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Computer-Aided Diagnostic Scheme for Distinction
Between Benign and Malignant Nodules in Thoracic
Low-Dose CT by Use of Massive Training Artificial
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Abstract—Low-dose helical computed tomography (LDCT) is
being applied as a modality for lung cancer screening. It may
be difficult, however, for radiologists to distinguish malignant
from benign nodules in LDCT. Our purpose in this study was
to develop a computer-aided diagnostic (CAD) scheme for dis-
tinction between benign and malignant nodules in LDCT scans
by use of a massive training artificial neural network (MTANN).
The MTANN is a trainable, highly nonlinear filter based on an
artificial neural network. To distinguish malignant nodules from
six different types of benign nodules, we developed multiple
MTANNs (multi-MTANN) consisting of six expert MTANNs that
are arranged in parallel. Each of the MTANNs was trained by use
of input CT images and teaching images containing the estimate of
the distribution for the “likelihood of being a malignant nodule,”
i.e., the teaching image for a malignant nodule contains a two-di-
mensional Gaussian distribution and that for a benign nodule
contains zero. Each MTANN was trained independently with ten
typical malignant nodules and ten benign nodules from each of the
six types. The outputs of the six MTANNs were combined by use of
an integration ANN such that the six types of benign nodules could
be distinguished from malignant nodules. After training of the
integration ANN, our scheme provided a value related to the “like-
lihood of malignancy” of a nodule, i.e., a higher value indicates a
malignant nodule, and a lower value indicates a benign nodule.
Our database consisted of 76 primary lung cancers in 73 patients
and 413 benign nodules in 342 patients, which were obtained from
a lung cancer screening program on 7847 screenees with LDCT for
three years in Nagano, Japan. The performance of our scheme for
distinction between benign and malignant nodules was evaluated
by use of receiver operating characteristic (ROC) analysis. Our
scheme achieved an Az (area under the ROC curve) value of
0.882 in a round-robin test. Our scheme correctly identified 100%
(76/76) of malignant nodules as malignant, whereas 48% (200/413)
of benign nodules were identified correctly as benign. Therefore,
our scheme may be useful in assisting radiologists in the diagnosis
of lung nodules in LDCT.

Index Terms—Artificial neural network, computer-aided diag-
nosis (CAD), likelihood of malignancy, low-dose CT, lung nodule.
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I. INTRODUCTION

LUNG CANCER continues to rank as the leading cause
of cancer deaths among Americans; the number of lung

cancer deaths in each year is greater than the combined number
of breast, colon, and prostate cancer deaths [1]. Because CT is
more sensitive than chest radiography in the detection of small
nodules and of lung carcinoma at an early stage [2]–[4], lung
cancer screening programs are being investigated in the United
States [2], [5]–[10] and Japan [3], [11]–[13] with low-dose he-
lical computed tomography (LDCT) as the screening modality.
It may be difficult, however, for radiologists to distinguish be-
tween benign and malignant nodules on LDCT. In a screening
program with LDCT in New York, 88% (206/233) of suspicious
lesions were found to be benign nodules on follow-up examina-
tions [5]. In a screening program in Japan, only 83 (10%) among
819 scans with suspicious lesions were diagnosed to be cancer
cases [13]. According to recent findings at the Mayo Clinic, 2
792 (98.6%) of 2 832 nodules detected by a multidetetor CT
were benign, and 40 (1.4%) nodules were malignant [7]. Thus, a
large number of benign nodules were found with CT; follow-up
examinations such as high-resolution CT (HRCT) and/or biopsy
were performed on these patients. Therefore, computer-aided
diagnostic (CAD) schemes for distinction between benign and
malignant nodules in LDCT would be useful for reducing the
number of “unnecessary” follow-up examinations.

Our purpose in this study was to develop a CAD scheme for
distinction between benign and malignant nodules in LDCT by
use of a new pattern-classification technique based on a massive
training artificial neural network (MTANN).

II. MATERIALS

Our database consisted of 76 primary lung cancers in 73 pa-
tients and 413 benign nodules in 342 patients, which were ob-
tained from a lung cancer screening program on 7 847 scree-
nees with LDCT from 1996 to 1999 in Nagano, Japan [4]. All
cancers were confirmed histopathologically at either surgery or
biopsy. During the initial clinical reading, all benign nodules
were reported as lesions suspected to be lung cancer or indeter-
minate lung lesions, but were not reported as benign cases. The
CT examinations were performed on a mobile CT scanner (CT-
W950SR; Hitachi Medical, Tokyo, Japan). The scans used for
this study were acquired with a low-dose protocol of 120 kVp,
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Fig. 1. Distributions of sizes of malignant and benign nodules in our database.

25 mA or 50 mA, 10-mm collimation, and a 10-mm reconstruc-
tion interval at a helical pitch of two. The pixel size was 0.586
mm or 0.684 mm. Each reconstructed CT section had an image
matrix size of 512 512 pixels. The nodule size ranged from
3 mm to 29 mm. When a nodule was present in more than one
section, the section with the greatest size as determined by an
experienced chest radiologist was used in this study, because ei-
ther a computerized detection scheme for lung nodules or a ra-
diologist is likely to select the section with the greatest nodule
size or a similar size rather than the section with a small nodule
size where the nodule may appear to be small and of low con-
trast. The centers of nodules were identified by an experienced
chest radiologist, and were used for extracting regions of in-
terest (ROIs) for training and testing of our scheme. The 76 pri-
mary lung cancers consisted of 22 (28.9%) nodules identifiable
in a single section, 37 (48.7%) nodules in two sections, and 17
(22.3%) nodules in three sections. The 413 benign nodules con-
sisted of 265 (64.2%) nodules in a single section, 133 (32.2%) in
two sections, and 15 (3.6%) nodules in three sections. Figure 1
shows the histograms of sizes of malignant and benign nodules
in our database. Approximately 30% of lung cancers were at-
tached to the pleura, 34% of cancers were attached to vessels,
and 7% of cancers were in the hilum. Three chest radiologists
independently reviewed the cancers, and then classified them in
three categories, pure ground-glass opacity (pure GGO; 24% of
cancers), mixed GGO (30%), and solid nodule (46%) by con-
sensus. Thus, this database included various types of nodules of
various sizes.

III. METHOD

A. Architecture of Massive Training Artificial Neural Network
(MTANN)

Suzuki et al. have been investigating supervised nonlinear
image-processing techniques based on artificial neural net-
works (ANNs), called a “neural filter” [14], for reduction of
the quantum mottle in x-ray images [15] and a “neural edge
detector” [16], [17] for supervised detection of subjective
edges traced by cardiologists [18], and they have developed
training methods [19], [20], design methods [21]–[23], and
an analysis method [24] for these techniques. Suzuki et al.
recently extended the neural filter and the neural edge detector
to accommodate various pattern-classification tasks, and they

Fig. 2. Architecture and training of a massive training artificial neural network
(MTANN) for distinction between benign and malignant nodules. The pixel
values in the subregions extracted from the region of interest (ROI) are entered
as input to the MTANN. The single pixel corresponding to the input subregion,
which is extracted from the teaching image, is used as a teaching value.

developed an MTANN. They have applied the MTANN for
reduction of false positives in computerized detection of lung
nodules in LDCT [25]–[28] and chest radiography [29].

The architecture and the training method of the MTANN are
shown in Fig. 2. The MTANN is a highly nonlinear filter that
can be trained by use of input images and the corresponding
teaching images. The MTANN consists of a modified multi-
layer ANN in which layers are fully connected with adjustable
weights [30], and which is capable of operating on image data
directly. The MTANN employs a linear function instead of a sig-
moid function as the activation function of the unit in the output
layer because the characteristics of an ANN were significantly
improved with a linear function when applied to the continuous
mapping of values in image processing, [17] for example. Note
that the activation functions of the units in the hidden layer are
a sigmoid function for nonlinear processing, and those of the
units in the input layer are an identity function, as usual. The
pixel values of the original CT images are normalized first such
that HU (Hounsfield units) is zero and 1000 HU is one.
The inputs of the MTANN are the pixel values in a local window

on a region of interest (ROI) in a CT image. The output of
the MTANN is a continuous value, which corresponds to the
center pixel in the local window, represented by

(1)

where is the output of the MTANN, and are the
indices of coordinates, is the output of the modified
multilayer ANN, and is an input pixel value. Note that
only one unit is employed in the output layer. The output image
is obtained by scanning of an input image with the MTANN.
The local window of the MTANN must be shifted pixel by pixel
throughout the input image.

