
Neural Edge Enhancer for Supervised Edge
Enhancement from Noisy Images

Kenji Suzuki, Member, IEEE, Isao Horiba, and Noboru Sugie, Member, IEEE

Abstract—We propose a new edge enhancer based on a modified multilayer neural network, which is called a neural edge enhancer

(NEE), for enhancing the desired edges clearly from noisy images. The NEE is a supervised edge enhancer: Through training with a

set of input noisy images and teaching edges, the NEE acquires the function of a desired edge enhancer. The input images are

synthesized from noiseless images by addition of noise. The teaching edges are made from the noiseless images by performing the

desired edge enhancer. To investigate the performance, we carried out experiments to enhance edges from noisy artificial and natural

images. By comparison with conventional edge enhancers, the following was demonstrated: The NEE was robust against noise, was

able to enhance continuous edges from noisy images, and was superior to the conventional edge enhancers in similarity to the desired

edges. To gain insight into the nonlinear kernel of the NEE, we performed analyses on the trained NEE. The results suggested that the

trained NEE acquired directional gradient operators with smoothing. Furthermore, we propose a method for edge localization for the

NEE. We compared the NEE, together with the proposed edge localization method, with a leading edge detector. The NEE was proven

to be useful for enhancing edges from noisy images.

Index Terms—Supervised edge enhancer, noisy image, robustness, neural network, edge detection, contour extraction.

�

1 INTRODUCTION

EDGE enhancement is one of the most fundamental
operations in image analysis, and there are probably

more algorithms for enhancing and detecting edges in the
literature than for any other single subject [1], [2], [3], [4],
[5]. Edges form the outline of an object, and an edge is the
boundary between an object and the background. If the
edges in an image can be identified accurately, all of the
objects can be located, and basic properties such as area,
perimeter, and shape can be measured. Edge detection, in
general, consists of two parts: edge enhancement, which is a
process for calculating the edge magnitude at each pixel;
and edge localization, which is a process for determining
the exact edge location. Once an edge is enhanced properly,
the location of the edge can be identified accurately. Thus,
the performance of edge detection depends on that of edge
enhancement.

Because the objects in an image obtained from real-world

scenes are generally buried in noise, 1) robust enhancement

against noise is required for edge enhancement algorithms.

In addition, there exist various scales, orientations, and

magnitudes of edges in an image. The desired edges for a

certain application may differ from those for another one. If

we employ an active contour model such as a SNAKES [6]

to extract contours, it functions relatively successfully by
use of the edges enhanced as thick rather than thin curves.
Therefore, 2) enhancing the desired edges appropriately
for each application is required for edge-enhancement
algorithms.

Many studies on requirement 1) have been carried out
and, thus, many edge enhancers/detectors have been
proposed [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23]. However, in an attempt
to enhance edges from an image with a large amount of
noise, inadequate results may be obtained: Not only edges
are enhanced, but also noise; edges are enhanced discon-
tinuously. Furthermore, most studies have focused atten-
tion on enhancing/detecting edges from noisy images, and
less attention has been given to requirement 2). Therefore,
how to enhance the desired edges clearly from noisy images
has remained a serious issue.

Recently, in the field of signal processing, nonlinear filters
based on a multilayer neural network (NN), called neural
filters (NFs), have been studied [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35]. In the NF, a multilayer NN is
employed as a convolution kernel. The NFs can acquire the
function of various linear and nonlinear filters through
training. Suzuki et al. developed NFs for reduction of
additive Gaussian/quantum noise in natural/medical
images and reported that the performance of the NFs was
superior to that of leading nonlinear filters [28], [29], [30],
[31], [32], [33], [34], [35].

We have now extended the NFs to accommodate an edge
enhancement task, and we developed a new edge enhancer
based on a modified multilayer NN, which is called a
neural edge enhancer (NEE), to enhance the desired edges
clearly from noisy images. In order to handle continuous
values such as the edge magnitude, we modified the
structure of a multilayer NN, and we developed a training
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method for the modified structure. In the NEE, a modified
multilayer NN is employed as a nonlinear convolution
kernel for edge enhancement. Through training with a set of
input noisy images and teaching edges, the NEE acquires
the function of a desired edge enhancer. Thus, the NEE is a
supervised edge enhancer.

Several applications of NNs to edge detection have been
studied so far. They can be classified into four broad
categories:

1. edge detectors based on cellular NNs [36], [37], [38],
[39], [40], [41], [42], [43];

2. edge detectors based on self-organizing maps [44],
[45], [46];

3. edge detectors based on Hopfield networks [47],
[48], [49], [50];

4. edge detectors based on multilayer NNs [51], [52],
[53], [54].

