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Efficient Approximation of Neural Filters for
Removing Quantum Noise From Images

Kenji Suzuki Member, IEEEIsao Horiba, and Noboru Sugilember, IEEE

Abstract—In this paper, efficient filters are presented that ap- although their structures are restricted to a single neuron rep-
proximate neural filters (NFs) that are trained to remove quantum  resenting a linear discriminant function. It has been reported
noise from images. A novel analysis method is proposed for making ;, [11] and [12] that epsilon filters, which are nonlinear fil-
clear the characteristics of the trained NF. In the proposed analysis . ’ .
method, an unknown nonlinear deterministic system with plural ters developed for noise removal, are special cases of the Iat[ter
inputs such as the trained NF can be analyzed by using its outputs class of NFs. Furthermore, it has been proved that any contin-
when the specific input signals are input to it. The experiments on uous mapping can be approximately realized by multilayer NNs
the NFs trained to remove quantum noise from medical and nat- [21]-[26]. Thus, the capability of the NFs is getting clearer.
ural images were performed. The results have demonstrated that However, the characteristics of the trained NFs have yet to be
the approximate filters, which are realized by using the results of ' . L

understood explicitly because to analyze them is difficult due

the analysis, are sufficient for approximation of the trained NFs ) : A
and efficient at computational cost. to the complicated structure composed of many units with non-

Index Terms—Analysis method, approximate filter, efficient re- linear characteristics. For practical use, particularly in the crit-

alization, image enhancement, neural network, signal processing. @l @pplications such as those to medical systems, itis strongly
required to make their characteristics clear. However, studies on

analyzing the trained NFs have yet to be reported. Furthermore,
. INTRODUCTION since the computational cost and the cost of hardware of the NFs

ECENTLY, significant progress has been made in agre exceedingly high, the reduction is a serious issue for making

plying neural networks (NNs) to signal processinghe NFs practicable. In applications of filters to medical X-ray
Nonlinear filters based on multilayer NNs, called neural filteridnage sequences, it is required to process 30 frames/s, where
(NFs), have been studied. By training the NF with a set of inpg@ich image consists of 10241024 pixelsx 10 bits. Therefore,
signals and desired signals, it acquires the function of a desife@y to analyze the trained NF and to reduce the computational
filter. Two classes of NFs have been proposed so far. OneCRst have remained serious issues.
realized as stack filters [1]; an input signal is transformed into In this paper, we propose a novel method for analyzing the
binary signals on the basis of the threshold decomposition, df@ined NFs that belong to the latter class to make the character-
then, each of them is input to each of plural multilayer NNs. istics clear and realize their efficient approximate filters using
has been shown in [2]-[10] that the performance of these N results of the analysis. In the proposed analysis method, an
is excellent in removing impulsive noise from signals/imagegnknown nonlinear deterministic system with plural inputs such
The other is a filter where input signals are input directly to @s the trained NF can be analyzed by using its outputs when the
multilayer NN. It has been shown in [11]-[18] that the perforsPecific input signals for analysis are input to it. One of the basic
mance of these NFs is excellent in removing Gaussian/quant{ifictions of filters for signal/image processing is noise reduc-
noise from signals/images. tion. Quantum noise is signal-dependent noise and is generally

Many studies on the capability of the NFs or the NNs, usédPserved in photon-limited images such as images obtained in

as a model of them, have been performed so far; it has békatkness, those obtained by an infrared camera, X-ray images,
reported that the former class of NFs unifies various nonline@d so on. We narrow down the issues to the NFs trained to re-
filters, such as finite impulse response filters, microstatistic fimove quantum noise from images because to analyze the NFs
ters, generalized weighted order statistic filters, and generaliZéained to solve various problems is too difficult. Through exper-
stack filters [2], [4]-[7], [9]. Relationships between stack filter§ments on the NFs trained to remove quantum noise from med-
and the NNs have also been examined in [19] and [20]. TH&l X-ray image sequences and natural images, the efficiency

analyses and simulations of the NFs have been reported in [@|Poth the proposed analysis method and the approximate filter
are shown.
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respectively. We adopted a linear function instead of an ordi-
narily used sigmoid one as the activation function of the unit in
the output layer because the characteristics of the NN become
better in the applications to continuous mapping issues such as
image processing [27], [28]. The inputs to the NF are an object
pixel value and spatially/spatiotemporally adjacent pixel values.
We explain, as an example, a three-layered spatiotemporal NF
[13], [15]. The architecture of the NF is shown in Fig. 1. In
Fig. 1,79 andT" denote a time of the current frame and a time
interval between frames, respectively. The output of the NF is
represented by

f(-T,y, ) Gl\l NN(I z,Y,t ) (1)

where

Loy:= {g(“’ —hy =3tk ke R} @

Gum
denotes the input vector to the NF, and T
z andy indices of spatial coordinates; ’“"'Lf"':lﬁﬂ . H, HJ
t in_dex of temporallcoorqmate; ) ks i Rt e o s
g(z,y,t)  pixel value in the input image; 1
NN(I) output of the multilayer NN; Filtered otject pixel
Gum normalization factor; bl
R input region of the NF.