B. Training of MTANN

For distinguishing malignant nodules from benign nodules,
the teaching image contains the estimate of the distribution for
the “likelihood of being a malignant nodule,” i.e., the teaching
image for a malignant nodule should contain a certain distribu-
tion, the peak of which is located at the center of the malignant
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nodule, and that for a benign nodule should contain zeros. As the
distance from the center of the malignant nodule increases, its
likelihood of being a malignant nodule decreases; therefore, we
used a two-dimensional (2-D) Gaussian function with standard
deviation at the center of the malignant nodule as the distri-
bution for the likelihood of being a malignant nodule, where
may be determined as a measure representing the size of malig-
nant nodules. Figure 2 illustrates the training for an input image
that contains a malignant nodule near the center. The training
region in the input image is divided pixel by pixel into a
large number of overlapping subregions, the size of which corre-
sponds to that of the local window of the MTANN. The cen-
ters of consecutive subregions in Fig. 2 differ by just one pixel.
All pixel values in each of the subregions are entered as input to
the MTANN, whereas one pixel from the teaching image is en-
tered into the output unit in the MTANN as the teaching value.
This single pixel is chosen at the location in the teaching image
that corresponds to the center of the input subregion. Thus, the
MTANN is trained by presenting each of the input subregions
together with each of the corresponding teaching single pixels.
A large number of input subregions overlap each other, and the
corresponding teaching pixels in the teaching image are used
for training. The MTANN is trained with massive training sam-
ples to achieve a high generalization ability. The MTANN would
be robust against variation in patterns, especially shifted pat-
terns, because it is trained with numerous shifted patterns. The
MTANN would be able to learn the essential features of nodules
without dependence on spatial shift. The error to be minimized
by training is defined by

(2)

where is the teaching image for the th training ROI
(a malignant nodule or a benign nodule), is the output
image for the th training ROI, is the training region,
is the number of training ROIs, and is the number of training
pixels in . The MTANN is trained by a modified back-propa-
gation (BP) algorithm [30], which was derived for the modified
multilayer ANN, i.e., a linear function is employed as the acti-
vation function of the unit in the output layer, in the same way as
the original BP algorithm [31], [32]. The MTANN is trained by
adjustment of the weights between layers iteratively so that the
error becomes small. After training, the MTANN is expected to
output the highest value when a malignant nodule is located at
the center of the local window of the MTANN, a lower value as
the distance from the center increases, and zero when the input
region contains a benign nodule.

C. Multiple MTANNs

In order to distinguish malignant nodules from various types
of benign nodules, we extended the capability of a single
MTANN and developed multiple MTANNs (multi-MTANN)
[25]. The architecture of the multi-MTANN is shown in Fig. 3.
The multi-MTANN consists of plural MTANNs that are ar-
ranged in parallel. Each MTANN is trained by use of benign
nodules representing a different benign type, but with the
same malignant nodules. Each MTANN acts as an expert for

Fig. 3. Architecture of multiple MTANNs (multi-MTANN) incorporating
an integration artificial neural network (ANN) for distinguishing malignant
nodules from various benign nodules. Each MTANN is trained by use of benign
nodules representing a different benign type, but with the same malignant
nodules. Each MTANN acts as an expert for distinction between malignant
nodules and a specific type of benign nodule. The output of each MTANN is
integrated by use of the integration ANN.

distinguishing malignant nodules from a specific type of benign
nodule, e.g., MTANN no. 1 is trained to distinguish malignant
nodules from small benign nodules overlapping with vessels;
MTANN no. 2 is trained to distinguish malignant nodules from
medium-sized benign nodules with fuzzy edges; and so on.

The distinction between a malignant nodule and a benign
nodule is determined by use of a score defined from the output
image of the trained th MTANN, represented by

(3)

where is the output score for a given nodule from the th
MTANN, is the region for evaluation, is the output
image of the th MTANN where its center corresponds to the
center of , and is a 2-D Gaussian weighting
function with standard deviation , where its center corre-
sponds to the center of . This score represents the weighted
sum of the estimate for the likelihood that the image contains a
malignant nodule near the center, i.e., a higher score would indi-
cate a malignant nodule, and a lower score would indicate a be-
nign nodule. The concept of this scoring is similar to that of the
matched filter. We used a 2-D Gaussian weighting function, be-
cause this function should be the same one used in the teaching
images, which was a 2-D Gaussian function. The function in the
teaching images represents the estimate of the distribution of a
“likelihood of being a malignant nodule.” The function in the
teaching images can be changed by following this concept. Con-
sequently, the weighting function for scoring should be changed
to the same function in the teaching images.

It is difficult to distinguish a small output distribution for a
small malignant nodule from a small distribution due to noise.
This can lower the performance in distinguishing malignant
nodules from benign nodules. We used the same-sized Gaussian
distribution in the teaching images, because we intended to
force the MTANN to output a regular-sized distribution for
different-sized nodules, e.g., a larger output distribution for a
small nodule. After training in this way, the MTANN expects to
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output relatively regular-sized distributions for different-sized
malignant nodules, e.g., a relatively larger output distribution
for a small nodule and a relatively smaller output distribution
for a large nodule. This property of the regular-sized output
distributions expects to make the scores for small malignant
nodules higher, and to contribute to improvement of the overall
performance of the MTANN.

D. Integration ANN

The scores from the expert MTANNs in the multi-MTANN
are combined by use of an integration ANN such that different
types of benign nodules can be distinguished from malignant
nodules. The integration ANN consists of a modified multilayer
ANN with a modified BP training algorithm [30] for processing
continuous output/teaching values, i.e., the activation functions
of the units in the input, hidden, and output layers are an iden-
tity, a sigmoid, and a linear function, respectively. The layers
are fully connected with adjustable weights. The scores of each
MTANN are entered to each input unit in the integration ANN;
thus, the number of input units corresponds to the number of
MTANNs. The scores of each MTANN function like the fea-
tures for distinguishing malignant nodules from a specific type
of benign nodule with which the MTANN was trained. One unit
is employed in the output layer for distinction between a malig-
nant nodule and a benign nodule. The teaching values for ma-
lignant nodules are assigned the value one, and those for be-
nign nodules are zero. After training, the integration ANN is
expected to output a higher value for a malignant nodule, and a
lower value for a benign nodule. Thus, the output can be consid-
ered to be a value related to a “likelihood of malignancy” of a
nodule. By thresholding of the output, a distinction between ma-
lignant and benign nodules can be made. The balance between
a true-positive rate (TPR) and a false-positive rate (FPR) is a
choice, which can be determined by the threshold value. If the
scores of each MTANN characterize the specific type of benign
nodule with which the MTANN is trained, then the integration
ANN combining several MTANNs will be able to distinguish
malignant nodules from various types of benign nodules.

IV. RESULTS

A. Training

For selecting the training malignant nodules for an MTANN,
we classified malignant nodules into several groups based on the
visual appearance of patterns in terms of size, solidity (solid or
nonsolid), spiculation, contrast, and background. We selected
one or two nodules from each group, and obtained ten typical
malignant nodules. We selected ten small benign nodules with
vessels as training benign nodules, because these nodules were
dominant over all benign nodules in our database. We trained
the MTANN with the ten malignant nodules and ten benign nod-
ules (the parameters for the MTANN are described latter). Then
we applied the trained MTANN to the entire database to obtain
scores for all nodules. For selecting training benign nodules for
MTANNs in a multi-MTANN, we classified benign nodules into
seven other groups by using a method for determining training
cases for a multi-MTANN [26]. With this method, training cases

Fig. 4. Illustrations of training samples of four malignant nodules (top row)
and six sets of four benign nodules for six MTANNs in the multi-MTANN.

for each MTANN were determined systematically based on the
ranking in the scores obtained from the first trained MTANN
so that benign nodules in each group cause different degrees of
difficulty in classification by the MTANN. We selected ten be-
nign nodules from each of the groups. We used six out of eight
groups (the first group plus the seven groups) as training cases
for the multi-MTANN by experimental analysis (described in
Section V). Figure 4 shows samples of training cases for malig-
nant and benign nodules. The six groups included 1) small nod-
ules overlapping with vessels, 2) medium-sized nodules with
fuzzy edges, 3) medium-sized nodules with sharp edges and rel-
atively small nodules with light background, 4) medium-sized
nodules with high contrast and medium-sized nodules with light
background, 5) small nodules with fuzzy edges, and 6) small
nodules near the pleura. A three-layer structure was employed as
the structure of the MTANN, because any continuous mapping
can be realized approximately by three-layer ANNs [33], [34].
The size of the local window of the MTANN, the standard
deviation of the 2-D Gaussian function, and the size of the
training region in the teaching image were determined to be
9 9 pixels, 5.0 pixels, and 19 19 pixels, respectively, by use
of the results of the experimental analysis described in [25]. The
performance of the MTANN was the highest when these values
were used. These parameters were fixed, and the same parame-
ters were used for all six MTANNs. The number of hidden units
was determined to be 20 units by use of the results of the exper-
imental analysis described in [25]. Thus, the numbers of units
in the input, hidden, and output layers were 81, 20, and 1, re-
spectively. The slope of the linear function of the output units
of MTANNs, and the learning rate for training the MTANNs,
were 0.01 and 0.002, respectively. With the parameters above,
the training of each MTANN in the multi-MTANN was per-
formed 500 000 times. The training of each MTANN required a
CPU time of 29.8 h on a PC-based workstation (CPU: Pentium
IV, 1.7 GHz). Before we applied the trained MTANN, pixels
outside the segmented lung regions [54] were set to HU
in order to reduce the effect of strong edges of the pleura. The
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Fig. 5. Illustrations of the output images of the six trained MTANNs for
malignant nodules (left four images) and benign nodules (right four images),
which correspond to the training samples in Fig. 4. Note that the output images
of each MTANN for malignant nodules correspond to the same four input
images.

output images of each trained MTANN for training cases are
shown in Fig. 5.