The above edge detectors, except class 4, are unsupervised
ones and, thus, they do not have the function of enhancing
the desired edges. Therefore, they do not necessarily satisfy
requirement 2). Furthermore, because they were not in-
tended to detect edges robustly against noise, they may not
satisfy requirement 1). As for class 4, the NN is used as a
classifier in these edge detectors. They cannot handle
continuous values such as edge magnitude, i.e., these NNs
directly classify whether a certain pixel belongs to the class,
an edge, or to the class, a background. Inmany applications, a
map of edge magnitudes is more useful than only a map of
edge locations. Therefore, an edge enhancer that outputs the
edgemagnitudewould bemore useful formany applications
than an edge detector that identifies edge locations.

2 NEURAL EDGE ENHANCER

2.1 Edge-Enhancement Problem

In general, an image obtained from real-world scenes is
corrupted by noise. Noise in an image can be classified into
two major types. One is signal-dependent noise, such as
quantum noise. The other is signal-independent noise such
as additive Gaussian noise. Quantum noise is the dominant
form in an image obtained in darkness, an image obtained
from an infrared camera, an X-ray image, a radiograph, etc.
Quantum noise originates from a signal-dependent, Pois-
son-distributed noise source. The variance of the Poisson
noise increases linearly with signal amplitude. The Poisson-
distributed noise can be approximated by a Gaussian when
the number of quanta is relatively large. Therefore, we can
use signal-dependent Gaussian noise as a model of
quantum noise. Assuming that noise is quantum noise, a
noisy image can be represented by

gðx; yÞ ¼ fðx; yÞ þNð�Þ; ð1Þ

where fðx; yÞ is a noiseless image, Nð�Þ is white Gaussian
noise when its standard deviation � is KN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx; yÞ

p
, and KN

is a parameter determining the amount of noise. The
desired edge magnitude can be calculated from the noise-
less image as follows:

fEðx; yÞ ¼ ’ fðx; yÞf g; ð2Þ

where ’ is an operator calculating the desired edge
magnitude. Because edge enhancement is represented as a
technique for finding an operation that transforms the noisy
image into a map of the desired edge magnitudes, edge
enhancement can be formulated as

f̂fEðx; yÞ ¼ # gðx; yÞf g; ð3Þ

where f̂fEðx; yÞ is an estimate for the desired edge magnitude
and #ð�Þ is an operator realizing edge enhancement.

2.2 Architecture

The architecture of the NEE is shown in Fig. 1. The NEE
consists of a modified multilayer NN, which can directly
handle input gray levels and output edge magnitudes. In
the NEE, the modified multilayer NN is employed as a
nonlinear convolution kernel for edge enhancement. In the
modified multilayer NN, the activation functions of the
units in the input, hidden, and output layers are an identity,
a sigmoid, and an identity function, respectively. We
employ an identity function instead of the ordinarily used
sigmoid one as the activation function of the unit in the
output layer because the characteristics of an NN were
improved significantly with an identity function when
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Fig. 1. Architecture of the neural edge enhancer (NEE). In the NEE, the
modified multilayer NN is employed as a nonlinear convolution kernel for
edge enhancement. The entire image is obtained by scanning with the
modified multilayer NN.



applied to continuous mapping issues such as image
processing [55], [56]. It should be noted that a conventional
NN which uses a sigmoid function as the activation
function of the unit in the output layer is useful for
applications where the output is in the form of binary
values such as a classification task.

The pixel values in an input region RS are normalized
and then input to the NEE. The inputs to the NEE are a
normalized object pixel value and spatially adjacent
normalized pixel values. Although the most common use
of an NN is as a classifier that determines whether a certain
pixel belongs to the class, such as an edge or a background,
the output of the NEE is not a class, but the estimate for the
edge magnitude, represented by

f̂fEðx; yÞ ¼ GM �NN fgðx� i; y� jÞ=GM ji; j 2 RSg½ �; ð4Þ

where GM is a normalization factor and NNð�Þ is the output
of the modified multilayer NN. The entire image is obtained
by scanning with the modified multilayer NN. The
modified multilayer NN, therefore, functions like a con-
volution kernel. The multilayer NN as a nonlinear kernel is
designed by training such that the input images are
converted to a map of the desired edge magnitudes. The
universal approximation property of a multilayer NN [57],
[58] guarantees the capability of the NEE, i.e., the multilayer
NN can realize any continuous mapping approximately.
This means that the use of the multilayer NN as a
convolution kernel can realize, through the convolution
operation, various image-processing techniques, including
high-pass, low-pass, and band-pass filtering, noise reduc-
tion, and edge enhancement. For example, the modified
multilayer NN-based kernel can act as an averaging
operation, gradient operation, Laplacian operation, etc.
Thus, the NEE has a high potential for solving some of
existing problems in edge enhancement/detection as well
as image processing.