Fig. 1. Architecture of the neural filter (NF) for image sequence processing.
The input vector is rewritten as

eyt =1,y Ly Ny b ©) fr(u) linear function

wherem denotes a unit number in the input layer aNd the fo(w) =u+ 3 (8)
number of units in the input layer. As the activation function

of the units in the input layer is an identity functigia(-), the The error to be minimized by training is defined as

output of themth unit in the input layer is represented by

T 2
- fl( rn) - Irn (4) P Z <G1\4 G]w) (9)

The output of théxth unit in the hidden layer is represented by nere

N, D pattern number;
O = fs { Z (Wmh OrIn) — W(ﬁ} (5) Tf  pth pattern ?n the teaching image;
fP pth pattern in the output image;
number of patterns.

The NF is trained by the backpropagation algorithm [29] until
the errorE gets smaller than or equal to the predetermined error
Ep or the number of training epochs exceeds the predetermined
numberl’s. By using this training algorithm, it is expected that
the NF would have the function to convert the input image to
the desired teaching image, e.g., by presenting the noisy input

1 image together with the teaching noiseless image, details of
1+ exp(—u) (®)  which are clear, and that the NF will be able to remove noise

from images while preserving image details.

m=1

where

weight between thenth unit in the input layer and
the Ath unit in the hidden layer;

WH  offset of thehth unit in the hidden layer;

Ny number of units in the hidden layer;

fs(u) sigmoid function

mh

fs(u) =

The output of the unit in the output layer is represented by B. Synthesizing Input and Teaching Images

Jx Medical X-ray images are treated in this section because the

O H O
NN (Lzy2) = f1 {Z (Wh “Oy ) - W } @ analysis of novel technologies such as the NFs is very important,
h=t particularly in the applications to medical systems. The goals of

where improving the image quality of medical X-ray image sequences
W weight between théth unit in the hidden layer and are 1) to remove quantum noise from low-dose X-ray images to
the unit in the output layer; reduce X-ray exposure to patients and 2) to enhance the edges

W§  offset of the unit in the output layer; in diagnostic regions in the images to discern them clearly.
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X-ray quantum noise is originated from a signal-dependesttricter model would lead to improvement of the performance
Poisson-distributed noise source [30]. The variance of tléthe NF, especially in applications to medical X-ray images
Poisson noise increases linearly with signal amplitude, i.€see the detailed properties of the actual medical X-ray imaging
local X-ray exposure. However, the signal-to-noise ratio (SNRYystem in [31] to construct a stricter model).
increases with X-ray exposure. Since in most X-ray systemsThe teaching imageZ«(z,y,t) is synthesized from
the mean brightness is controlled by an automatic gain contegl(x, v, ¢t) by performing a highpass filtering, the window
(AGC) in order to make it a constant brightness, the observidction of which is represented by (12), shown at the bottom
guantum noise decreases with increasing X-ray exposure [3dflthe page, where
Using this property, the input and teaching images for training«  normalized horizontal spatial frequency;
can be synthesized from high-dose X-ray images taken at @& normalized vertical spatial frequency;
high X-ray exposure level. fc parameter determining the passband.

The low-dose X-ray imagey,(z,v,t), which is the input We obtainedk of 0.24% of the maximum gray level by the
image to the NF, can be synthesized from the high-dose X-ragtual measurement of noise in low-dose X-ray images [35] and

image with negligible quantum noige; (z, y,t) as usedfc of 1/16.
ar(z,y,t) =g (z,y,t) + Xn(0) (10) C. Training the Neural Filter
o =knvgu(z,y,t) (11 The spatiotemporal input region of the NF consists of five

pixels [, y—1), (x—1, %), (z, %), (x+1, ), (z,y+1)] in each of

whereX (o) denotes white Gaussian noise when its standdiide consecutive frames, as Fig. 1 shows. We adopted three-lay-
deviation iss, andky is the parameter determining the amourgred NF because it has been proved theoretically that any con-
of radiation dosage. In clinical examinations, the X-ray imageéuous mapping can be approximately realized by three-layered
sequence is acquired at very low X-ray dose: Only ten to 50{Ns [21], [22]. The number of units in the input, hidden, and
X-ray quanta contribute to each pixel [32]. The average humbautput layers are 25, 20, and 1, respectively (here referred to as
of X-ray quanta captured at one pixel is about 35 [30], [33]. TH&5-20-1). The number of units in the hidden layer was deter-
Poisson-distributed noise can be approximated by the Gaussigined by trial and error. The experimental results showed that
one when the number of X-ray quanta is more than 20 [34J0 units are enough to train the NF for quantum noise removal.
Therefore, we can use the Gaussian noise as a model of th&he images used for training are shown in Fig. 2. These are ra-
quantum noise. diographs of a stomach (size: 54512 pixels; number of gray