We applied the scoring method to the output image of the
MTANNs. The standard deviation of the 2-D Gaussian
weighting function was changed from 5.0 to 10.0 in steps of
0.5, and was determined to be the standard deviation with the
highest Az value for each MTANN. As a result, the standard
deviations were determined to be 7.5 or 8.0. The size of the
evaluation region was 19 19 pixels, which was the same
size as the training region . The scores of each trained
MTANN in the multi-MTANN were used as inputs to the
integration ANN with a three-layer structure. The number of
hidden units in the integration ANN was determined to be four
by experimental analysis (described in the Discussion section).
Thus, the numbers of units in the input, hidden, and output
layers were six, four, and one, respectively. The slope of the
linear function of the output unit and the learning rate were 0.1
and 0.1, respectively. The training of the integration ANN was
performed 1 000 times with the round-robin (leave-one-out)
test. With this test, one nodule was excluded from all nodules,
and the remaining nodules were used for training of the in-
tegration ANN. After training, the one nodule excluded from
training cases was used for testing. This process was repeated
for each of the nodules one by one, until all nodules were tested.

B. Evaluation

The trained MTANNs in the multi-MTANN were applied to
our database of 76 malignant nodules and 413 benign nodules.
Figure 6 shows input images and the corresponding output im-
ages of each of the six MTANNs for nontraining cases. The
malignant nodules in the output images of the MTANN were
represented by light distributions near the centers of the nod-
ules, whereas the benign nodules in the corresponding group
for which the MTANN was trained in the output images were
mostly dark around the center, as expected. Figure 7 shows non-
training malignant nodules representing three major types of
patterns, i.e., pure GGO, mixed GGO, and solid nodule, and
the corresponding output images of the MTANN no. 1 for dis-
tinction of malignant from benign nodules in the group (1).

Fig. 6. Illustrations of (a) four nontraining malignant nodules (top row) and
six nontraining sets of four benign nodules, and (b) the corresponding output
images of the six trained MTANNs in the multi-MTANN for malignant nodules
(left four images) and benign nodules (right four images).

Fig. 7. Illustration of three types of nodule patterns, i.e., pure GGO, mixed
GGO, and solid nodule, and the corresponding output images of the trained
MTANN no. 1 for nontraining cases.

All three types of nodules are represented by light distribu-
tions. The distributions are relatively regular-sized for different-
sized malignant nodules, e.g., a relatively larger output distri-
bution for a small nodule and a relatively smaller output distri-
bution for a large nodule. The scoring method was applied to
the output images. The performance of each MTANN was eval-
uated by receiver operating characteristic (ROC) analysis [35],
[36]. Figure 8 shows the ROC curve of each MTANN for non-
training cases of 66 malignant nodules and 403 benign nodules.
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Fig. 8. ROC curve of each MTANN in the multi-MTANN in distinction
between 66 nontraining malignant nodules and 403 nontraining benign nodules.

Fig. 9. Distributions of the output values of the integration ANN for 76
malignant nodules and 413 benign nodules in the round-robin test.

Although the Az values did not differ very much, the scores from
each MTANN appropriately characterized a specific type of be-
nign nodule with which the MTANN was trained, i.e., the scores
from the MTANN for the corresponding type of benign nodule
were low, whereas those for malignant nodules were substan-
tially high. It is very important for combining the MTANNs that
the characteristics of each MTANN differ. If each MTANN in
the multi-MTANN has exactly the same characteristics, the per-
formance of our scheme would not be improved by combining
them.

Figure 9 shows the distributions of the output values of the
trained integration ANN for the 76 malignant nodules and 413
benign nodules in the round-robin test. Although the two distri-
butions overlap, malignant nodules can be distinguished from
some benign nodules. Table I illustrates TPRs and the corre-
sponding FPRs obtained by thresholding of the output values
with different threshold levels. Our scheme achieved a TPR of
100% with an FPR of 51.6% at a certain threshold level. By
changing threshold levels, we obtained pairs of TPR and FPR:
94.7% with 35.4%, 90.8% with 33.4%, and 80.0% with 15.7%.
The performance of our scheme based on the multi-MTANN
incorporated with the integration ANN was evaluated by ROC
analysis [35], [36]. We used the output values from the inte-
gration ANN as scores in the ROC analysis. Binormal distribu-
tions were fitted to the scores by use of maximum-likelihood
estimation [36]. The ROC curve was obtained by changing the

TABLE I
TPRS AND THE CORRESPONDING FPRS OF OUR SCHEME AT DIFFERENT

THRESHOLD LEVELS

Fig. 10. ROC curves of our schemes in distinction between malignant and
benign nodules. The solid curve indicates the performance (Az value of 0.882)
of our scheme in distinction between 76 malignant nodules and 413 benign
nodules in the round-robin test. The performance is higher at high sensitivity
levels. The dashed curve indicates the performance (Az value of 0.875) of
our scheme for nontraining cases of 66 malignant nodules and 353 benign
nodules. The dotted curve indicates the performance (Az value of 0.822) of
the multi-MTANN, the outputs of which were combined with the average
operation.

threshold value (decision variable), and represented true-posi-
tive fractions as a function of false-positive fractions. Figure 10
shows the ROC curve of our scheme. This scheme achieved an
Az value (area under the ROC curve) [37] of 0.882 (standard
error ) in the round-robin test. The performance for
nontraining cases, i.e., the training cases of ten malignant nod-
ules and 60 benign nodules were excluded from the cases for
evaluation, was almost the same (Az value of 0.875). The ROC
curve was higher at high sensitivity levels. This allows us to
distinguish many benign nodules without loss of a malignant
nodule. Our scheme correctly identified 100% (76/76) of malig-
nant nodules as malignant, and 48% (200/413) of benign nod-
ules were identified correctly as benign.
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Fig. 11. Four worst cases of malignant and benign nodules for our scheme and
the corresponding output images of the MTANNs in the multi-MTANN.

Figure 11 shows malignant and benign nodules with the four
worst scores, i.e., malignant nodules with the four lowest scores
and benign nodules with the four highest scores, which corre-
spond to the output values at the left-most side of the distribu-
tion for malignant nodules and those at the right-most side of the
distribution for benign nodules in Fig. 9, respectively. The ma-
lignant nodules with the four worst scores were relatively small,
and had no remarkable malignant features in their appearance.
In the output image of the majority of the MTANNs, these small
malignant nodules are dark. The benign nodules with the four
worst scores were relatively small nodules with a light back-
ground, which correspond to one category in the third group
of the training cases, and relatively large nodules with spicula-
tion. The MTANNs could not output lower values for the light
background, probably because the background of these nodules
was lighter than that of the training cases in the third group, as
shown in the third and fourth ROIs in the third row of Fig. 4.
The MTANNs could not output lower values for the relatively
large nodules with spiculation, because these nodules were sim-
ilar to malignant nodules in their appearance. Therefore, one of
the limitations of the MTANN would be the distinction of ma-
lignant nodules from the benign nodules which would be similar
to malignant nodules in their appearance. This limitation might
be the limitation of the LDCT as well.

V. DISCUSSION

We investigated the effect of the change in the number of
training nodules on the performance of the MTANN. Seven sets
with different numbers of typical malignant and benign nodules
were selected from the entire database according to their visual
appearance, so that a set of a smaller number of training nod-
ules was a subset of a larger number of training nodules. We
trained seven MTANNs with the seven sets with different num-
bers of nodules from four (two malignant nodules and two be-
nign nodules) to 60 (30 malignant nodules and 30 benign nod-

Fig. 12. Effect of the change in the number of training nodules (malignant and
benign nodules) on the performance of the MTANN.

Fig. 13. Effect of the change of a set of training nodules (malignant and benign
nodules) on the performance of the MTANN.

ules). The performance of the MTANNs was evaluated by use of
ROC analysis. Figure 12 shows the results for nontraining nod-
ules, i.e., the 60 training nodules were excluded from the cases
for evaluation. There was little increase in the Az value when
the number of training nodules was greater than 20 (ten malig-
nant nodules and ten benign nodules). This is the reason for the
use of 20 training nodules for the MTANN. This result was con-
sistent with that in [25].