2.3 Training

The NEE is trained with a set of noisy input images and the
teaching images, including the desired edge magnitudes, by
adjusting the weights between layers. The error to be
minimized by training is defined by

E ¼ 1

2P

X
p

ðfp
E=GM � f̂fp

E=GMÞ2; ð5Þ

where p is a training pixel number, fp
E is the pth training

pixel in the teaching images, f̂fp
E is the pth training pixel in

the output images, and P is the number of training pixels.
The NEE is trained by the modified back-propagation
algorithm in [56], [55], which was derived for the above
structure in the same way as in the derivation of the back-
propagation algorithm [59], [60]. The correction of a weight
between the mth unit in the hidden layer and the unit in the
output layer is represented by

�WO
m ¼ �� � � �OH

m ¼ ��ðfE=GM � f̂fE=GMÞOH
m; ð6Þ

where � is a leaning rate, OH
m is the output of the mth unit in

the hidden layer, and � is the delta of the delta rule [59],
[60]. By use of delta, the corrections of any weights can
be derived in the same way as in the derivation of the

back-propagation algorithm. The NEE is trained by the
above modified back-propagation algorithm. After training,
the NEE will output the desired edge magnitudes. An edge
localization method, such as the one that we propose in this
paper (described later) or an existing one, can be performed
accordingly on the map of the edge magnitudes obtained by
the trained NEE.

2.4 Comparison of the Proposed NN with a
Conventional One

2.4.1 Property

In order to clarify the basic property of the proposed NN,
we consider the relationship between the proposed NN and
a conventional one theoretically. As for the structure, we
can understand easily that it is hard for the conventional
NN to output values near one and zero, whereas the
proposed NN can output all values equally.

In the proposed training, the correction of a weight
between the unit in the hidden layer and the unit in the
output layer is represented by

�WO
m ¼ ��

@E

@OO

@OO

@X

@X

@WO
m

¼ ��
@E

@OO
f 0
IðXÞOH

m

¼ ��
@E

@OO
OH

m;

ð7Þ

where OO is the output of the unit in the output layer, X is
an input value to the activation function, and f 0

I is the
derivative of an identity function. On the other hand, the
correction of a weight in the conventional training is
represented by

�WO
m ¼ ��

@E

@OO
f 0
SðXÞOH

m

¼ ��
@E

@OO
OOð1�OOÞOH

m;

ð8Þ

where f 0
S is the derivative of a sigmoid function. Comparing

the two equations, we can find that the difference is just the
derivatives of activation functions. Therefore, we can
rewrite the right side of the above equation as the following
equation, using �S :

� �
@E

@OO
OOð1�OOÞOH

m ¼ ��S
@E

@OO
OH

m: ð9Þ

When the training proceeds, the output of the NN, OO,
should approach the teaching edge magnitude, fE=GM .
Therefore, the learning rate of the conventional training can
be approximated by

�S ¼ � �OOð1�OOÞ � � � fE=GMð1� fE=GMÞ: ð10Þ

This equation shows that the learning rate of the conven-
tional training is modulated by the derivative of a sigmoid
function, which is 0.5 when the teaching edge magnitude is
0.5 and is zero when the teaching edge magnitude is zero or
one. In other words, the learning rate of the proposed
training corresponds to that of the conventional training
before the modulation. Therefore, in the conventional
training, the edge magnitudes of zero and one are never
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trained, and the training for the edge magnitude near zero

and one converges more slowly. This would affect the

convergence characteristic and the output characteristic.
An alternative way to cancel the derivative of a sigmoid

function would be to use the cross-entropy energy function

instead of the sum-of-square error function [61].

2.4.2 Experiment

In order to illustrate the basic property of the proposed NN,

we carried out an experiment to enhance the edges of

artificial patterns. A pulse pattern whose height increases in

proportion to the horizontal position was generated by the

following equation:

fðx; yÞ ¼ a½x=2k� if ½x=k� is odd
0 if ½x=k� is even;

�
ð11Þ

where ½ � denotes the Gauss notation, k is the width of the

pulse, and a is a gain parameter for determining the height

of the pulse. The pulses were generated by use of the

following parameters: a ¼ GM=100; k ¼ Xmax=ð2� 100þ 1Þ,

where Xmax is the number of pixels in the horizontal axis,
i.e., the pulse image included 100 pulses, and the maximum
height of the pulse was GM . The teaching edges were
obtained from the pulse image by application of the Sobel
filter. Five training samples were selected at x ¼ 20k, 60k,
100k, 140k, and 180k. The input regions of the proposed and
the conventional NNs consisted of three-by-three pixels,
which correspond to the kernel of the Sobel filter. The
numbers of the units in the input, hidden, and output layers
were nine, five, and one, respectively. The NNs were
trained on 100,000 epochs.

The learning curves of NNs are shown in Fig. 2a. The
training of the proposed NN converged with a much
smaller error than did the conventional NN. The mean
absolute errors as a function of the edge magnitudes of the
teaching edges are shown in Fig. 2b. These results lead to
the conclusion that the proposed NN is suitable for
applications involving continuous values such as edge
enhancement.