Moving low-dose X-ray images such as fluoroscopic imagésvels: 1024) called a double contrast radiograph, which was ac-
and radiographs are generally inverted to make them look ligeired with a digital radiography system. These images were in-
traditional film negatives. If the acquired high-dose X-ray imageerted to make them look like traditional film negatives. In these
is inverted, we need to invert the gray levels of the image bigures,a70x 120-overlay shows aregion ofinterestthatwas en-
fore synthesizing. Furthermore, most of medical imaging syswged to double the original size. The high-dose X-ray images
tems use a signal-dependent gain, e.g., in fluoroscopic imagimgre acquired at a high X-ray exposure level based ona common
systems, called white compression (or white suppression); thisse protocolused inradiography. The simulated low-dose X-ray
measure is taken to prevent halation. In digital radiography systagesyr,(z, , t), synthesized fromthe high-dose X-ray images
tems, a logarithmic gain curve is sometimes used. In suctbypusing (10), are shown in Fig. 2(a) and (b). In the figures, the
case, we need to perform the inverse transformation of the whiterrent and the last frame in the input region of the NF are shown.
compression and/or the logarithmic gain curve on the high-doSke peristaltic movement ofthe stomachwall can be seenby com-
X-ray image before synthesizing the input and the teaching iaring between Fig. 2(a) and (b). The inverse transformation of
ages. the logarithmic gain curve was performed on the high-dose X-ray

The spatial frequency characteristic of quantum noiseageg(z,y,t) before synthesizing. All images in Fig. 2 are
depends on that of an acquisition system. If we use a camdrisplayed as the image after performing the inverse transforma-
tube-based acquisition system, the modulation transfer functition because the double contrastradiographis often displayedthis
(MTF) of quantum noise is a bell shape. If we use a CCD-baseay. The teachingimadg-(z, v, o), whichis synthesized from
acquisition system, the shape of the MTF becomes more fldte high-dose X-ray image, is shown in Fig. 2(c). These kinds of
Thus, the actual spatial frequency characteristic of quantimages are used for the medical examination of stomach cancer.
noise is not white but depends on that of the acquisition systeftrough training with these images, the NF would acquire the
We adopted a simpler model because one of issues of this pdperction of noise reduction as well as edge enhancement. The NF
is efficient realization of the NF. If we adopt a complex modelyastrainedon80 000epochswiththetrainingsetintheregionsin-
the analysis may become more complex. However, usingdecated by the white rectangular frames 960 pixels) in Fig. 2.

fe

2 (fo < |VuZ+? < 3)

Py (u,v) = { 2+ 3 008 (W e ’%2%2) (0< |[Va? +22[ < fe) (12)
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ficult to analyze theoretically the NFs trained to solve various
problems because of their nonlinearity. We narrow down the is-
sues to the NF trained to remove quantum noise from images.
Since the quantum noise is signal dependent, the NF trained to
remove it should be realized with the characteristics depending
on gray levels in the images. Furthermore, the trained NF can be
treated as a nonlinear deterministic system. By paying attention
to these points, the trained NF can be analyzed experimentally;
an unknown nonlinear deterministic system such as the trained
NF would be analyzed by using its output responses that are ob-
tained when some input signals for analysis are input to it.

Since the NF is a system that has a lot of inputs, as a prac-
tical matter, all possible combinations of input signals cannot be
tested. Therefore, we need to generate input signals on the basis
of some rule. As described above, the characteristics of the NF
trained to remove quantum noise would depend on the average
gray level in the input region. Let us suppose that the same gray
level is input to all input units, except a certain target-input unit.
In such a case, the same gray level approximately corresponds
to the local average gray level. If we adopt a rule that only the
gray level to the target-input unit is varied, we can obtain the
output response to the target-input unit around the local average
Fig. 2. Images used for training and the output image of the trained NF. ay Ievel'_ThL_js’ we can analyze a nonlinear Sy_Stem with plural
Simulated low-dose X-ray image, the last frame in the input region of the NEPUtS, which is represented by the model having the local av-
gr(x,y,to — 4T). (b) Simulated low-dose X-ray image, the current frame irerage gray level as a parameter.