We investigated the effect of the change of training nodules
on the performance of the MTANN. We selected two different
sets of ten typical malignant nodules and ten small benign nod-
ules overlapping with vessels by the same way as for MTANN
no. 1. We trained two MTANNs (MTANN no. 1A and MTANN
no. 1B) by use of the two training sets. The ROC curves of
MTANN no. 1 and the two MTANNs are shown in Fig. 13. The
Az value for MTANN no. 1, that for MTANN no. 1A, and that
for MTANN no. 1B were 0.79, 0.78, and 0.77, respectively. The
performance of the MTANNs trained with different cases dif-
fered slightly. Less careful selection of training nodules such as
random selection, however, would lower the performance. In ad-
dition, the performance of each MTANN for nontraining cases
was only slightly lower, as shown in Fig. 13. These results were
consistent with those in [25], [27].

An ANN generally requires training with a large number of
cases, because the ANN has a number of parameters (weights)
to be adjusted by the training cases. The inputs of the ANN may
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Fig. 14. Learning curve of MTANN no. 1 and the effect of the number of
training times on the generalization performance of the MTANN.

often be the image features, which would include, in general,
some noise due to the fluctuation in the feature extraction. The
MTANN was able to be trained with a small number of training
nodules (ten malignant nodules and ten benign nodules). The
key to this high generalization ability might be the division of
one nodule image into a large number of
subregions. The 361 subregions could include various parts of
the nodule, various nodule margins with different orientations,
and also various parts of vessels that overlap with the nodule.
This allowed us to train the MTANN not on a case basis, but
on a subregion basis. We treated the distinction between malig-
nant and benign nodules as an image-processing task, in other
words, as nonlinear filtering that performs both enhancement
of malignant nodules and suppression of benign nodules. The
MTANN does not see the whole nodule, but rather the image
features in the subregions such as the mean CT value, the con-
trast, the gray-level shape, edges, and texture. The results might
suggest that there are some consistent features representing the
variability of cancers in the subregions. Thus, massive training
with a large number of subregions would
contribute to the proper determination of the parameters. More-
over, direct use of pixel values instead of image features as the
inputs would keep one from mixing the input information with
the noise due to the fluctuation in the feature extraction based
on segmented nodules. The above would be the reasons for the
high generalization ability of the MTANN.

We investigated the property of the MTANN regarding an
overtraining issue. Figure 14 shows a learning curve (mean ab-
solute error (MAE) for training samples) of MTANN no. 1 and
the effect of the number of training times on the generalization
performance (Az values for nontraining cases). There was little
increase in Az value when the number of training times was
greater than 200 000, and there was a slight decrease at 1 000
000 times. This is the reason for determining the condition for
stopping of the training at 500 000. Note that significant over-
training was not seen. This result was consistent with that in
[25].

We investigated the effect of parameter change on the per-
formance of the MTANN. The standard deviation of the 2-D
Gaussian weighting function for scoring for MTANN no. 1 was
changed, and the performance for nontraining cases was ob-
tained, as shown in Fig. 15. Because the performance was the
highest at a standard deviation of 7.5, we used this value for

Fig. 15. Effect of the change in the standard deviation � of the 2-D Gaussian
weighting function for scoring on the performance of MTANN no. 1.

Fig. 16. Effect of the change in the number of MTANNs in the multi-MTANN
on the performance of our scheme in the round-robin test.

MTANN no. 1. Thus, the performance was not sensitive to the
standard deviation . This result was consistent with that in the
distinction between nodules and nonnodules in CT images in
[25]. Similarly, we determined the standard deviations for other
MTANNs to be 7.5 or 8.0.

We investigated the effect of the change in the number of
MTANNs in the multi-MTANN on the performance of our
scheme. The performance was evaluated by ROC analysis.
Note that the number of MTANNs corresponds to the number
of input units in the integration ANN. The integration ANN
was evaluated by use of a round-robin test. Figure 16 shows the
Az values of our schemes with various numbers of MTANNs.
A set of a larger number of MTANNs included a set of a smaller
number of MTANNs, e.g., two MTANNs were MTANN nos.
1 and 2, and three MTANNs were MTANNs nos. 1, 2, and 3.
The seventh group included small nodules with spiculation,
and the eighth group included small nodules overlapping
with small vessels on a light background. The results show
that the performance of our scheme was the highest when
the number of MTANNs was six. The differences of the Az
value for our scheme consisting of six MTANNs from that
for our scheme consisting of two MTANNs, three MTANNs,
and eight MTANNs were statistically significant. The use of
six MTANNs with this grouping of benign nodules would be
a better choice for realization of this CAD scheme, because
this result was obtained based on a relatively large database
from a lung cancer screening program on 7847 screenees.
However, a test on a larger database will produce a much more
reliable result for this choice. Because the integration ANN is
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Fig. 17. Effect of the change in the number of hidden units in the integration
ANN on the performance of our scheme in the round-robin test.

a conventional multilayer ANN, the integration ANN should
have the general properties of a conventional classifier. Scores
from the MTANNs can be considered to be the input features
for the integration ANN. As the dimensionality of the feature
space increases subject to the number of input features, the
number of training samples required for a classifier increases
exponentially; this is referred to as the curse of dimensionality
[40]. Although the increase in the number of input features
provides more information for classification, the curse of
dimensionality causes a decline of the classification accuracy.
Furthermore, an additional input feature may not contribute
very much to an improvement in the classification accuracy,
because a new input feature can correlate to other features. As a
result, the classification accuracy of a classifier first grows and
then declines as the number of input features increases, which
is referred to as the Hughes phenomenon [41]. Therefore, there
exists an optimal number of input units in the integration ANN,
in other words, the optimal number of MTANNs.

We also investigated the effect of the change in the number
hidden units in the integration ANN in our scheme. The inte-
gration ANN was evaluated by use of the round-robin test. The
number of MTANNs (i.e., the number of input units) was six.
Figure 17 shows the performance of our scheme with various
numbers of hidden units. The performance was not very sensi-
tive to the number of hidden units.

We compared the performance of the integration ANN
with that of another method for combining the outputs of
the multi-MTANN. An average operation is often used for
combining multiple classifiers, and would give better results
compared to the majority logic [38], [39]. The average oper-
ation was performed on the scores from the six MTANNs in
the multi-MTANN. The performance of the multi-MTANN
combined with the average operation is shown in Fig. 10. The
performance of the average operation (Az value of 0.822) was
apparently inferior to that of the integration ANN.

We have used the logical AND operation to combine the
scores from each MTANN in the multi-MTANN for appli-
cation to false-positive reduction in CAD for lung nodule
detection on LDCT [25], because the scheme should output a
binary value, i.e., a true positive (nodule) or a false positive
(nonnodule) for the purpose of reduction of false positives.
For radiologists’ classification task such as distinction between
benign and malignant nodules in LDCT, however, we plan
to display the computer-estimated likelihood of malignancy

with a proper marker on a nodule rather than only a simple
marker indicating a malignant nodule as an aid in radiologists’
decision-making. The use of the integration ANN allows us
to provide the computer-estimated likelihood of malignancy
which is a continuous value, whereas the logical AND opera-
tion cannot output a continuous value. The computer-estimated
likelihood of malignancy can be calculated from the output
values of the integration ANN in our scheme by use of the
relationship defined in [42]. The output values of the integration
ANN can be transformed to the computer-estimated likelihood
of malignancy by use of the maximum-likelihood estimated
binormal model in ROC analysis. The computer-estimated
likelihood of malignancy was defined [42] as

(4)

where is the latent decision variable, is the probability
density function of for actually malignant nodules, is
the probability density function of for actually benign nod-
ules, and is the prevalence of malignant nodules in the popu-
lation studied. In addition, the output of the integration ANN
can be employed as a binary decision by use of a threshold
value. Thus, our scheme can be used for providing either the
computer-estimated likelihood of malignancy of a nodule or a
malignant nodule marker by combining our scheme with a de-
tection scheme [25].

For evaluating radiologists’ performance in distinction be-
tween benign and malignant nodules on LDCT, Li et al. have
performed an observer study [43], [44]. They randomly selected
20 malignant nodules and 20 benign nodules from the database
used in this study. Sixteen radiologists (twelve attending radi-
ologists and four radiology residents) participated in this study.
They used ROC analysis for evaluation of the performance of
the radiologists. The radiologists were asked whether the nodule
was benign or malignant, and then they marked their confidence
level regarding the likelihood of malignancy by using a contin-
uous rating scale. An average Az value of 0.72 (0.75 for at-
tending radiologists and 0.62 for residents) was obtained by
the 16 radiologists in the observer study, whereas our scheme
achieved a higher Az value (0.882) than did the radiologists.
Therefore, we expect that our scheme would be useful in im-
proving radiologists’ classification accuracy.

