1. The proposed method consists of 1) detection
of the subjective edges by use of the NED, 2) extraction of rough
contours by use of low-pass filtering and edge enhancement, and
3) a contour-tracing method based on the contour candidates
that are synthesized from the edges detected by the NED and
the rough contours. The subjective edges detected by the NED
play a major role in contour extraction in making the contours
approach those traced by a cardiologist; the rough contours play
a supporting role for tracing the target contours stably. We de-
scribe each part of the method below.

A. Edge Detection by Use of the Neural Edge Detector

1) Architecture of the Neural Edge Detector: We are ex-
tending the neural filters [37]–[42] to deal with the detection
of the subjective edges detected by a cardiologist, and we call
this technique NED. The architecture of the NED is shown in

Fig. 2. Architecture of the NED.

Fig. 2. The NED consists of a modified multilayer NN, which
can directly handle input gray levels and the output edge mag-
nitude. The structure of a multilayer NN is modified to handle
the edge magnitude. The modified multilayer NN employs an
identity function instead of a sigmoid function as the activation
function of the unit in the output layer because the character-
istics of an NN were significantly improved with a linear func-
tion when applied to the continuous mapping of values in image
processing [55], [56], for example (see Appendix for theoret-
ical considerations). In the NED, edge detection is performed
by scanning of an input image with the modified multilayer NN
in which the activation functions of the units in the input, hidden,
and output layers are an identity, a sigmoid, and an identity func-
tion, respectively.

The pixel values of an original left ventriculogram are nor-
malized first. The pixel values within a local window are
input to the NED: the inputs to the NED are a normalized pixel
value of an original input image and spatially adjacent
normalized pixel values. The output of the NED is a continuous
value, which corresponds to the center pixel in the local window,
represented by

(1)

where

(2)

is the input vector to the NED, is an estimate for the
desired edge magnitude, and are the indices of coordinates,

is the output of the modified multilayer NN, is
a normalized pixel value, is a normalization factor for nor-
malizing gray levels such that the maximum level of the gray
scale is one and the minimum level is zero, and is the local
window of the modified multilayer NN.
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All pixels in an image may be entered as the inputs to the NED
by scanning of the entire image with the NED. The NED can be
designed by training such that the input images are converted
to the desired edge images. The property of a multilayer NN
for universal approximation [57], [58] guarantees capability of
the NED, i.e., because it has been shown theoretically that a
multilayer NN can realize any continuous mapping (including
any continuous functions) approximately, the NED would have
a high performance.

2) Synthesizing the Teacher Images: The teacher image con-
taining the desired edges is synthesized from the contour that
was traced by a cardiologist. The contour traced by a cardiol-
ogist may include the fluctuation of the cardiologist’s tracing.
It might be difficult for the NED to learn the contour including
the fluctuation as a thin curve. Therefore, the teacher image is
synthesized by smoothing of the contour traced by a cardiol-
ogist with a Gaussian filter to improve the convergence of the
training as follows:

(3)

where is the image containing the contour traced by a
cardiologist, is a Gaussian function with standard de-
viation , and is the convolution operator. Note that
is one at the coordinates of the contour traced by a cardiologist,
and zero at others. is normalized such that the area
under the Gaussian function is one.

3) Training of the Neural Edge Detector: In order to learn
the relationship between the input image and the desired edges,
the NED is trained with a set of input images and the teacher
images by a change in the weights between the layers. The error
to be minimized by training is defined by

(4)

where is a training pixel number, is the th training pixel in
the training regions in the teacher images, is the th training
pixel in the training regions in the output images, and is the
number of training pixels (which corresponds to the number of
pixels in the training regions). The NED is trained by the mod-
ified back-propagation (BP) algorithm [55], which was derived
for the structure described above, i.e., an identity function is em-
ployed as the activation function of the unit in the output layer,
in the same way as the standard BP algorithm [59], [60]. The
characteristics of training were improved with the modified BP
algorithm in the application to the continuous mapping issues
[55], [56] (see Appendix for theoretical considerations). In the
modified BP algorithm, the correction of the weight between the

th unit in the hidden layer and the unit in the output layer is
represented by

(5)

where is the learning rate, is the output of the th unit in
the hidden layer, and is the delta of the delta rule [59], [60]. By
use of the delta, the corrections of any weights can be derived
in the same way as the BP algorithm. The training would be
performed until the error becomes less than or equal to the
predetermined error, or the number of training epochs exceeds
the predetermined number.