the input region of the Nlg;, (x, ¥, t5). () Teaching image synthesized from a e ; ; :
high-dose X-ray imag&c(x, y, to ). (d) Output image of the trained NF. White The specific input signals for analysis are defined as

rectangular frames in (b) and (c) indicate the training region. s if m=gq
‘v’mIm’D(s):{D’ it m £ g (0<s<1) (13)
We selected such a small region as the training region because the V. DI,p={Lp.Isp.....Ippr- In,.0} (14)

features in a smaller region would be easier to analyze. Using a
wider training region would make the NF much more versatilgyhere
The training converged with the errérof 0.024. m  unit number in the input layed (< m < Ny);
The output image of the trained NF is shown in Fig. 2(d). D base signal(( < D < 1);
The noise in the input images is reduced, and the edges become  parameterq < s < 1);
sharper. The noise reduction and edge enhancement, which agg  target-input unit numben(< ¢ < Ny).
adapted to the training region, are achieved, although the quajify is shown in Fig. 3, the output response to a certain target-
of the image does not reach the teaching image. input unit is examined. The ramp signal with respect to the pa-
Ingeneral, thereis arisk occurring of artifactsinfilteringimaggameters is input to the target-input unit, the base signal®,
sequences using a spatiotemporal input region. Data in the pigrich are constant values with respectstoare input to the
vious frame may appear in the current frame. There is a tradegffier input units. Furthermore, in order to examine the output
between the filter performance and the risk in designing filtergesponses to the base signéls the value ofD is varied be-
The balance between the two is important in filter design. Th&een zero and one. By changing the target-input unit from one
NF can be designed to balance the risk with the performangeanother, the output responses to all of the input units are ex-
i.e., since the NF is trained with image sequences in order tiaghined. The output response of the Nig tndD is represented
the outputimage approaches the teaching image that containg{o
artifact, the weights yielding artifacts would diminish through
training. However, the training is not completed with the error Oq,p(s) = NN (I4,p(s))- (15)

of zero. Therefore, there still remains a risk of reappearing ferf@us in the proposed analvsis method. the outbut response 1o a
tures of previous frames with the trained NF. Thus, analyzing t T prop nalys o putresp
rget-input unit is obtained like a sensitivity analysis method.

trained NFis ofimportance. Ifthe trained N is analyzed, we Cé ter the sensitivities, i.e., the output responses, of all input units
know a risk and may have a way to reduce it. . T ’
y y are obtained, the NF can be represented by some model.

I1l. ANALYSIS METHOD FOR THETRAINED NEURAL FILTER B. Approximate Filter Model

A. Specific Input Signals for Analysis Consider the filter model represented by
We have reported the preliminary version of the proposed N,
method in [36]. If a system is a linear system, it can be ana- 0= Z Fop (L) (16)

lyzed clearly by using its impulse response. However, it is dif-

m=1
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I,
m=1,D I]
1.0
D Trained neural filter a(N,D)

I 2
0
Lo a,(N,D)
1.0
I, 0
D .
. a,(N,D)
0 :
1
Im=q,D M
1.0 / ay, (N, D)
0 N
]m=N,,D ® : Multiplier @ : Adder |:| : Table memory
1.0
D Fig. 4. Hardware architecture of the approximate filter.

this approximation, as well as approximating the base sifhal
Fig.3. Analysis method for unknown nonlinear deterministic systems suchtthe summation of the inputs, we obtain the approximate filter

trained NFs. model represented by
whereF,,, p(l,,)denotes a polynomial of degréérepresented Nt
by O=3 an(Ni D) Lu+b(Ni-D) (22
m=1
Fop( Z GES)D n (17) wherea,,(-) andi(-) are implemented as look-up tables with

the summation of the input¥; - D as an index. The last equa-
() tion gives the approximate filter model shown in Fig. 4. The
wherea,,’, denotes afilter coefficient, andrefers to a param- hardware architecture is very simple. It consists of multipliers,
eter. By substituting (13) into (14), the input vector to the filteadders, and table memories; it is like a transversal filter, apart
model is represented by from the nonlinearity of the table memories.
In the NF, since multiplications of the signals by the weights
Iop(s) ={D,D,...;s,... D} (18) are dominant over other; operations, the gomput)e/ltional cgst of
Substituting the paramet@r‘for Iq,Di we obtain the Output re- the NF iS proportional to the number Of multiplications. The
sponse of the filter model tpandD, to which the specific input number of multiplications of the NF can be derived as

signals for analysis are input, as
NCINH(N[+1). (23)

Nr ‘
Z af;% I(?DJFZ {Z afs,)D 'D"} - (19) In contrast, the number of multiplications of the approximate
n=0 mag \n= filter model in case of the degre¥ is represented by

Applying the least-squares method to the approximation of the
output responses, the filter coefﬂmem%‘ » can be obtained.

f|tLet us(,j nloE/)v assume thalt the C:ﬁgrf‘la‘l's equal to ?ne -Lhe Therefore, the approximate filter is advantageous in terms of
liter model becomes simple, as the following equation s Wene computational efficiency when the following condition is

N fulfilled:
0= {al¥y Ln+aly}. (20)
=1 ’ N;(2N —1) < Ng (Nr+1). (25)

Ne = Nij(2N - 1). (24)