Researchers have developed computerized schemes for
distinction between benign and malignant lesions in chest ra-
diographs [45], [46], mammograms [47]–[51], and CT images
[52]–[54], and also computerized schemes for detection of
nodules in CT [55], [56]. Aoyama et al. have developed a com-
puterized scheme for distinction between benign and malignant
lung nodules in LDCT. Table II shows the difference between
Aoyama’s scheme and our scheme based on the MTANN. The
performance (Az value of 0.882) of our scheme was greater
than that of Aoyama’s scheme of 0.828 [54] for the same cases
in the same database by a statistical significant level (two-tailed

) [57]. The 95% confidence intervals of the
Az value of our scheme were 0.834 and 0.908, which were
greater than the Az value of Aoyama’s scheme. Aoyama’s
scheme was based on the following four steps: determination of
the locations of nodules, segmentation of the nodules, feature
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TABLE II
DIFFERENCE BETWEEN AOYAMA’S SCHEME AND OUR SCHEME

BASED ON THE MTANN

extraction and analysis of the segmented nodules, and linear
discriminant analysis [58] for distinction between benign and
malignant nodules. The first step was performed manually
by a chest radiologist. The second step of segmentation was
performed by use of the radial search of edge candidates based
on edge magnitude and contour smoothness for determining the
regions of the nodules. Note that we made a particular use of the
technical term, segmentation, as a technique for determining the
region of a target object in images by following the definition
in the field of image processing [59]. The accuracy of the seg-
mentation can affect the accuracy of the feature extraction and
analysis, and therefore, the final accuracy of classification. The
features of a nodule included three gray-level-based features,
two edge-based features, a morphological feature, and clinical
information. We believe that accurate segmentation is difficult;
therefore, incorrect segmentation can occur for complicated
patterns such as nodules overlapping with vessels and subtle
opacities like GGO. However, the use of MTANN does not
require the step of the segmentation, but only image data and
nodule locations directly. Therefore, there is no room for errors
due to incorrect segmentation when the MTANN is employed.
We believe that this is a major advantage of the MTANN for
classification of lung nodules in CT.

Our method based on a multi-MTANN with the integration
ANN can be extended to the use of multiple sections. By ap-
plying our trained scheme section by section, output values for
a nodule in multiple sections can be obtained. By combining
the output values, the score for the nodule can be obtained. The
score can be determined by use of the following possible four
combining methods: 1) the maximum value among the output
values in multiple sections, 2) the minimum value among the
output values in multiple sections, 3) an average value of the
output values in multiple sections, and 4) a weighted average
value of the output values in multiple sections by use of the ef-
fective diameter of the nodule at each section as the weighting
factor. We expect that the performance would be improved by
incorporating of the information in multiple sections.

CT images with different section thickness have been used for
lung cancer screening in different medical institutions [2]–[13]; a
protocol of section thickness adequate for lung cancer screening
has not yet been determined. Many institutions used CT images
with a 10 mm section thickness for lung cancer screening [3]–[6],
[8], [11]–[13], and some other institutions used a 5 mm section
thickness [7], [9]. Some institutions used 10 mmand 2.5 mm [10],
but the section thickness is still a controversial issue. We believe

that, if our scheme is applied to CT images with thinner sections,
e.g., 5 mm or 2.5 mm, the performance can be improved, because
theseCTimagescontainmore informationonbothmalignantand
benign nodules. Training of the MTANNs with thin-section CT
images may be required for accurate classification. Our scheme
can be applied to thin-section CT images section by section. With
thin-section CT images acquired with a multidetector CT system,
smaller benign nodules would be found compared to those in
thick-section CT images. Because our scheme was effective for
small benign nodules, as shown in Fig. 6, our scheme would be
effective for a database of thin-section CT images.

The nodules do not need to be positioned exactly at the center
of the ROI. The distributions in the output images are generally
broad, as shown in Fig. 7. The broad output distribution and
the scoring method with a relatively broad Gaussian weighting
function allowed the MTANN to be robust against the change
of the location of the nodule. For example, the centers of the
nodules in the third ROI in the pure GGO row, the fourth ROI in
the mixed GGO row, and the second ROI in the solid nodule row
are fairly far from the centers of the ROIs. These nodules were
distinguished well from benign nodules by use of our scheme.

We considered the use of our scheme in the case where a
radiologist determines the nodule locations. We expect that a
radiologist is likely to select the section with the greatest nodule
size or a similar size rather than a section with small nodule size,
because the nodule in the section with small size appears to be
small and low-contrast. Therefore, the selection of the section
with the greatest nodule size by a radiologist as used in this study
would be reasonable for this particular usage. If the section with
the second greatest nodule size is selected, the performance of
our scheme would not change much, because the distribution in
the output image of the MTANN is relatively broad for small
nodules, e.g., a small low-contrast nodule in the output image
was appropriately represented by light distributions, as shown
in the fourth nodule in the pure GGO row in Fig. 7.

Training of the multi-MTANN took a long time, i.e., about 30 h
foreachMTANN. Therearemanymethods [60]–[64] foracceler-
ating the convergence speed of the BP algorithm. These methods
include learning rate adaptation [60]–[62], training using a Hes-
sian matrix of the cost function [63], and learning-rate optimiza-
tion [64]. These methods can be applied to our modified BP algo-
rithm, and the time for training can be shortened by use of these
methods.TrainingwithourmodifiedBPalgorithmcanbe trapped
at local minima, because our modified BP algorithm was based on
theBPalgorithm.Therearemanymethods [65]–[68] foravoiding
local minima for the BP algorithm. By use of these methods, the
performance of the MTANN might be improved by avoiding pos-
sible local minima.

We considered the generalizability of our scheme and the re-
sults in this study. There are two major factors which can affect
the generalizability of the results in evaluation of a computer-
ized scheme [69]–[72]: 1) the quality and quantity of the data-
base used and 2) the testing methodology used for evaluating the
scheme. Because our database used in this study was relatively
large, containing 76 confirmed primary cancers, obtained from
a lung cancer screening program on 7 847 screenees for three
years. Therefore, we believe that the quality and quantity of our
database were appropriate. However, evaluation (and training)
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with a larger database will produce more reliable results. Re-
garding testing methodology, we performed a hold-out testing
method on the MTANNs, i.e., we excluded all training cases
for the MTANNs from the evaluation. Because the number of
training cases for the MTANN was very small, the selection of
training cases could affect the performance of the MTANN. The
variation in the performances of the MTANNs trained with dif-
ferent training cases was small, as shown in Fig. 13. Therefore,
this would not be a problem for generalizability. Because we
determined some parameters such as the standard deviation of
the 2-D Gaussian weighting function for scoring, the number
of MTANNs in the multi-MTANN, and the number of hidden
units in the integration ANN by use of the entire database, some
biases can be included in the performance [71]. However, the
differences in the performance with respect to these parame-
ters were not large, as shown in Figs. 15–17. When the stan-
dard deviation, the number of MTANNs, and the number of
hidden units differed by 20%, one (approximately 20%), and
one (approximately 20%), respectively, the Az value changed by
0.4%, 1.7%, and 1.3% on average, respectively. Thus, the per-
formance was not sensitive to these parameters. Therefore, the
biases which may be included during the design process should
be small. A possible weakness would be a round-robin test (also
referred to as a jackknife test) used for evaluating the integra-
tion ANN, because a round-robin test is not an independent test,
but a test with resampling. However, many researchers have ac-
cepted and used a round-robin test in their studies [45]–[48],
[50]–[54]. In addition, according to Fukunaga et al.’s findings
[69], a round-robin test would produce a pessimistically biased
performance compared to the “true” performance (i.e., the per-
formance of a classifier designed with the true population and
tested with the true population). Therefore, we trust that our re-
sults are reliable, and we expect that results similar to those pre-
sented in this paper can be obtained when our scheme is applied
to different databases.

We have experienced that ANN models which use a large
number of subregions can be trained with a very limited number
of cases, including neural filters, neural edge enhancers, and
MTANNs. The neural filter and the neural edge enhancer were
trained with six images (angiograms) [15] or one image (gas-
trointestinal radiograph) [23], and one image (landscape) [17] or
three images (ventriculograms) [18], respectively. The MTANN
was able to be trained with 20 cases (CT images containing
ten nodules and ten nonnodules) [24] or 12 cases (CT images
containing six nodules and six nonnodules) [25]. A convolution
ANN [73] is a different type of ANN, but operates on image
data directly. A convolution ANN was trained with 28 cases (in-
cluding nodule cases and normal cases) for differentiation be-
tween nodules and nonnodules in chest radiographs. Although
the number of training cases was 28 for each of the training sub-
sets in the cross validation scheme, the number of nodules was
around 25 and the number of false positives was around 75 in
each training subset. The common features of the above ANN
models, including MTANNs and a convolution ANN, are the
direct use of image data and the use of a large number of subre-
gions (or subimages) extracted from cases (images) for training.

In order to gain insight into the training of the MTANN, we
analyzed the information used by the MTANN. The input of the

Fig. 18. Distributions of samples extracted from the 10 training malignant
nodules and all 76 malignant nodules in the database in the principal component
(PC) vector space. Black crosses represent samples (subregions) extracted from
the training cases. Gray dots represent samples extracted from all cases in the
database. (a) Relationship between the first and second PCs. (b) Relationship
between the third and fourth PCs.