B. Extraction of Rough Contours

For extraction of rough contours, the following three pro-
cesses are performed on the original left ventriculograms.

1) Thresholding: The original left ventriculogram is
converted into a binary image by use of a thresholding technique
based on Otsu’s threshold selection [61] as follows:

(6)

where is the threshold that is determined by Otsu’s threshold
selection. Otsu’s threshold selection is a technique for deter-
mining a threshold from a histogram. This method selects the
lowest point between two classes in the histogram automatically
(it is formulated as discriminant analysis). A particular criterion
function is used as a measure of statistical separation, i.e., the
method involves minimizing the ratios of between-class vari-
ance to the total variance.

2) Low-Pass Filtering: Low-pass filtering with a Hamming
window [62] is performed on the binary image
as follows:

(7)

where and are the Fourier transform operator
and the inverse Fourier transform operator, respectively, and

is a Hamming window function with a diameter .
3) Edge Enhancement: The rough contours are obtained by

performing an edge-enhancement technique on the low-pass-
filtered image as follows:

(8)

where is the Sobel operator [26].

C. Contour-Tracing Method

Contour candidates are obtained by synthesizing of the edges
detected by the NED and the rough contours, as described
below:

(9)

where is a weighting factor. We modified a method
for tracing coronary arteries in [55], and we use it as a con-
tour-tracing method. First, we assign two points, which are
the ends of the contour to be traced, manually to the con-
tour-tracing method. With the contour-tracing method, an LV
contour is traced from one given point to the other point on
the contour-candidate image. Let be the vector radiating in
all directions from a certain object point . An average pixel
value on the vector in direction is calculated by the following
equation:

(10)

where is a group of the coordinates on the vector in direc-
tion from the current object point , and is the length of
the vector . The average pixel value on the vector is weighted
by a weighting function, as follows:

(11)
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where is the previous tracing direction, is a
weighting function represented by

(12)

and is a weighting parameter for determining the search
range. The next tracing direction is determined by

(13)

Thus, the next object point is determined as the end of the
vector in the tracing direction . By treating and as
the current object point and the previous tracing direction ,
the tracing process proceeds. These processes are performed
repeatedly until the following stopping condition is fulfilled:

is less than 5% of . The 5% is a margin for pre-
venting a wrong tracing due to noise, and was determined em-
pirically. The tracing for one contour is performed twice from
the given two points. The contour from one point to the other is
obtained by combining the two traced curves at their crossing
point.

IV. EVALUATION OF THE PERFORMANCE OF THE NED

We carried out experiments to compare the performance of
the NED with that of a conventional edge detector.

A. Training the NED

In this study, we used twelve left ventriculograms at end-di-
astole (size: 512 512 pixels, gray scale: 1 024 levels) and
twelve left ventriculograms at end-systole, which had been ac-
quired from twelve patients with a digital angiography system
(DFA-100, Hitachi Medical, Tokyo, Japan) in a hospital. The
normalization factor was set to be the maximum level of
the gray scale (1 023). We applied a digital subtraction angiog-
raphy (DSA) technique to the left ventriculograms. The DSA
technique (temporal subtraction) involves subtracting the image
obtained without a contrast medium from an image taken with
a contrast medium. By use of the DSA technique, we obtained
the left ventriculogram that visualizes the left ventricle without
interference from surrounding structures such as the ribs. Exam-
ples of the images used for training the NED are shown in Fig. 3.
Fig. 3(a) and (c) shows a left ventriculogram at end-diastole in
the 30 right anterior oblique projection (a region of 340 340
pixels is displayed as an example) and a left ventriculogram at
end-systole (from a different patient), respectively. It should be
noted that some parts of the contours of the left ventricles are
very subtle. An experienced cardiologist (M.N.; 25 years of ex-
perience) traced the left ventricles in the left ventriculograms
very carefully. He traced the contour by viewing the images be-
fore and after the current image. He traced and modified the con-
tour alternately until he was satisfied with the result. We used
the contours traced in this way as a “gold standard.” The teacher
images shown in Fig. 3(b) and (d) were synthesized from the
contours traced by the cardiologist on the basis of (3), where
was 1.25 pixels, which corresponded to the reproducibility of a
cardiologist’s tracing in a controlled situation [63].