3 EXPERIMENTS WITH NOISY ARTIFICIAL IMAGES

3.1 Synthesizing Artificial Images

In order to examine the performance on edge enhancement
against noise, we prepared artificial images for testing as
described in [62] for experiments. First, images including
two concentric circles were generated as follows:

cbðxb; ybÞ ¼
S0 � S=2 ð0 � r < r1Þ
S0 þ S=2 ðr1 � r < r2Þ
S0 � S=2 ðr2 � rÞ;

8<
: ð12Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxb � xCÞ2 þ ðyb � yCÞ2

q
: ð13Þ

xb and yb are the indices of spatial coordinates, xC and yC
are the indices of coordinates of the central point of an
image, r1 and r2 are the radii of the concentric circles, S0 is a
base gray level, and S is an edge contrast. The parameters
were set according to [62] as r1 ¼ 64, r2 ¼ 96, S0 ¼ 60, and
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Fig. 2. Comparison of the property of the proposed NN with that of the

conventional NN. (a) Learning curve. (b) Mean absolute errors as a

function of the edge magnitudes of the teaching edges.

Fig. 3. Comparison of the edges enhanced by the NEE with those

enhanced by the conventional edge detectors (SNRT : 3 dB; edge

contrast: medium). (a) Input image. (b) Teaching edges. (c) Sobel filter.

(d) Optimized Marr-Hildreth operator. (e) Optimized Canny edge

detector. (f) Optimized Hueckel operator. (g) Neural edge enhancer.



the image size was 512� 512 pixels. The edges with various
orientations can be evaluated by use of such concentric
circles. Next, down-sampling based on averaging, the
reduction rate of which is 1=4, was performed on the above
image as follows:

cðx; yÞ ¼
X

i;j2R44

cbð4x� i; 4y� jÞ=16; ð14Þ

where R44 is a region consisting of four by four pixels. Then,
an image consisting of 128� 128 pixels was obtained. A
noisy artificial image was synthesized from cðx; yÞ by
adding white Gaussian noise as follows:
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Fig. 5. Natural images used in our experiment (Columbia University).
(a) Original image. (b) Noisy input image. (c) Edges enhanced by the
NEE trained with the artificial images. (d) Ideal/teaching edges.

Fig. 6. Input image and its ideal edges, which were not used for training

(nontraining image: teapot). (a) Noisy input image. (b) Ideal edges.

Fig. 7. Comparison of the edges enhanced by the NEE with those

enhanced by the conventional edge detectors (nontraining image:

teapot). (a) Sobel filter. (b) Optimized Marr-Hildreth operator.

(c) Optimized Canny edge detector. (d) Optimized Hueckel operator.

(e) Conventional edge detector based on a multilayer NN. (f) Neural

edge enhancer.

Fig. 4. Comparison of the performance of the NEE in robustness against
noise with that of conventional edge detectors (edge contrast: medium).



cNðx; yÞ ¼ cðx; yÞ þNð�Þ; ð15Þ

where Nð�Þ is white Gaussian noise with standard
deviation �. The signal-to-noise ratio of the artificial image
is defined by

SNRT ¼ 10 log10
S

�

� �2

: ð16Þ

Several artificial images were synthesized by varying the
SNRT .

3.2 Training the NEE

Thenoisyartificial image cNðx; yÞwasusedas the input image
to theNEE. The teaching edges were obtained from cðx; yÞ by
application of a desired edge enhancer, ’ð�Þ, as follows:

fEðx; yÞ ¼ ’ cðx; yÞf g: ð17Þ

The Sobel filter was used as ’ð�Þ in this experiment because
it can enhance edges clearly from a noiseless image. The
input images used for training were six images: Three
images were made on the basis of (12) by varying S to be 15,
25, and 35 (here referred to as the edge contrast: low,
medium, and high, respectively), and then two artificial

images were obtained from each of the three images by
varying the SNRT to be 3 dB and 18 dB. Examples of the
input images and the teaching edges are shown in Figs. 3a
and 3b. The region covering the two circles was used as
the training region. Three-layered NEE (input region:
7� 7 pixels; number of units in the hidden layer: 20; here
referred to as 49-20-1) was trained on 200,000 epochs, and
the training converged with an error E of 8.1 percent.

3.3 Conventional Edge Detectors

Conventional edge detectors can be classified into three

broad classes:

1. gradient-based edge detectors [7], [11], [12];
2. algorithms dealing with the edge detection as the

optimal filtering problem [13], [14], [15], [16], [18],
[19], [20], [22], [23];

3. edge-model-based edge detectors [8], [9], [10].

A well-known representative in class 1 is the Sobel filter [7],
those in class 2 are the Marr-Hildreth operator [14] and the
Canny edge detector [16], and that in class 3 is the Hueckel
operator [8], [9]. The Sobel filter is widely used because of a
low computational cost. The Marr-Hildreth operator can
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Fig. 8. Edges enhanced by the NEE for nontraining images. (a) Noisy input image. (b) Neural edge enhancer. (c) Ideal edges.



detect multiscale edges. The Canny edge detector is well-
known as a good one. The Hueckel operator is well-known
for robustness against noise.