MTANN can be considered as an 81-dimensional (81-D) input
vector. In the MTANN approach, each case (nodule image) is di-
vided into a large number (361) of subregions. Each subregion
corresponds to the 81-D input vector. If a large number of 81-D
input vectors obtained from the training cases (e.g., ten malig-
nant nodules) approximate those obtained from all cases in the
database (i.e., 76 malignant nodules), the MTANN trained with
these training cases can potentially have a high generalization
ability. Because it is difficult to visualize and compare all 81 di-
mensions of the input vector, we employed principal-component
analysis (PCA, also referred to as Karhune-Loeve analysis) [74]
for reducing the dimensions. We applied PCA to 81-D vectors
obtained from all 76 malignant nodules. Figure 18(a) and (b)
shows the distributions of samples (subregions) extracted from
the ten training malignant nodules and all 76 malignant nodules
in the database in the principal component (PC) vector space.
Only the first to fourth PCs are shown in the figures, because
the cumulative contribution rate of the fourth PC is 0.974, i.e.,
the figures represent 97.4% of all data. The result showed that
the ten training cases represent the 76 cases fairly well except for
the right portion of the distribution in the relationship between
the first and second PCs in figure (a). The right portion of the
distribution is very sparse, containing only 6% of all samples.
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This does not mean that the training nodules do not cover 6% of
the 76 nodules, but that the training nodules do not cover, on av-
erage, 6% of the components of each nodule. Because all com-
ponents of each nodule are combined with the scoring method in
the MTANN, the noncovered 6% of components would not be
critical at all for the classification accuracy. Thus, the division
of each nodule case into a large number of subregions enriched
the variations in the feature components of nodules, and there-
fore contributed to the generalization ability of the MTANN.

VI. CONCLUSION

Our computerized scheme for distinction between benign and
malignant nodules based on the multi-MTANN incorporated
with the integration ANN achieved a relatively high Az value
of 0.882, and would be useful in assisting radiologists in the di-
agnosis of lung nodules in LDCT by reducing the number of
“unnecessary” HRCTs and/or biopsies.

ACKNOWLEDGMENT

The authors are grateful to Q. Li, Ph.D., and M. Aoyama,
Ph.D., for preparing images, H. Abe, MD, Ph.D., for his clin-
ical advice, J. Shiraishi, Ph.D., H. Arimura, Ph.D., H. Takizawa,
Ph.D., H. MacMahon, MD, R. Engelmann, MS, C. Muramatsu,
BA, S. G. Armato, Ph.D., and M. L. Giger, Ph.D., for their
valuable suggestions, to C. E. Metz, Ph.D., for the use of the
LABROC5 program, and E. F. Lanzl for improving the manu-
script. They also thank the Associate Editor and anonymous ref-
erees for their suggestions. K. Doi is a shareholder in R2 Tech-
nology, Inc., Sunnyvale, CA.

REFERENCES

[1] A. Jemal, T. Murray, A. Samuels, A. Ghafoor, E. Ward, and M. J. Thun,
“Cancer statistics, 2003,” CA Cancer J. Clin., vol. 53, no. 1, pp. 5–26,
Jan. 2003.

[2] O. S. Miettinen and C. I. Henschke, “CT screening for lung cancer:
Coping with nihilistic recommendations,” Radiol., vol. 221, no. 3, pp.
592–596, Dec. 2001.

[3] M. Kaneko, K. Eguchi, H. Ohmatsu, R. Kakinuma, T. Naruke, K. Sue-
masu, and N. Moriyama, “Peripheral lung cancer: Screening and detec-
tion with low-dose spiral CT versus radiography,” Radiol., vol. 201, no.
3, pp. 798–802, Dec. 1996.

[4] S. Sone, S. Takashima, F. Li, Z. Yang, T. Honda, Y. Maruyama, M.
Hasegawa, T. Yamada, K. Kubo, K. Hanamura, and K. Asakura, “Mass
screening for lung cancer with mobile spiral computed tomography
scanner,” Lancet, vol. 351, pp. 1242–1245, Apr. 1998.

[5] C. I. Henschke, D. I. McCauley, D. F. Yankelevitz, D. P. Naidich,
G. McGuinness, O. S. Miettinen, D. M. Libby, M. W. Pasmantier, J.
Koizumi, N. K. Altorki, and J. P. Smith, “Early lung cancer action
project: Overall design and findings from baseline screening,” Lancet,
vol. 354, pp. 99–105, Jul. 1999.

[6] C. I. Henschke et al., “Early lung cancer action project: Initial finding
on repeat screening,” Cancer, vol. 92, no. 1, pp. 153–159, July 2001.

[7] S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan,
A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer
screening with CT: Mayo Clinic experience,” Radiol., vol. 226, no. 3,
pp. 756–761, Mar. 2003.

[8] H. Rusinek, D. P. Naidich, G. McGuinness, B. S. Leitman, D. I. Mc-
Cauley, G. A. Krinsky, K. Clayton, and H. Cohen, “Pulmonary nodule
detection: Low-dose versus conventional CT,” Radiol., vol. 209, no. 1,
pp. 243–249, Oct. 1998.

[9] K. Garg, R. L. Keith, T. Byers, K. Kelly, A. L. Kerzner, D. A. Lynch,
and Y. E. Miller, “Randomized controlled trial with low-dose spiral CT
for lung cancer screening: Feasibility study and preliminary results,” Ra-
diol., vol. 225, no. 2, pp. 506–510, Nov. 2002.

[10] C. I. Henschke, D. F. Yankelevitz, D. P. Naidich, D. I. McCauley, G.
McGuinness, D. M. Libby, J. P. Smith, M. W. Pasmantier, and O. S. Mi-
ettinen, “CT screening for lung cancer: Suspiciousness of nodules ac-
cording to size on baseline scans,” Radiol., vol. 231, no. 1, pp. 164–168,
Apr. 2004.

[11] S. Sone, F. Li, Z. G. Yang, T. Honda, Y. Maruyama, S. Takashima, M.
Hasegawa, S. Kawakami, K. Kubo, M. Haniuda, and T. Yamanda, “Re-
sults of three-year mass screening programme for lung cancer using mo-
bile low-dose spiral computed tomography scanner,” Br. J. Cancer, vol.
84, no. 1, pp. 25–32, Jan. 2001.

[12] T. Nawa, T. Nakagawa, S. Kusano, Y. Kawasaki, Y. Sugawara, and H.
Nakata, “Lung cancer screening using low-dose spiral CT,” Chest, vol.
122, no. 1, pp. 15–20, July 2002.

[13] F. Li, S. Sone, H. Abe, H. MacMahon, S. G. Armato, and K. Doi, “Lung
cancer missed at low-dose helical CT screening in a general population:
Comparison of clinical, histopathologic, and imaging findings,” Radiol.,
vol. 225, no. 3, pp. 673–683, Dec. 2002.

[14] K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, “Noise reduction of med-
ical X-ray image sequences using a neural filter with spatiotemporal in-
puts,” in Proc Int. Symp. Noise Reduction for Imag. and Comm. Systems,
Nov. 1998, pp. 85–90.

[15] , “Neural filter with selection of input features and its application to
image quality improvement of medical image sequences,” IEICE Trans.
Inform. Syst., vol. E85-D, no. 10, pp. 1710–1718, Oct. 2002.

[16] K. Suzuki, I. Horiba, and N. Sugie, “Neural edge detector—A good
mimic of conventional one yet robuster against noise,” in Lecture Notes
in Computer Science. Berlin, Germany: Springer-Verlag, Jun. 2001,
vol. 2085, pp. 303–310.

[17] , “Neural edge enhancer for supervised edge enhancement from
noisy images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12,
pp. 1582–1596, Dec. 2003.

[18] K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, “Extraction of left ven-
tricular contours from left ventriculograms by means of a neural edge
detector,” IEEE Trans. Med. Imag., vol. 23, no. 3, pp. 330–339, Mar.
2004.

[19] K. Suzuki, I. Horiba, and N. Sugie, “Training under achievement
quotient criterion,” in Neural Networks for Signal Processing
X. Piscataway, NJ: IEEE Press, 2000, pp. 537–546.

[20] , “Simple unit-pruning with gain-changing training,” in Neural Net-
works for Signal Processing XI. Piscataway, NJ: IEEE Press, 2001, pp.
153–162.

[21] , “Designing the optimal structure of a neural filter,” in Neural Net-
works for Signal Processing VIII. Piscataway, NJ: IEEE Press, 1998,
pp. 323–332.

[22] , “A simple neural network pruning algorithm with application to
filter synthesis,” Neural Process. Lett., vol. 13, no. 1, pp. 43–53, Feb.
2001.

[23] K. Suzuki, “Determining the receptive field of a neural filter,” J. Neural
Eng., vol. 1, no. 4, pp. 228–237, Dec. 2004.