By replacingaly’,, = a,,(D) andY_)" a'Y, = (D), the If the NF can be approximated accurately by the approximate

output response of the filter model¢@ndD can be representedfilter in case of the degre®’ of one, i.e., the approximate filter

by shown in Fig. 4, the number of multiplications corresponds to
the number of units in the input layer as

Oq¢,p (Ig,p) = ag(D) - Iyp + Z am(D) - D +b(D) (21)

m#q Nc = Np. (26)

wherea,,,(D) andb( D) denote the filter coefficients dependingTherefore, the computational cost of the NF is reduced to about
on D. By applying the least-squares method to the approximi/Ny in the case where the trained NF can be approximated by
tion, the filter coefficients:,,,(D) andb(D) can be obtained. By the approximate filter shown in Fig. 4.
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Top Left Center Right Bottom

per second. By using the approximate filter, the cost of hard-
ware of the NF is reduced to about 1/20. According to (25),
p=0s the approximate filter in case where the deghéeés less than
or equal to ten is advantageous in terms of the computational
efficiency. We can chose the appropriate deghgeaccording
to the accuracy required by its application. In general, if we
use the approximate filter model including the higher order
terms and their mixed terms, the approximation would be more
robust and accurate.
D=04 Figs. 6 and 7 show the results of calculation of the filter coef-
ficients of the approximate filter obtained from the output re-
‘ ‘ ‘ sponses. The gradient of the line approximating the curve in
o o5 1 o 05 1 o 05 1 Fig. 5 corresponds to the filter coefficieatD) at the corre-
0 05 1 0 05 1 sponding position in the corresponding frame, e.g., since the
Parameter § gradient of the line at the object pixel in case whéreequals
to 0.6 in Fig. 5 is about 0.24, the filter coefficiemtD = 0.6)
Fig. 5. Output responses of the trained NF to which the specific input sign&¥ the object pixel is about 0.24. Since the gradients of some
for analysis are input. lines in older frames are negative, the corresponding filter coef-
ficientsa(D) in the older frames are negative.
The filter coefficients at the center pixels Fig. 6(c) are rela-
tively greater than those at the other pixels. The same sign of
A. Results of Analysis and Realizing the Approximate Filter 3 filter coefficient as the sign of the filter coefficient at the ob-

The proposed analysis method was applied to the NF trairiégt pixel indicates the averaging effect. This effect would re-
to improve the image quality of medical X-ray image sequenceBice quantum noise adapting to the gray level. The filter co-
The output responses of the trained NF, to which the specigficients decrease in proportion to the temporal distance from
input signals for analysis are input, are shown in Fig. 5. In Fig. e current frame,. This characteristic is due to the training to
the output responses are shown foequal to 0.4, 0.6, and 0.8. Process time-varying images. They are negative in the frames
The words Top, Left, Center, Right, and Bottom express spatfal— 31" andt, — 47". This indicates that the edge enhancement
positions of the input region of the NF shown in Fig. 1. Thé mainly performed in these frames. Since these negative coef-
brightness of curves corresponds to the temporal position of fifdents may cause an artifact in the case of motion, we need to
frame in the input region, similar to the fading brightness of theerform a subjective evaluation with specialists to confirm the
pixels in Fig. 1. A black curve indicates the current frame, arRfcurrence of no artifact (the results of the subjective evalua-
a brighter curve indicates an older frame. The gradient of eaé®n will be shown in the latter section). If any artifact-disturbing
curve expresses a nonlinear filter gain at the corresponding inglifical diagnosis is observed, we have to reduce the artifact by
unit. The pixel having the same sign of the gradient as the sifigking the negative coefficients smaller, for example. The filter
at the object pixel, i.e., the pixel at the position Center in theoefficients in the middle of) are relatively greater than the
current framety, indicates that the pixel has averaging effecgthers. This is caused by the gray-level histogram in the training
The pixel having the opposite sign indicates that the pixel hEggion; the frequencies around the middle of gray levels are rel-
spatial/temporal edge enhancement effect. An intersection paiively high, as Fig. 8 shows. Furthermore, the filter coefficients
of curves indicates the output response when all input signals aféhe Top and Bottom are relatively greater than are those at the
the same. Left and Right. This is due to the fact that the training region

Since all of the output responses are near|y Straight, they Gﬁwwn in Flg 2 contains mainly vertically directional patterns.
be approximated by linear functions well, i.e., there is a posdihis indicates that the characteristics are adapted to the training
bility that this trained NF can be approximated by the approxiegion. This fact suggests that it is better to use a wider region
mate filter model, the degree of which is equal to one, in (213s @ training region for practical use. Using a wider training re-
We applied the least-squares method to the approximation of gien would make the NF, as well as the approximate filter, much
output responses to linear functions. The mean absolute efftre versatile.
between the output responses and linear functions was calcuFurthermore, the sensitivity of the unit in the input layer can
lated in order to examine the accuracy in approximation. Asbg analyzed by using the filter coefficients. The sensitivity of
result, the mean absolute error was only 2.05%. This result inéie mth unit in the input layer is defined as
catesthat the degree of one is enough to approximate this trained [ lam(D)|dD
NF. Therefore, this trained NF can be approximated by the ap- Sy = L T
proximate filter shown in Fig. 4. Np