3.4 Results of Edge Enhancement

We used the edge-enhancement parts of the conventional
edge detectors for comparisons of the performance. For
comparison of the NEE with the conventional edge
detectors fairly, the parameters of the conventional edge
detectors were optimized. Furthermore, because the mag-
nitude of the enhanced edge is, generally, different from
that of the teaching edge, a gray-scale transformation based
on a linear function was performed. The optimization of the
parameters and that of the gray-scale transformation were
performed with the training images under the minimum-
mean-square error criterion, defined as (5). Thus, each
conventional edge detector had the highest performance
against the training images.

The edges enhanced by each edge detector for the input
image having an SNRT of 3 dB are shown in Fig. 3. The
edges enhanced by the NEE are continuous, and there is
less false-positive detection (edges detected where no edge
exists) than with others. In order to evaluate the perfor-
mance quantitatively, we calculated the mean absolute error
(MAE) between the teaching edges and the enhanced edges
(normalization was performed with GM ). The results are
shown in Fig. 4. The MAEs of the NEE are the smallest,

even in the case of nontraining images. However, the NEE
was not very effective for the image having an SNRT of
0 dB, which is less than the 3 dB used in training.

In order to investigate the versatility of the trained NEE,
we applied the trained NEE to a natural image. The input
image was synthesized from an original image (Columbia
University, here referred to as Columbia; size: 480� 480
pixels; maximum level of the gray scale: 256) by adding
quantum noise on the basis of (1), whereKN was 1.2 percent
of the maximum level of the gray scale. The ideal edges were
synthesized from the original image by application of the
Sobel filter. These images are shown in Fig. 5. The result of
applying the NEE is shown in Fig. 5c. The result is similar to
the ideal edges shown in Fig. 5d,whichwas synthesized from
the original image by performing of the Sobel filter. This
result indicated that theNEE trainedwith theartificial images
was versatile. The NEE could learn the essential edge
enhancement from the artificial images.

4 EXPERIMENTS WITH NOISY NATURAL IMAGES

4.1 Training the NEE

In order to carry out experiments to enhance the edges from
noisy natural images, we used the images shown in Figs. 5b
and 5d for training. To acquire the features in the entire
image efficiently, the training data set was made by
sampling of 10,000 points at random from the training
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TABLE 1
Quantitative Evaluation of Performance by Use of the Error between the Ideal Edge and

the Edge Enhanced by Each Edge Enhancer/Detector (Training Image: Columbia)



images. Three-layered NEE was adopted because it has
been proven theoretically that any continuous mapping can
be approximately realized by a three-layered NN [57], [58].
The training was performed on 1,000,000 epochs and
converged with an error E of 1.76 percent. The execution
time for the training was 340 hours on a workstation
(UltraSPARC-II 300 MHz, Sun Microsystems).

4.2 Comparison with Conventional Edge Detectors

The conventional edge detectors were optimized in the
same way as in the previous section. In addition, we
compared the NEE with the conventional edge detector
based on a multilayer NN [51]. In this edge detector, the
histogram of gray levels in the input region is input to the
multilayer NN, i.e., the inputs to the multilayer NN are
frequencies of gray levels. The multilayer NN is employed
as a classifier, i.e., the outputs are the classes, an edge or a
background. In addition, the activation function of the unit
in the output layer is a sigmoid function. Because this NN
cannot handle continuous values such as edge magnitude,
the teaching edges were transformed into a binary image by
use of thresholding and then the binary image was used as
the teaching image for this edge detector. The conventional
edge detector based on the multilayer NN was trained
under the same conditions as the NEE.

In order to evaluate their generalization ability, we
applied the edge enhancers/detectors to the nontraining
image shown in Fig. 6a. Fig. 6b shows the ideal edges made
from an original noiseless image by application of the Sobel
filter. The results are shown in Fig. 7. In the edges enhanced
by the Sobel filter, much noise remains. In the edges
enhanced by the Marr-Hildreth operator, the noise is
enhanced in the form of small circles. The enhanced edges
are rounded and different from the desired ones, although
they are continuous. In the edges enhanced by the Canny
edge detector and the Hueckel operator, much fine noise
remains, and the enhanced edges are discontinuous. In the
result of the conventional edge detector based on a
multilayer NN, the edge is detected as a wide band, and
there are many false positives. In contrast, in the edges
enhanced by the NEE, there is less noise. The enhanced
edges are continuous and clear and similar to the ideal ones.
The edges enhanced by the NEE in the case of other
nontraining images are shown in Fig. 8. These results
indicate that the NEE can enhance the edges similar to the
ideal ones for nontraining images.

The CPU execution time of each edge detector on a
workstation was measured. The execution time for a 512�
512-pixel image in seconds was as follows: the Sobel filter:
0.2, the Marr-Hildreth operator: 2.3, the Canny edge
detector: 3.0, the Hueckel operator: 42.4, and the NEE: 6.4.