[24] K. Suzuki, I. Horiba, and N. Sugie, “Efficient approximation of neural
filters for removing quantum noise from images,” IEEE Trans. Signal
Process., vol. 50, no. 7, pp. 1787–1799, Jul. 2002.

[25] K. Suzuki, S. G. Armato, F. Li, S. Sone, and K. Doi, “Massive training
artificial neural network (MTANN) for reduction of false positives in
computerized detection of lung nodules in low-dose CT,” Med. Phys.,
vol. 30, no. 7, pp. 1602–1617, Jul. 2003.

[26] , “Effect of a small number of training cases on the performance
of massive training artificial neural network (MTANN) for reduction of
false positives in computerized detection of lung nodules in low-dose
CT,” in Proc. SPIE (Medical Imaging), vol. 5032, San Diego, CA, May
2003, pp. 1355–1366.

[27] H. Arimura, S. Katsuragawa, K. Suzuki, F. Li, J. Shiraishi, S. Sone, and
K. Doi, “Computerized scheme for automated detection of lung nodules
in low-dose CT images for lung cancer screening,” Acad. Radiol., vol.
11, no. 6, pp. 617–629, Jun. 2004.

[28] K. Suzuki and K. Doi, “Characteristics of a massive training artificial
neural network (MTANN) in the distinction between lung nodules and
vessels in CT images,” in Computer Assisted Radiology and Surgery
(CARS), Chicago, IL, Jun. 2004, pp. 923–928.

[29] K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, “False-pos-
itive reduction in computer-aided diagnostic scheme for detecting nod-
ules in chest radiographs by means of massive training artificial neural
network,” Acad. Radiol., vol. 12, no. 2, pp. 191–201, Feb. 2005.

[30] K. Suzuki, I. Horiba, K. Ikegaya, and M. Nanki, “Recognition of
coronary arterial stenosis using neural network on DSA system,” Syst.
Comput. Jpn., vol. 26, no. 8, pp. 66–74, Aug. 1995.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions of back-propagation errors,” Nature, vol. 323, pp. 533–536, 1986.

[32] , “Learning internal representations by error propagation,” in Par-
allel Distributed Processing. Cambridge, MA: MIT Press, 1986, vol.
1, pp. 318–362.

[33] K. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural Netw., vol. 2, pp. 183–192, 1989.



1150 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 9, SEPTEMBER 2005

[34] A. R. Barron, “Universal approximation bounds for superpositions
of a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
930–945, May 1993.

[35] C. E. Metz, “ROC methodology in radiologic imaging,” Invest. Radiol.,
vol. 21, pp. 720–733, 1986.

[36] C. E. Metz, B. A. Herman, and J. H. Shen, “Maximum likelihood esti-
mation of receiver operating characteristic (ROC) curves from continu-
ously-distributed data,” Statist. Med., vol. 17, no. 9, pp. 1033–1053, May
1998.

[37] J. A. Hanley and B. J. McNeil, “A method of comparing the areas under
receiver operating characteristic curves derived from the same cases,”
Radiol., vol. 148, no. 3, pp. 839–843, Sep. 1983.

[38] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
Mar. 1998.

[39] J. Kittler and F. M. Alkoot, “Sum versus vote fusion in multiple classifier
systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp.
110–115, Jan. 2003.

[40] R. Bellman, Adaptive Control Processes, A Guided Tour. Princeton,
NJ: Princeton Univ. Press, 1961.

[41] G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,”
IEEE Trans. Inf. Theory, vol. 14, pp. 55–63, 1968.

[42] Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger,
and K. Doi, “Improving breast cancer diagnosis with computer-aided
diagnosis,” Acad. Radiol., vol. 6, no. 1, pp. 22–33, Jan. 1999.

[43] Q. Li, M. Aoyama, F. Li, S. Sone, H. MacMahon, and K. Doi, “Potential
clinical usefulness of an intelligent computer-aided diagnostic scheme
for distinction between benign and malignant pulmonary nodules in low-
dose CT scans,” Radiol., vol. 225(P), no. 2, pp. 534–535, Nov. 2002.

[44] Q. Li, F. Li, S. Katsuragawa, J. Shiraishi, H. MacMahon, S. Sone, and
K. Doi, “Investigation of new psychophysical measures for evaluation
of similar images on thoracic computed tomography for distinction be-
tween benign and malignant nodules,” Med. Phys., vol. 30, no. 10, pp.
2584–2593, Oct. 2003.

[45] K. Nakamura, H. Yoshida, R. Engelmann, H. MacMahon, S. Katsura-
gawa, T. Ishida, K. Ashizawa, and K. Doi, “Computerized analysis of
the likelihood of malignancy in solitary pulmonary nodules by use of
artificial neural networks,” Radiol., vol. 214, no. 3, pp. 823–830, Mar.
2000.

[46] M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon, and K. Doi, “Auto-
mated computerized scheme for distinction between benign and malig-
nant solitary pulmonary nodules on chest images,” Med. Phys., vol. 29,
no. 5, pp. 701–708, May 2002.

[47] Y. Jiang, R. M. Nishikawa, D. E. Wolverton, C. E. Metz, M. L. Giger, R.
A. Schmidt, C. J. Vyborny, and K. Doi, “Malignant and benign clustered
microcalcifications: Automated feature analysis and classification,” Ra-
diol., vol. 198, no. 3, pp. 671–678, Mar. 1996.

[48] H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. Adler,
and M. M. Goodsitt, “Computerized classification of malignant and be-
nign microcalcifications on mammograms: Texture analysis using an ar-
tificial neural network,” Phys. Med. Biol., vol. 42, no. 3, pp. 549–567,
Mar. 1997.

[49] Z. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, R. A. Schmidt,
and K. Doi, “Automated computerized classification of malignant and
benign mass lesions on digitized mammograms,” Acad. Radiol., vol. 5,
pp. 155–168, 1998.

[50] L. Hadjiiski, B. Sahiner, H.-P. Chan, N. Petrick, and M. Helvie, “Clas-
sification of malignant and benign masses based on hybrid ART2LDA
approach,” IEEE Trans. Med. Imag., vol. 8, no. 12, pp. 1178–1187, Dec.
1999.

[51] B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M.
A. Helvie, and M. N. Gurcan, “Computer-aided characterization of
mammographic masses: Accuracy of mass segmentation and its effects
on characterization,” IEEE Trans. Med. Imag., vol. 20, no. 12, pp.
1275–1284, Dec. 2001.

[52] Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. Kat-
suragawa, and K. Doi, “Usefulness of an artificial neural network for
differentiating benign from malignant pulmonary nodules on high-res-
olution CT: Evaluation with receiver operating characteristic analysis,”
AJR, vol. 178, pp. 657–663, Mar. 2002.

[53] M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin,
and D. R. Aberle, “A pattern classification approach to characterizing
solitary pulmonary nodules imaged on high resolution CT: Preliminary
results,” Med. Phys., vol. 26, no. 6, pp. 880–888, Jun. 1999.

[54] M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, “Com-
puterized scheme for determination of the likelihood measure of malig-
nancy for pulmonary nodules on low-dose CT images,” Med. Phys., vol.
30, no. 3, pp. 387–394, Mar. 2003.

[55] S. Chang, H. Emoto, D. N. Metaxas, and L. Axel, “Pulmonary micron-
odule detection from 3D chest CT,” Med. Image Comput. Comput.-As-
sist. Intervention, pt. I, pp. 821–828, Sep. 2004.

[56] A. Farag, A. El-Baz, G. G. Gimel’farb, R. Falk, and S. G. Hushek, “Au-
tomatic detection and recognition of lung abnormalities in helical CT
images using deformable templates,” Med. Image Comput. Comput.-As-
sist. Intervention, pt. I, pp. 856–864, Sep. 2004.

[57] C. E. Metz, B. A. Herman, and C. A. Roe, “Statistical comparison of
two ROC curve estimates obtained from partially-paired datasets,” Med.
Decision Making, vol. 18, pp. 110–121, 1998.

[58] P. A. Lachenbruch, Discriminant Analysis. New York: Hafner, 1975,
pp. 1–39.

[59] A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed. San
Diego, CA: Academic, 1982, vol. 2, pp. 55–190.

[60] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Netw., vol. 1, pp. 295–307, 1988.

[61] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon,
“Accelerating the convergence of the back-propagation method,” Biol.
Cybern., vol. 59, pp. 257–263, 1988.

[62] R. Battiti, “Accelerated backpropagation learning: Two optimization
methods,” Complex Syst., vol. 3, pp. 331–342, 1989.

[63] Y. LeCun, I. Kanter, and S. A. Solla, “Second order properties of error
surfaces: Learning time and generalization,” in Advances in Neural
Information Processing Systems, vol. 3. Cambridge, MA, 1991, pp.
918–924.