The training of the NED for left ventriculograms at end-di-
astole and that for left ventriculograms at end-systole were per-
formed separately, because the edges of the contours in the two
left ventriculograms seemed to be different. We trained the NED

Fig. 3. Examples of the images used for training the NED. (a) Left
ventriculogram at end-diastole used as the input image. (b) Teacher image
containing the desired edges for the left ventriculogram (a), which was
synthesized from the contour traced by an experienced cardiologist. (c) Left
ventriculogram at end-systole used as the input image. (d) Teacher image for
the left ventriculogram (c).

for left ventriculograms at end-diastole with a set of the input
image and the teacher image shown in Fig. 3(a) and (b). The
training region was selected to be the region that covered the
desired edges in the teacher image. A three-layer structure was
employed as the structure of the NED, because any continuous
mapping (including any continuous functions) can be realized
approximately by three-layer NNs [57], [58]. The local window
of the NED was selected to be eleven by eleven pixels. The
number of units in the hidden layer was 20. Thus, the numbers
of units in the input, hidden, and output layers were 121, 20, and
one, respectively.

With the parameters above, the training of the NED was
performed on 200 000 epochs—one epoch means one training
run for one training set—and converged with a mean absolute
training error (MATE) between the input image and the teacher
image of 19.9%. The CPU execution time for the training
was 126 hours on a workstation (UltraSPARC-II 300 MHz,
Sun Microsystems). After training, a method for designing the
optimal structure of an NN [64] was applied to the trained NED.
The method is a sensitivity-based pruning method, i.e., the
sensitivity to the training error was calculated when a certain
unit was removed virtually, and the unit with the minimum
training error was removed first. The redundant units in the
input and hidden layers were removed on the basis of the effect
of removing each unit on the training error, and then the NED
was retrained to recover the potential loss due to the removal.
Each process was performed alternately, resulting in a reduced
structure where redundant units were removed. As a result, the
optimal number of units in the input layer and that in the hidden
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layer were determined as 64 (within a nine-by-nine-pixel
region) and ten, respectively. Similarly, we trained the NED for
left ventriculograms at end-systole with a set of the input image
and the teacher image shown in Fig. 3(c) and (d). The training
converged with an MATE of 21.9%. The optimal number of
units in the input layer and that in the hidden layer were 70
(within a nine-by-nine-pixel region) and nine, respectively.

It should be noted that the training of the NED could not con-
verge when we did not use the Gaussian filtered contour, but
directly used the contour traced by a cardiologist as the teacher
image. This is because training the contour containing the fluc-
tuation to be the contour containing no fluctuation was difficult
for the NED. This result indicates that the use of the teacher im-
ages synthesized in consideration of the fluctuation is important
for training the NED.

B. Comparison With a Conventional Edge Detector

A well-known representative of conventional edge detectors
is the Marr-Hildreth edge detector [28], which has been used
in a method for extracting LV contours in left ventriculograms
[4]. For comparison of the NED with the Marr-Hildreth edge
detector, the parameters of the Marr-Hildreth edge detector were
optimized with the images used for training the NED under the
minimum-mean-square error criterion, defined by (4). Thus, the
Marr-Hildreth edge detector had the highest performance for
the training images. The results of edge detection are shown in
Fig. 4. The Marr-Hildreth edge detector failed to detect subtle
edges. The edges detected by the Marr-Hildreth edge detector
are discontinuous, i.e., some parts of the edges near the target
contour are missing. Furthermore, these edges are different from
the desired edges in the teacher image (i.e., the contour traced
by a cardiologist). On the basis of such edges, even a better
contour-tracing method may not be able to trace the contour
well. In contrast, in the edges detected by the trained NED, there
is little noise near the target contour. The detected edges are
relatively continuous and are similar to the desired ones.