4.3 Quantitative Evaluation

The signal-to-noise ratio of an input image [63], [64] can be
defined as

SNRI ¼ 10 log10

P
x;y fðx; yÞ � fðx; yÞ
n o2

P
x;y Nðx; yÞ �Nðx; yÞ
n o2

; ð18Þ

where

Nðx; yÞ ¼ fðx; yÞ � gðx; yÞ; ð19Þ

and fðx; yÞ and Nðx; yÞ denote means for fðx; yÞ and

Nðx; yÞ, respectively. The MAE between the ideal edge

and the enhanced edge was adopted as a metric for

evaluation of the performance. The results of the evaluation

are shown in Table 1. Most images are from the USC

(University of Southern California) image database. The

average values in the table were calculated from nontrain-

ing images. The MAEs of the NEE were the smallest of all.

These results lead to the conclusion that the performance of

the NEE is higher than that of the conventional edge

detectors in terms of the similarity to the ideal edges.

4.4 Analysis of the Trained NEE

In order to gain insight into the properties of the trained

NEE, we applied it to texture images. The texture images

were obtained from the Columbia-Utrecht texture database.

Quantum noise was added to the original texture images.

The SNRIs of all input texture images were 4.0 dB. The

results is shown in Fig. 9. The NEE was effective for

relatively coarse textures such as straw and brown bread,

whereas it was not effective for fine textures such as linen

and cotton. It should be noted that the results for the

original texture images without noise were similar to those

for the images with noise. This indicates that the trained

NEE smoothes fine textures together with noise.
In order to gain insight into the structure of the trained

NEE, we performed an analysis of the structure of the
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Fig. 9. Results of applying the NEE trained with a natural image to
texture images. (a) Input texture images with quantum noise (from top to

bottom: straw, linen, cotton, and brown bread). (b) Edges enhanced by
the neural edge enhancer. (c) Ideal edges.



trained NEE. A method for designing the optimal structure
of an NN in [65], [66], [67] was applied to the trained NEE.
The redundant units in the input layer and the hidden layer
were removed based on the effect of removing each unit on
the training error, and then the NEE was retrained to
recover the potential loss due to this removal. The removal
and the retraining were performed alternately, resulting in
a reduced structure where redundant units were removed.
As a result, the optimal structure, the smallest structure
with the error that had been converged in the original
training, was obtained. In other words, the minimum
structure having the same performance as the original one
was obtained. The number of units in the input layer and
that in the hidden layer were determined to be 17 and 17,
respectively. Use of this reduced structure would result in
efficient training. The execution time for the training was
63 hours on a workstation. Because one unit in the hidden

layer corresponds to one feature calculated from the input

pixel values, the result of optimization suggested that

17 features were used for the function of edge enhancement

from noisy images in the trained NEE. The effective units in

the input layer were within the square region consisting of

five by five pixels, as shown in Fig. 10.
Furthermore, in order to gain insight into the nonlinear

kernel of the trained NEE, we analyzed it by approximating

a sigmoid function to a linear function. The input pixel

values to the NEE are rewritten as

fgðx� i; y� jÞ=GM ji; j 2 RSg ¼ fI1; I2; � � � ; Iq; � � � INI
g;
ð20Þ

where q is a unit number in the input layer and NI is the

number of units in the input layer. The output of the mth

unit in the hidden layer is represented by
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Fig. 12. The modified weights Aqm of the approximate network of the
trained NEE. The six graphs correspond to the six networks that are
connected to six units in the hidden layer.

Fig. 10. Result of optimizing the units in the input layer of the NEE, which
correspond to the receptive field. Each small square indicates an input
unit of the NEE. A white square means a remaining unit after removal. A
gray or black square means a removed unit. The order of the removal is
expressed as a tone of gray. The darker square indicates a unit which
has been removed earlier, i.e., an unnecessary unit.

Fig. 11. Modification of the network of the trained NEE for analysis.

(a) Original network. (b) Approximate network.



OH
m ¼ fS

XNI

q¼1

Iq �WH
qm þWH

0m

 !
; ð21Þ

where fS is a sigmoid function,WH
qm is a weight between the

qth unit in the input layer and mth unit in the hidden layer,

and WH
0m is a bias. The output of the NEE is represented by

f̂fEðx; yÞ ¼
XNH

m¼1

OH
m �WO

m þWO
0 ; ð22Þ

where NH is the number of units in the hidden layer, WO
m is

a weight between the mth unit in the hidden layer and the

unit in the output layer, and WO
0 is a bias.

Because the nonlinearity of a sigmoid function prevents

us from analyzing the network easily, let us now approx-

imate a sigmoid function with a linear function for analysis.

The derivative of the sigmoid function at an offset can be

approximated by the gain of the linear function. By use of

this approximation, the output of themth unit in the hidden

layer can be represented by

OH
m ¼ fS

XNI

q¼1

Iq �WH
qm þWH

0m

 !