Abdominal radiographs are acquired at a speed up to @bere N, denotes a normalization factor. The result of calcu-
frames/s, where each image consists of 1929024 pixels lation is shown in Fig. 9. The sensitivity of the object pixel is
x 10 bits. The previously discussed 25-20-1 NF requires 58@e highest of all. The sensitivity decreases in proportion to the
multiplications per pixel. Consequently, real-time filtering oflistance from the center pixel in the current frame. This charac-
abdominal images would require 16.4 billion multiplicationseristic is due to the training to process time-varying images.

D=06

Output O, ,,

03

— =t — gty D =g )T w37 e p=ped TS

IV. EXPERIMENTS

(27)
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(e) Bottom

Fig. 6. Results of calculation of the filter coefficients of the approximate filtef D).
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=
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Fig. 7. Results of calculation of the filter coefficient of the approximate filter f .2 14 & nE 1.0

b(D). Mormaliod pray bevel

B. Accuracy in Approximation Fig. 8. Histogram of gray level in the training region.

The accuracy in approximation between the trained NF and
its approximate filter is evaluated. First, the output image of tHe compare more precisely, the image quality is evaluated quan-
NF and that of the approximate filter are compared. These ditatively using the blurred signal-to-noise ratio (BSNR) and the
shownin Fig. 10(a) and (b). In both images, the noise in the ingaiprovement in signal-to-noise ratio (ISNR) [37], [38]. These
images is reduced effectively, and the edges become sharpem#trics are often used to evaluate image restoration techniques
first sight, the difference between them cannot be distinguishéldat restore the images degraded by blurring and noise. The
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Fig. 11. Comparison of the performance of the trained NF, whose structure is
25-20-1, with that of its approximate filter in terms of the ISNR.

We do not need the entire sequence for training. The average
ISNR of the approximate filter is 1.866 dB. The ISNR of the ap-
proximate filter is nearly equal to that of the NF in not only the
training frame but also the nontraining ones. This result shows
that the approximate filter is a very good approximation of the
trained NF.

C. Experiments to Verify the Versatility
1) Neural Filter With Large Input Regionin order to

Fig. 10. Comparison of image quality between the outputimage of the traing¢aluate the versatility of the proposed analysis method, an

NF, whose structure is 25-20-1 and that of its approximate filter. (a) Outp

image of the trained NF. (b) Output image of the approximate filter.
BSNR and the ISNR are defined as

> {%r(ar,y,t)—gfjr(af,y,t)}2

> {Ns(e,u,t) - Ns(w,,9) }
z,yCRE
(28)
where
NS(.’L',y,t) =gL($,y,t)—gH($,y,t) (29)
and where
Rg region for evaluation;

Ns(z,y,t) noise in the input image;
Te(z,y,t) spatial average value withinRg in
Tc(.’L',y,t);
Ns(xz,y,t) spatial average value withinRg in
Ns(z,y,t);
and
E {TC(xvyvt)_gL(xvyvt)}Q
z,yCRE
Z {TC(xvyvt)_f(xvyvt)}Q
z,yCRp
(30)

ISNR(t) = 10log;q

E&periment on the NF with a large input region was performed.
The input region of the NF is expanded to that consisting
of five-by-five pixels in the consecutive five frames. The
numbers of units in the input and hidden layers are 125 and
20, respectively. The output image of the trained large NF is
shown in Fig. 12(a). As the input region is expanded, the noise
is reduced much more, and the edges are sharper than those in
the output image of the small NF. The trained large NF was
analyzed by using the proposed analysis method, and then,
its approximate filter was obtained. The output image of the
approximate filter is shown in Fig. 12(b). At first sight, the
difference between them cannot be distinguished. The results
of calculation of the ISNR are shown in Fig. 13. The average
ISNRs of the approximate filter and the NF are 6.826 and 6.823
dB, respectively. This result shows that the proposed analysis
method does function well in the case of the expanding input
region.