C. Quantitative Evaluation With Nontraining Images

We used fourfold cross-validation [65] for evaluation of
edge detectors. This cross-validation involves four separate
runs on four sets of test samples. First, twelve left ventricu-
lograms at end-diastole or at end-systole were partitioned
into four different portions, each of which included three left
ventriculograms. In each of the four runs, one portion was used
for training the NED, and the remaining three portions were
pooled for testing. Thus, the number of NEDs to be trained
for left ventriculograms at end-diastole or at end-systole, the
number of training images for each NED, and the number of
test (nontraining) images for each NED were four (eight in
total), three (24 in total), and nine (72 in total), respectively.
The training of each NED was performed on 200 000 epochs,
and each training converged with MATEs of 17.7%–22.5%. We
applied the method for designing the optimal structure of an NN
[64] for design of the trained NEDs. As a result, the numbers
of the units in the input layer and the numbers of the units
in the hidden layer were 65–81 and 6–12, respectively. The
parameters of the Marr-Hildreth edge detector were optimized
in the same way as described in the previous subsection; thus,
the Marr-Hildreth edge detector had the highest performance.

Fig. 4. Comparison of the edges detected by the trained NED with those
detected by a conventional edge detector. (a) Output image of the Marr-Hildreth
edge detector, the parameters of which were optimized with the images used
for training the NED, for the left ventriculogram shown in Fig. 3(a). (b) Output
image of the trained NED. (c) Output image of the Marr-Hildreth edge detector
for the left ventriculogram shown in Fig. 3(c). (d) Output image of the trained
NED.

TABLE I
COMPARISON OF THE PERFORMANCE OF THE NED WITH THAT OF A

CONVENTIONAL EDGE DETECTOR FOR NONTRAINING IMAGES

The mean absolute error (MAE) between the detected edges
and the desired edges synthesized from the contour traced by
a cardiologist (i.e., the same as the teacher image) for 72 test
(nontraining) images is shown in Table I. The MAEs of the
NED were smaller than those of the Marr-Hildreth edge de-
tector. This result demonstrates that the performance of the NED
is higher in terms of detection of the subjective edges detected
by a cardiologist.

V. EVALUATION OF THE PERFORMANCE OF THE

CONTOUR-EXTRACTION METHOD

A. Results of Contour Extraction

The method for extracting the rough contours was applied
to left ventriculograms. The parameter of the low-pass filtering

was determined as such that the target contour was
covered with the rough contours sufficiently (Nq is the Nyquist
frequency). The result of the extraction of rough contours for the
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Fig. 5. Result of the extraction of the LV contour. (a) Rough contours extracted
by the rough-contour-extraction method. (b) Image of the contour candidates,
which is overlaid with the result of the contour tracing. (c) Comparison of the
contour extracted by the proposed method, indicated by a black curve, with
that traced by an experienced cardiologist, indicated by a white curve (E =
1:6%).

left ventriculogram shown in Fig. 3(a) is shown in Fig. 5(a). The
contour candidates were synthesized from the rough contours
and the edges detected by the trained NED. We used a weighting
factor of 0.5. The image of the contour candidates is shown
in Fig. 5(b). We assigned two points for tracing to the contour-
tracing method. These two points were near the mitral valve-
aortic root junction and the junction of the aortic root and the
anterior endocardium. The reproducibility of determination of
the two points would be similar to that of a cardiologist’s tracing
[63], which corresponded to a standard deviation of 1.25 pixels,
because the two points are generally included in the contour
traced by a cardiologist.

Next, the contour-tracing method was applied to the contour
candidates. The parameters of the contour-tracing method,
and , were determined empirically as 15 pixels and 0.35,
respectively. By use of the contour-tracing method, the contour
was traced stably, as shown in Fig. 5(b). Fig. 5(c) shows the
contour extracted by the proposed method, overlaid with the
target contour traced by a cardiologist. These two contours agree
extremely well.

B. Quantitative Evaluation

For evaluation of the performance of the proposed method,
the contour was closed by connecting the given two points, and
then the following regions were calculated:

(14)

(15)

TABLE II
QUANTITATIVE EVALUATION OF THE PERFORMANCE OF THE PROPOSED METHOD

IN TEST SETS COMPARED TO THE CONTOURS TRACED BY A CARDIOLOGIST

where is the region within the contour extracted by the pro-
posed method, and is the region within the contour traced
by a cardiologist. In order to evaluate quantitatively the differ-
ence between the contour extracted by the proposed method and
that traced by a cardiologist, we defined a contour error as

(16)

where denotes the logical exclusive OR operator, and is
a region for evaluation. Because, in clinical applications, car-
diologists use the area within the left ventricle for calculation
of cardiac functions such as LV volume and ejection fraction,
evaluation of the method with the area is also important from
the clinical point of view. Therefore, we defined an area error as

(17)

A labeling algorithm [66] was applied to the binary image for
calculation of the area. We also defined a difference in ejection
fractions as

(18)

where is the ejection fraction obtained from the contour
traced by a cardiologist, and is the ejection fraction ob-
tained from the contour extracted by the proposed method.