� f 0S WH
0m

� �
�
XNI

q¼1

Iq �WH
qm:

ð23Þ

Hence, the output of the NEE can be represented by

f̂fEðx; yÞ ¼
XNH

m¼1

XNI

q¼1

WH
qm � f 0S WH

0m

� �
�WO

m � Iq
n o" #

þWO
0 �

XNH

m¼1

XNI

q¼1

Aqm � Iq þWO
0 :

ð24Þ

The above modification of the network is shown in Fig. 11.
We modified the network of the NEE trained with a

natural image after optimizing the structure. The modified
weightsAqm of the approximate network are shown inFig. 12.
Because one unit in the hidden layer corresponds to one
feature, each network that is connected to a unit in the hidden
layer is shown separately in Fig. 12. The six graphs
correspond to six networks. The six most effective networks
were selected on the basis of the sumof themodifiedweights.
The five-by-five matrices correspond to the input region of
the trained NEE. The black square indicates the pixel having
a negative weight. The pixels having the same sign
correspond to a smoothing operation, whereas the pixels
having the opposite sign correspond to an edge-enhance-
ment operation. It is interesting to note that Fig. 12 is
reminiscent of the receptive fields of various simple units in
the cat andmonkey cerebral cortex discovered by Hubel and
Wiesel [68]. With cat and monkey, these neural filters are
acquired during the critical period just after birth [69]. The
modified weights in Fig. 12a indicate the operation for
diagonal edge enhancement together with smoothing. The
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Fig. 13. Performance of the NEE on the change of a teaching edge type. The teaching edges were made by use of three target edge detectors.
(Target edge detector: from top to bottom, the Marr-Hildreth operator, the Canny edge detector, and the Hueckel operator). (a) Teaching edges.
(b) Edges enhanced by the neural edge enhancer for the noisy Columbia image. (c) Edges enhanced by the target edge detector for the noisy
Columbia image.



modified weights in Figs. 12b and 12c function mainly as
vertical edge enhancement together with horizontal smooth-
ing and as edge enhancement with smoothing for another
diagonal orientation, respectively. The modified weights in
Fig. 12d are for diagonal edge enhancement with smoothing,
but the scale is smaller. These features (functions) are
integrated by summation in the approximate network.
Because this analysis is based on a linear approximation,
the integration actually contains some nonlinearity. The
results of the analysis suggest that the trained NEE uses
directional gradient operators with smoothing. These direc-
tional gradient operators with smoothing followed by
integration with nonlinearity lead to robust enhancement
against noise.

4.5 Changing Teaching Edge Types

In order to investigate whether the NEE can learn various
types of edges, we carried out an experiment with various
types of teaching edges. The NEEs were trained with three
types of teaching edges. The teaching edges were made by
the use of three target edge detectors, the Marr-Hildreth
operator, the Canny edge detector, and the Hueckel
operator. The three teaching edges are shown in Fig. 13a.
Three NEEs were trained, and the trainings converged with
errors E of 1.05 percent ~ 2.82 percent. The edges enhanced
by the trained NEEs for the noisy Columbia image are
shown in Fig. 13b. The edges enhanced by each NEE are
similar to each of the teaching edges. In the results for the
Marr-Hildreth operator and the Canny edge detector, the

edges are enhanced as thin lines similar to the teaching
edges. In the results for the Hueckel operator, the edges of
the columns of the structure are enhanced as strong edges.
This result indicated that each NEE was able to acquire the
features of each target edge enhancer.

Furthermore, in order to compare the performance of the
NEE with that of the target edge detectors for noisy images,
the target edge detectors were optimized with the training
images. The results are shown in Fig. 13c. In the results of
the target edge detectors, the noise is enhanced by mistake,
and the edges are discontinuous. It should be noted that the
results for nontraining images were similar to those for the
training images. The results of the quantitative evaluation
are shown in Table 2. The average values in the table were
calculated from nontraining images. These results showed
that the performance of each NEE was higher than that of
the target edge detector.

4.6 Edge Localization Method

We propose an edge localization method for the NEE, which
is a method for finding the edge locations from the edges
enhancedby theNEE.An edge localizationmethodproduces
a binary image where each pixel is assigned to an edge or a
background. A labeling algorithm [70]may be applied on the
binary image to determinewhich edges are connected to each
other. The proposed edge localization method consists of
1) nonmaximum suppression and 2) hysteresis thresholding.
In the nonmaximumsuppression, thepixel value is set to zero
except for thepixel havinga localmaximum.First,weassume