[64] Y. LeCun, P. Y. Simaard, and B. Pearlmutter, “Automatic learning rate
maximization by on-line estimation of the Hessian’s eigenverctors,”
in Advances in Neural Information Processing Systems. Cambridge,
MA: MIT Press, 1993, vol. 5, pp. 156–163.

[65] Y. Shang and B. W. Wah, “Global optimization for neural network
training,” Computer, vol. 29, no. 3, pp. 45–54, 1996.

[66] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Advances in Neural Information Processing Systems 2. San
Mateo, CA: Morgan Kaufmann, 1990, pp. 524–532.

[67] W. Finnoff, “Diffusion approximations for the constant learning rate
backpropagation algorithm and resistance to local minima,” Neural
Comput., vol. 6, no. 2, pp. 285–295, 1994.

[68] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural Netw., vol.
2, no. 1, pp. 53–58, 1989.

[69] K. Fukunaga and R. R. Hayes, “Effects of sample size on classifier
design,” IEEE Trans. Pattern. Anal. Mach. Intell., vol. 11, no. 10, pp.
873–885, 1989.

[70] H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, “Classifier design
for computer-aided diagnosis: Effects of finite sample size on the mean
performance of classical and neural network classifiers,” Med. Phys.,
vol. 26, no. 12, pp. 2654–2668, Dec. 1999.

[71] B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski,
“Feature selection and classifier performance in computer-aided diag-
nosis: The effect of finite sample size,” Med. Phys., vol. 27, no. 7, pp.
1509–1522, Jul. 2000.

[72] H. P. Chan, B. Sahiner, and L. Hadjiiski, “Sample size and validation
issues on the development of CAD systems,” in Proc. Computer Assisted
Radiology and Surgery (CARS), Chicago, IL, June 2004, pp. 872–877.

[73] S. B. Lo, H. P. Chan, J. S. Lin, H. Li, M. Freedman, and S. K. Mun,
“Artificial convolution neural network for medical image pattern recog-
nition,” Neural Netw., vol. 8, no. 7/8, pp. 1201–1214, 1995.

[74] E. Oja, Subspace Methods of Pattern Recognition. Letchworth, U.K.:
Research Studies, 1983.


	toc
	Computer-Aided Diagnostic Scheme for Distinction Between Benign 
	Kenji Suzuki*, Senior Member, IEEE, Feng Li, Shusuke Sone, and K
	I. I NTRODUCTION
	II. M ATERIALS

	Fig.€1. Distributions of sizes of malignant and benign nodules i
	III. M ETHOD
	A. Architecture of Massive Training Artificial Neural Network (M


	Fig.€2. Architecture and training of a massive training artifici
	B. Training of MTANN
	C. Multiple MTANNs

	Fig.€3. Architecture of multiple MTANNs (multi-MTANN) incorporat
	D. Integration ANN
	IV. R ESULTS
	A. Training


	Fig.€4. Illustrations of training samples of four malignant nodu
	Fig.€5. Illustrations of the output images of the six trained MT
	B. Evaluation

	Fig.€6. Illustrations of (a) four nontraining malignant nodules 
	Fig.€7. Illustration of three types of nodule patterns, i.e., pu
	Fig.€8. ROC curve of each MTANN in the multi-MTANN in distinctio
	Fig.€9. Distributions of the output values of the integration AN
	TABLE I TPR S AND THE C ORRESPONDING FPR S OF O UR S CHEME AT D 
	Fig.€10. ROC curves of our schemes in distinction between malign
	Fig.€11. Four worst cases of malignant and benign nodules for ou
	V. D ISCUSSION

	Fig.€12. Effect of the change in the number of training nodules 
	Fig.€13. Effect of the change of a set of training nodules (mali
	Fig.€14. Learning curve of MTANN no. 1 and the effect of the num
	Fig.€15. Effect of the change in the standard deviation $% \sigma$
	Fig.€16. Effect of the change in the number of MTANNs in the mul
	Fig.€17. Effect of the change in the number of hidden units in t
	TABLE II D IFFERENCE B ETWEEN A OYAMA ' S S CHEME AND O UR S CHE
	Fig.€18. Distributions of samples extracted from the 10 training
	VI. C ONCLUSION
	A. Jemal, T. Murray, A. Samuels, A. Ghafoor, E. Ward, and M. J. 
	O. S. Miettinen and C. I. Henschke, CT screening for lung cancer
	M. Kaneko, K. Eguchi, H. Ohmatsu, R. Kakinuma, T. Naruke, K. Sue
	S. Sone, S. Takashima, F. Li, Z. Yang, T. Honda, Y. Maruyama, M.
	C. I. Henschke, D. I. McCauley, D. F. Yankelevitz, D. P. Naidich
	C. I. Henschke et al., Early lung cancer action project: Initial
	S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. S
	H. Rusinek, D. P. Naidich, G. McGuinness, B. S. Leitman, D. I. M
	K. Garg, R. L. Keith, T. Byers, K. Kelly, A. L. Kerzner, D. A. L
	C. I. Henschke, D. F. Yankelevitz, D. P. Naidich, D. I. McCauley
	S. Sone, F. Li, Z. G. Yang, T. Honda, Y. Maruyama, S. Takashima,
	T. Nawa, T. Nakagawa, S. Kusano, Y. Kawasaki, Y. Sugawara, and H
	F. Li, S. Sone, H. Abe, H. MacMahon, S. G. Armato, and K. Doi, L
	K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, Noise reduction of
	K. Suzuki, I. Horiba, and N. Sugie, Neural edge detector A good 
	K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, Extraction of left
	K. Suzuki, I. Horiba, and N. Sugie, Training under achievement q
	K. Suzuki, Determining the receptive field of a neural filter, J
	K. Suzuki, I. Horiba, and N. Sugie, Efficient approximation of n
	K. Suzuki, S. G. Armato, F. Li, S. Sone, and K. Doi, Massive tra
	H. Arimura, S. Katsuragawa, K. Suzuki, F. Li, J. Shiraishi, S. S
	K. Suzuki and K. Doi, Characteristics of a massive training arti
	K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, False-
	K. Suzuki, I. Horiba, K. Ikegaya, and M. Nanki, Recognition of c
	D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning repr
	K. Funahashi, On the approximate realization of continuous mappi
	A. R. Barron, Universal approximation bounds for superpositions 
	C. E. Metz, ROC methodology in radiologic imaging, Invest. Radio
	C. E. Metz, B. A. Herman, and J. H. Shen, Maximum likelihood est
	J. A. Hanley and B. J. McNeil, A method of comparing the areas u
	J. Kittler, M. Hatef, R. Duin, and J. Matas, On combining classi
	J. Kittler and F. M. Alkoot, Sum versus vote fusion in multiple 
	R. Bellman, Adaptive Control Processes, A Guided Tour . Princeto
	G. F. Hughes, On the mean accuracy of statistical pattern recogn
	Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Gige
	Q. Li, M. Aoyama, F. Li, S. Sone, H. MacMahon, and K. Doi, Poten
	Q. Li, F. Li, S. Katsuragawa, J. Shiraishi, H. MacMahon, S. Sone
	K. Nakamura, H. Yoshida, R. Engelmann, H. MacMahon, S. Katsuraga
	M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon, and K. Doi, Autom
	Y. Jiang, R. M. Nishikawa, D. E. Wolverton, C. E. Metz, M. L. Gi
	H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. 
	Z. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, R. A. Schmi
	L. Hadjiiski, B. Sahiner, H.-P. Chan, N. Petrick, and M. Helvie,
	B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagu
	Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. Kat
	M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Go
	M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, Co
	S. Chang, H. Emoto, D. N. Metaxas, and L. Axel, Pulmonary micron
	A. Farag, A. El-Baz, G. G. Gimel'farb, R. Falk, and S. G. Hushek
	C. E. Metz, B. A. Herman, and C. A. Roe, Statistical comparison 
	P. A. Lachenbruch, Discriminant Analysis . New York: Hafner, 197
	A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed. 
	R. A. Jacobs, Increased rates of convergence through learning ra
	T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Al
	R. Battiti, Accelerated backpropagation learning: Two optimizati
	Y. LeCun, I. Kanter, and S. A. Solla, Second order properties of
	Y. LeCun, P. Y. Simaard, and B. Pearlmutter, Automatic learning 
	Y. Shang and B. W. Wah, Global optimization for neural network t
	S. E. Fahlman and C. Lebiere, The cascade-correlation learning a
	W. Finnoff, Diffusion approximations for the constant learning r
	P. Baldi and K. Hornik, Neural networks and principal component 
	K. Fukunaga and R. R. Hayes, Effects of sample size on classifie
	H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, Classifier
	B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiis
	H. P. Chan, B. Sahiner, and L. Hadjiiski, Sample size and valida
	S. B. Lo, H. P. Chan, J. S. Lin, H. Li, M. Freedman, and S. K. M
	E. Oja, Subspace Methods of Pattern Recognition . Letchworth, U.