In order to improve the quality of image sequences, various
dynamic filters have been proposed so far [39]-[48]. A real-time
system for fluoroscopic filtering has been developed and ap-
plied to gastrointestinal studies [45]. A matched filter-type al-
gorithm has been developed to optimize the SNR of the con-
trast signal in an angiographic image sequence [40]. The hard-
ware of a recursive temporal filter has been developed [39], [41].
A spatiotemporal filtering technique with object detection has
been developed to reduce noise while minimizing motion and

The results are shown in Fig. 1X.; was set to the region in- spatial blur [48]. Stochastic temporal filtering techniques have
cluding whole of the stomach. The average BSNR, i.e., the SNigen developed to enhance fluoroscopic images [46], [47]. We
of the input image, is 11.6 dB. The average ISNR of the NF éompared the NF with the adaptive weighted averaging filter
1.866 dB, after using only one frame (number 15) in the traininAWAF) [43]. The AWAF is developed for noise suppression in
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= Fig. 14. Comparison of image quality between the output image of the trained
o large NF, whose structure is 125-20-1, and that of its approximate filter in

] ) ) ] ] _filtering real low-dose X-ray angiograms, which are not used for training. (a)
Fig. 12.  Comparison of image quality between the outputimage of the trainggst frame in the input region of the NF. (=, y, #, — 4T'). (b) Current frame

large NF, whose structure is 125-20-1 and that of its approximate filter. (@)the input region of the NB. (2, y,%0). (c) Outputimage of the trained large
Outputimage of the trained large NF. (b) Outputimage of the approximate filteyf. (d) Output image of the approximate filter.
(c) Output image of the AWAF.

for removing the quantum noise in abdominal radiographs. In
contrast, in the output images of the NF and the approximate
filter, there remains less noise, and we can discern the folds of
the stomach wall better.

To compare the computational costs, the CPU execution
times of the filters were measured on a workstation (CPU:
UltraSparc-Il 300 MHz, Sun microsystems). The results of the
NF, the approximate filter, and the AWAF are 24.1, 3.7, and
37.6, respectively. The results show that the approximate filter
is efficient in computational cost. According to (23) and (26),

; ! the computational cost reduction is abdytVy, i.e., 1/20 in
65 } 3 this case. However, the actual execution time does not reach it
) 0 s 10 15 because there is some overhead in software.
Frame number 2) Evaluation With Real Low-Dose X-ray Image&part
— — -Neural filter Approximate filter from abdominal radiography, coronary X-ray angiography is
commonly used in medical practice. Both methods have in
Fig. 13. Comparison of the performance of the trained large NF, whosemmon that images are acquired at rates up to 30 frames/s.
structure is 125-20-1, with that of its approximate filter in terms of the ISNRm addition, since the NFs were trained using the simulated
low-dose X-ray images, evaluation with real low-dose X-ray
image sequences without spatial blur. This is the well-knowpages is of importance. Accordingly, the approximate filter
representative as a dynamic filter with good performance. Y@s applied to real low-dose angiograms of coronary arteries.
compare fairly, the input region of the AWAF was set to th&he angiograms are shown in Fig. 14(a) and (b). These
same size of the NF; the highpass filtering that was used aggiograms were actually acquired at a low X-ray exposure
synthesize the teaching image for the NF was performed on tagel in clinical X-ray fluoroscopy, i.e., a common low-dose
output image of the AWAF. The image processed by the AWABrotocol in fluoroscopy was used (the tube current and the tube
is shown in Fig. 12(c). There remains much noise in the prgoltage of the X-ray tube were 1.6 mA and 58 kV, respectively).
cessed image. We cannot discern well the folds of the stomathough there are many factors in the imaging chain that affect
wall due to the noise. In these kind of images, the fold of tHbe overallimage quality, the noise power attributed to quantum
stomach wall is extremely important because medical doctarsise dominates the whole noise power at lower spatial fre-
diagnose stomach cancer on the basis of the convergence gaencies in a low-dose scenario such as X-ray fluoroscopy
tern of the folds. The average ISNR of the AWAF is 1.3 dB. I#49]. The real low-dose X-ray images used in this experiment
is relatively lower because the AWAF would not be developezhould dominate low spatial frequency quantum noise.

Improvement in signal-to-noise ratio [dB]
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TABLE |
QUANTITATIVE EVALUATION OF THE ACCURACY IN APPROXIMATION BETWEEN
THE TRAINED NF AND ITS APPROXIMATE FILTER

Structure of NF | Image | MAE [%] RMSE [%]
25-20-1 DCR 0.278 0.453
125-20-1 DCR 0.187 0.255

ACA 0.200 0.260

DCR : Double contrast radiograph
ACA : Angiogram of coronary artery

i) (B

The output image of the NF is shown in Fig. 14(c). Since, in
a cardiac imaging system, a nonlinear gray level transformati
is performed prior to storage, the compensation of the nonline
transformation was performed before filtering. In the image, th
guantum noise is reduced effectively. We can see the arteri
better. However, if we use the images, including the low spati
frequency quantum noise for training the NF, the image qualit
would be much better. Furthermore, in the output image, we c
see no artifacts caused by data in the previous frame, althou
the arteries move quite rapidly. This would be due to the fact the
the rapid movement of the stomach wall is partially containec -
in the images used for training. If no rapid movement was con 15} i

tained in the images used for training, the artifacts might occur c ) . ity b N ) fih
in the output image. Fig. 15. omparison of image quality between the output image of the NF