1592 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 12, DECEMBER 2003

TABLE 2
Quantitative Evaluation of the Performance of the NEEs Trained with Three Types of Teaching Edges (Training Image: Columbia)



that the edges forma thin line, thewidth ofwhich is onepixel.
If an eight-connected linewhich does not branch off crosses a
local region (u� upixels) andoneof thepixels of the line is on
the center pixel ðx; yÞ, the descending order of the edge
magnitude at the center pixel in the local region should be
within uþ 1th. Therefore, the local maximum of the edge
magnitude can be extracted by use of the following equation:

fSðx; y;nÞ ¼ #n f̂fEðx� i; y� jÞji; j 2 Ruu

n o
; ð25Þ

where #nf�g is an operator extracting the nth greater value,
and Ruu is the local region. If the edge magnitude of the
object pixel is greater than the uth greater edge magnitude
in the local region, zero is put in the object pixel as follows:

fLMðx; yÞ ¼ f̂fEðx; yÞ if f̂fEðx; yÞ � fSðx; y;uÞ
0 otherwise:

�
ð26Þ

Using this method, we can set the pixel value to zero except
for the pixel having the local maximum. Next, hysteresis
thresholding is applied to the results of the nonmaximum
suppression. We adopted the hysteresis thresholding in
[16]. The results of edge localization in the case that u ¼ 3

are shown in Fig. 14. These images are the results for the
edges enhanced by the NEEs when the Sobel filter is the
target edge enhancer. These results indicate that the edge
locations could be identified effectively by use of the
proposed edge localization method.

In order to compare theNEEwith a leading edge detector,
we carried out an experiment on edge detection. The
performance of the NEE was compared with the Elder edge
detector [71]. Because the Elder edge detector assumes that
the noise in images is constant additivewhiteGaussian noise,
images with this type of noise were used in this experiment.
The parameters of the Elder edge detector were determined
such that the highest performancewas obtained, according to
a method described in [71]. The NEE trained with the image
with quantum noise was applied to noisy images. The result
for an artificial image is shown in Fig. 15. The SNRT of the
input noisy image was 3 dB. In the result of the Elder edge
detector, there are few false positives and the detected edges
are clear. However, the locations of the edges are slightly
different from the true locations, whereas the locations of the
edges detected by theNEEwith the edge localizationmethod
correspond better to the true locations. This effect of the Elder
edge detector would be improved by use of an accurate
method for subpixel localization [72]. The results for natural
images are shown in Fig. 16. The SNRI of the Columbia
image, that of the teapot image, and that of the man image
were 3.52 dB, 4.59 dB, and 5.80 dB, respectively. The Elder
edge detector produces clear, continuous edges. However,
the edges arewarped slightly. The edges detected by theNEE
with the edge localization method are similar to the results
for the imageswith quantumnoise. This result shows that the
performance of the NEE did not depend very much on the
type of noise.

5 CONCLUSIONS

In this paper, a new supervised edge enhancer based on a
modified multilayer NN, called a neural edge enhancer
(NEE), is proposed for enhancing the desired edges clearly
from noisy images. By comparison with conventional edge
enhancers/detectors, the following was demonstrated: the
NEE was robust against noise, was able to enhance clear,
continuous edges from noisy images, and was superior to
the conventional edge detectors in similarity to the desired
edges. An experiment to investigate the performance of the
NEE for various teaching edge types was performed. The
results showed that the NEEs were able to learn the various
types of teaching edges. In order to gain insight into the
nonlinear kernel of the NEE, we performed analyses on the
trained NEE. The results suggested that the trained NEE
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Fig. 14. Results of the detection of edge locations by use of the
proposed edge localization method (applies to the edges enhanced by
the NEE where the target edge enhancer is the Sobel filter). (a) After
nonmaximum suppression. (b) After hysteresis thresholding.

Fig. 15. Comparison of edge detection of the NEE with that of a leading
edge detector for an artificial image with constant additive white
Gaussian noise. (a) Artificial image without noise. (b) Edges detected
by the NEE with the edge localization method. (c) Edges detected by the
Elder edge detector.



used directional gradient operators with smoothing.
Furthermore, we introduced the edge localization method
for the NEE, and we presented the results of edge detection.
In our experiments, the NEE was proven to be useful for
enhancing edges from noisy images.

Although the performance of theNEEwas superior to that
of the conventional edge detectors, the execution time for
training was long (63 hours on a workstation, UltraSPARC-II
300 MHz, Sun Microsystems, for a reduced structure,
17-17-1). Existing acceleration methods for training [73]
would be useful for improving the efficiency. However, once
the training is finished, the execution time for edge
enhancement itself is short (6.4 seconds for 512� 512 pixels).
For real-time applications, the development of an efficient
algorithm for the NEE is needed. The efficient realization
method for theNFs in [30], [34] can be applied to theNEE. By
use of the efficient realization method, the trained NEE can
be represented by an efficient approximate network.

We recently extended the concept of the NEE and
developed an NN-based scheme for distinction between
specific patterns and other patterns in medical images [74].
We plan to extend the scheme to accommodate various

tasks in general images. We plan to study a combination of

the NEE and a leading model-based edge/contour localiza-

tion method, such as SNAKES or a dictionary-based edge

labeling method [75], and to evaluate the performance. We

also plan to study improving the performance of the NEE

by simulating the early visual systems of humans.
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