The fourfold cross-validation was applied for the evaluation
of the proposed contour-extraction method in the same way as in
the previous section, i.e., we used eight NEDs trained with eight
different training sets, and applied eight test sets representing
each of nine nontraining left ventriculograms. The results of
the contour extraction for all test sets are shown in Table II.
The average contour and area errors for left ventriculograms at
end-diastole were small (6.2% and 4.2%, respectively). How-
ever, the errors for left ventriculograms at end-systole were rel-
atively large (17.1% and 11.6%, respectively), because the areas
of the left ventriculograms at end-systole were relatively small;
the areas are a denominator in the definitions of errors in (17)
and (16). This result indicates that the proposed contour-extrac-
tion method has a potential to extract the contours in agreement
with those traced by a cardiologist. The standard deviation of
the contour error and the area error for left ventriculograms at
end-diastole was also small (2.1% and 2.5%, respectively). This
result shows that the proposed method is stable.

The results of extraction of the contours with the least two
errors, medium two errors, and the largest two errors for left
ventriculograms at end-diastole and at end-systole in test sets
are shown in Figs. 6–11. The images (b) display the contour
extracted by the proposed method overlaid with that traced by
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Fig. 6. Results of the contour extraction in the best two cases in test sets for left
ventriculograms at end-diastole (Upper: E = 2:3%; Lower: E = 3:5%).
(a) Input left ventriculogram. (b) Comparison of the contour extracted by the
proposed method, indicated by a black curve, with that traced by a cardiologist,
indicated by a white curve.

Fig. 7. Results of the contour extraction in medium two cases in test
sets for left ventriculograms at end-diastole (Upper: E = 5:7%; Lower:
E = 6:3%). (a) Input left ventriculogram. (b) Comparison of the contour
extracted by the proposed method, indicated by a black curve, with that traced
by a cardiologist, indicated by a white curve.

a cardiologist. In the best cases shown in Figs. 6(b) and 9(b),
the contours extracted by the proposed method agree very well
with those traced by a cardiologist. In the medium cases shown

Fig. 8. Results of the contour extraction in the worst two cases in test
sets for left ventriculograms at end-diastole (Upper: E = 8:7%; Lower:
E = 12:2%). (a) Input left ventriculogram. (b) Comparison of the contour
extracted by the proposed method, indicated by a black curve, with that traced
by a cardiologist, indicated by a white curve.

Fig. 9. Results of the contour extraction in the best two cases in test sets for
left ventriculograms at end-systole (Upper:E = 8:2%; Lower:E = 9:5%).
(a) Input left ventriculogram. (b) Comparison of the contour extracted by the
proposed method, indicated by a black curve, with that traced by a cardiologist,
indicated by a white curve.

in Figs. 7(b) and 10(b), although the proposed method failed
to trace some parts due to subtle edges, the extracted contours
almost agree with those traced by a cardiologist. In the worst
cases shown in Figs. 8(b) and 11(b), some parts of the extracted
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Fig. 10. Results of the contour extraction in medium two cases in test
sets for left ventriculograms at end-systole (Upper: E = 13:8%; Lower:
E = 14:2%). (a) Input left ventriculogram. (b) Comparison of the contour
extracted by the proposed method, indicated by a black curve, with that traced
by a cardiologist, indicated by a white curve.

Fig. 11. Results of the contour extraction in the worst two cases in test
sets for left ventriculograms at end-systole (Upper: E = 29:9%; Lower:
E = 35:6%). (a) Input left ventriculogram. (b) Comparison of the contour
extracted by the proposed method, indicated by a black curve, with that traced
by a cardiologist, indicated by a white curve.

contours are different from the target contours because of subtle
edges.