. . L trained to reduce quantum noise in natural images and that of its approximate
In order to evaluate the image quality for clinical use, we petiker. (a) Noisy inputimage. (b) Teaching image. (c) Outputimage of the trained

formed a subjective evaluation with cardiologists. The evaluatidif- (d) Outputimage of the approximate filter.
was performed using a real digital angiography system in a hos-

pital. The processedimagesequenceswereloadedintothesygggériment is the Lena image (size: 54512 pixels; number
and were displayed under the same conditions as incommon clfiyray levels: 256) from the University of Southern California
ical use. By the evaluation, it was confirmed that there was Wage database. Fig. 15(a) and (b) shows the noisy input image
artifact-disturbing diagnosis, such as the artifact caused by reaPnthesized by using (10) and the teaching image, respectively.
pearing features of the previous frames, in the images. kx was set to 5% of the maximum gray level. In order to
The output image of the approximate filter is shown iBcquire the features in the entire image, the training set is
Fig. 14(d). The difference between the output image of thRade by sampling 5000 points at random from the images.
NF and that of the approximate filter cannot be distinguisheglp,e training was performed on 100000 epochs and converged
Furthermore, we performed a subjective evaluation with cajith the errorE of 0.018. Then, a method for designing the
diologists. By the evaluation, it was confirmed that there wagyycture of the NF in [50]-[52] was applied to the trained
no difference between the two in terms of clinical use. Thi§F, The optimal structure, which is the smallest structure with
shows that the approximate filter functions well in filtering reajhis error, was obtained: The number of units in the input and
low-dose angiograms, which are the different kind of imagegsqden layers became 22 and 8, respectively.
from the training images. The mean absolute errors between thehe outputimages of the trained NF and its approximate filter
output images of the NFs and those of the approximate filtefga shown in Fig. 15(c) and (d), respectively. The ISNRs of
are summarized in Table I. The errors in all cases are quiffs NE and the approximate filter are 7.564 and 7.699 dB, re-
small. This result leads to the conclusion that the approximaigectively. Furthermore, in order to evaluate the generalization
filter has enough versatility to apply it to medical systems.  gapjlity, these filters were applied to the test images that are not
used for training. The output images of the filters in filtering
D. Neural Filter Trained to Remove Quantum Noise From the test images are shown in Fig. 16. The results of calculation
Natural Images pf the |§NRS are'shown in Table 1l. The ISNRs of the approx-
imate filter are slightly better than those of the NF. The output
In order to evaluate the versatility of the proposed analysissponses of the NF were slightly saturated, like those shown in
method, an experiment on the NF trained to remove quantliig. 5. They were approximated by linear functions. This ap-
noise from two-dimensional natural images was performegroximation makes the gain of the approximate filter higher,
Since the target image is static, we adopted the spatial regiompasticularly at the saturated parts. By this effect, the contrast
the input region of the NF. In order to reduce noise sufficientlgf the image was improved. This is the reason the ISNRs of the
the spatial input region of the NF was set to that consisting approximate filter are better. These results demonstrate that the
11x 11 pixels. The number of units in the input and hiddeproposed analysis method and the approximate filter function
layers are 121 and 50, respectively. The image used in thisll in approximation of the NF trained with natural images.
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Fig. 16. Comparison of image quality between the output image of t%
trained NF and that of its approximate filter in filtering test images. (a) Noisy
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The problem of filtering Poisson noise can be simplified
to a case of filtering invariant Gaussian noise by means of
a squire-root operation, the form of which is the following:

gr(z,y,t) + ¢, where ¢ is a constant. By applying the
square-root operation to a signal with Poisson noise, we
can obtain a signal with a constant noise variance, i.e., the
signal-dependent quantum noise becomes signal-independent
additive noise after the square-root operation [53]. Using this
operation prior to filtering, we may be able to obtain a simpler
implementation of the approximate filter for medical images.
We will perform the experiment to investigate the effectiveness
of this operation prior to filtering.

We plan in the near future to study the the extension of the
proposed analysis method so that NNs trained to solve var-
ious problems, e.g., various kinds of NN models such as ra-
dial basis function networks, etc., can be handled. We will per-
form the mathematical analyses on the statistical properties of
the quantum noise and on the removal of noise using NNs.
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input images. (b) Output images of the trained NF. (c) Output images of the

approximate filter.

QUANTITATIVE EVALUATION OF THE ACCURACY IN APPROXIMATION BETWEEN
THE TRAINED NF AND ITS APPROXIMATE FILTER

TABLE 1l

ISNR [dB]
Image | BSNR [dB] | Neural filter Approximate filter
Woman2 13.2 83 8.3
Man 10.9 41 4.5
Crowd 12.5 3.2 3.5
Airplane 8.7 6.3 6.6
Lake 13.2 3.9 4.2

V. CONCLUSIONS
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