TABLE III
PERFORMANCE OF THE PROPOSED METHOD WITHOUT THE NED

C. Discussion

In order to investigate the effects of the NED on the per-
formance of contour extraction, we applied the contour-tracing
method directly to the rough contours, i.e., contour candidates
without the edges detected by the NED (a weighting factor
was zero) were used. The results of the contour extraction are
shown in Table III. The average contour errors of the method
with the NED for left ventriculograms at end-diastole and end-
systole (6.2% and 17.1%, respectively) were smaller than those
of the method without the NED (13.4% and 21.0%, respec-
tively) with statistically significant differences (

and , respectively). The results indicated that
the NED contributed to extraction of the contours in agreement
with those traced by a cardiologist; in other words, the NED
played an important role in making the contours approach those
traced by a cardiologist.

Lilly’s contour-extraction method [3] is a trainable method
which consists of a knowledge-based image transformation, di-
rectional gradient search, expectations of object versus back-
ground location, least-cost path searches by dynamic program-
ming, and a digital representation of possible versus impossible
ventricular shape. Four points (two other points are included in
a comparison to the proposed method, i.e., the apical point and
a point indicating the extreme position of the mitral valve-infe-
rior wall region) are given to the method manually. According to
[3], the method was trained by using 25 images and was tested
on 25 images, and an average contour error of 11.0% and
standard deviation of errors of 5.7% were achieved.

Furthermore, we gave consideration to the relationship be-
tween the errors of the proposed method and the variability of
cardiologists’ tracing. The average variation of tracing among
cardiologists has been reported: according to [67], the average
area error for the left ventriculograms at end-diastole, that
for the left ventriculograms at end-systole, and the average dif-
ference of ejection fractions were 7.3%, 15.2%, and 7.0%, re-
spectively. The average area errors for the left ventriculograms
at end-diastole and end-systole and the average difference in the
ejection fractions of the proposed method were smaller (4.2%,
11.6%, and 4.1%, respectively).

VI. CONCLUSION

In this paper, we proposed an edge detector based on a multi-
layer NN, called an NED, in order to detect the subjective edges
that accord with contours traced by a cardiologist, and evaluated
a method for extracting LV contours from left ventriculograms
by means of the NED. Through experiments with left ventricu-
lograms at end-diastole and at end-systole, it was shown that the
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proposed method was able to extract the contours in agreement
with those traced by an experienced cardiologist.

In this study, we used the contours traced by a single car-
diologist as a “gold standard.” We could use the average con-
tour traced by several cardiologists in order to reduce the bias.
We plan to combine the NED with deformable contour models
such as Snakes [25] to improve the performance further. We re-
cently investigated the property of the NED in enhancing edges
in noisy natural images [68]. We extended the concept of the
NED and developed an NN-based scheme for distinction be-
tween specific opacities and other opacities in CT images [69].

APPENDIX

The NED consists of the modified multilayer NN which em-
ploys an identity function instead of a sigmoid function as the
activation function of the unit in the output layer. In order to
clarify the basic property of the modified multilayer NN with the
modified BP algorithm, we considered the relationship between
the modified multilayer NN and the original multilayer NN the-
oretically. As for the structure, we can understand easily that it
is difficult for the original multilayer NN to output values near
one and zero, whereas the modified multilayer NN can output
all values equally. In the modified BP algorithm, the correction
of the weight between the unit in the hidden layer and the unit
in the output layer is represented by

(19)

where is the output of the unit in the output layer, is the
input value to the activation function, and is the deriva-
tive of an identity function. On the other hand, the correction of
the weight in the original BP algorithm is represented by

(20)

where is the derivative of a sigmoid function. Comparing
the two equations, we find that the difference is just the deriva-
tive of the activation function. Therefore, we can rewrite the
right side of the above equation as follows, using :

(21)

When the training proceeds, the output of the original multilayer
NN should approach the teacher value . Therefore, the
learning rate of the original BP algorithm can be approximated by

(22)

This equation shows that the learning rate of the original BP al-
gorithm is modulated by the derivative of a sigmoid function,
which is 0.5 when the teacher value is 0.5, and is zero when the
teacher value is zero or one. In other words, the learning rate
of the modified BP algorithm corresponds to that of the orig-
inal BP algorithm before the modulation. Therefore, in the orig-
inal BP algorithm, the teacher values of zero and one are never

trained, and the training for the teacher value near zero and one
converges more slowly. This would affect the convergence char-
acteristic and the output characteristic. Therefore, the modified
multilayer NN with the modified BP algorithm would be suit-
able for image processing where the teacher values may be con-
tinuous values ranging from zero to one, whereas the multilayer
NN is suitable for a classification task where the teacher signal
is assigned to a class.
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