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Efficient Approximation of Neural Filters for
Removing Quantum Noise From Images
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Abstract—In this paper, efficient filters are presented that ap-
proximate neural filters (NFs) that are trained to remove quantum
noise from images. A novel analysis method is proposed for making
clear the characteristics of the trained NF. In the proposed analysis
method, an unknown nonlinear deterministic system with plural
inputs such as the trained NF can be analyzed by using its outputs
when the specific input signals are input to it. The experiments on
the NFs trained to remove quantum noise from medical and nat-
ural images were performed. The results have demonstrated that
the approximate filters, which are realized by using the results of
the analysis, are sufficient for approximation of the trained NFs
and efficient at computational cost.

Index Terms—Analysis method, approximate filter, efficient re-
alization, image enhancement, neural network, signal processing.

I. INTRODUCTION

RECENTLY, significant progress has been made in ap-
plying neural networks (NNs) to signal processing.

Nonlinear filters based on multilayer NNs, called neural filters
(NFs), have been studied. By training the NF with a set of input
signals and desired signals, it acquires the function of a desired
filter. Two classes of NFs have been proposed so far. One is
realized as stack filters [1]; an input signal is transformed into
binary signals on the basis of the threshold decomposition, and
then, each of them is input to each of plural multilayer NNs. It
has been shown in [2]–[10] that the performance of these NFs
is excellent in removing impulsive noise from signals/images.
The other is a filter where input signals are input directly to a
multilayer NN. It has been shown in [11]–[18] that the perfor-
mance of these NFs is excellent in removing Gaussian/quantum
noise from signals/images.

Many studies on the capability of the NFs or the NNs, used
as a model of them, have been performed so far; it has been
reported that the former class of NFs unifies various nonlinear
filters, such as finite impulse response filters, microstatistic fil-
ters, generalized weighted order statistic filters, and generalized
stack filters [2], [4]–[7], [9]. Relationships between stack filters
and the NNs have also been examined in [19] and [20]. The
analyses and simulations of the NFs have been reported in [2],
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although their structures are restricted to a single neuron rep-
resenting a linear discriminant function. It has been reported
in [11] and [12] that epsilon filters, which are nonlinear fil-
ters developed for noise removal, are special cases of the latter
class of NFs. Furthermore, it has been proved that any contin-
uous mapping can be approximately realized by multilayer NNs
[21]–[26]. Thus, the capability of the NFs is getting clearer.

However, the characteristics of the trained NFs have yet to be
understood explicitly because to analyze them is difficult due
to the complicated structure composed of many units with non-
linear characteristics. For practical use, particularly in the crit-
ical applications such as those to medical systems, it is strongly
required to make their characteristics clear. However, studies on
analyzing the trained NFs have yet to be reported. Furthermore,
since the computational cost and the cost of hardware of the NFs
are exceedingly high, the reduction is a serious issue for making
the NFs practicable. In applications of filters to medical X-ray
image sequences, it is required to process 30 frames/s, where
each image consists of 10241024 pixels 10 bits. Therefore,
how to analyze the trained NF and to reduce the computational
cost have remained serious issues.

In this paper, we propose a novel method for analyzing the
trained NFs that belong to the latter class to make the character-
istics clear and realize their efficient approximate filters using
the results of the analysis. In the proposed analysis method, an
unknown nonlinear deterministic system with plural inputs such
as the trained NF can be analyzed by using its outputs when the
specific input signals for analysis are input to it. One of the basic
functions of filters for signal/image processing is noise reduc-
tion. Quantum noise is signal-dependent noise and is generally
observed in photon-limited images such as images obtained in
darkness, those obtained by an infrared camera, X-ray images,
and so on. We narrow down the issues to the NFs trained to re-
move quantum noise from images because to analyze the NFs
trained to solve various problems is too difficult. Through exper-
iments on the NFs trained to remove quantum noise from med-
ical X-ray image sequences and natural images, the efficiency
of both the proposed analysis method and the approximate filter
are shown.

II. NEURAL FILTER FOR REMOVING QUANTUM NOISE

FROM X-RAY IMAGE SEQUENCES

A. Architecture of the Neural Filter

The NF consists of a multilayer NN in which the activation
functions of the units in the input, hidden, and output layers are
an identity function, a sigmoid function, and a linear function,
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respectively. We adopted a linear function instead of an ordi-
narily used sigmoid one as the activation function of the unit in
the output layer because the characteristics of the NN become
better in the applications to continuous mapping issues such as
image processing [27], [28]. The inputs to the NF are an object
pixel value and spatially/spatiotemporally adjacent pixel values.
We explain, as an example, a three-layered spatiotemporal NF
[13], [15]. The architecture of the NF is shown in Fig. 1. In
Fig. 1, and denote a time of the current frame and a time
interval between frames, respectively. The output of the NF is
represented by

(1)

where

(2)

denotes the input vector to the NF, and
and indices of spatial coordinates;

index of temporal coordinate;
pixel value in the input image;
output of the multilayer NN;
normalization factor;
input region of the NF.

The input vector is rewritten as

(3)

where denotes a unit number in the input layer and the
number of units in the input layer. As the activation function
of the units in the input layer is an identity function , the
output of the th unit in the input layer is represented by

(4)

The output of the th unit in the hidden layer is represented by

(5)

where
weight between the th unit in the input layer and
the th unit in the hidden layer;
offset of the th unit in the hidden layer;
number of units in the hidden layer;
sigmoid function

(6)

The output of the unit in the output layer is represented by

(7)

where
weight between theth unit in the hidden layer and
the unit in the output layer;
offset of the unit in the output layer;

Fig. 1. Architecture of the neural filter (NF) for image sequence processing.

linear function

(8)

The error to be minimized by training is defined as

(9)

where
pattern number;
th pattern in the teaching image;
th pattern in the output image;

number of patterns.
The NF is trained by the backpropagation algorithm [29] until
the error gets smaller than or equal to the predetermined error

or the number of training epochs exceeds the predetermined
number . By using this training algorithm, it is expected that
the NF would have the function to convert the input image to
the desired teaching image, e.g., by presenting the noisy input
image together with the teaching noiseless image, details of
which are clear, and that the NF will be able to remove noise
from images while preserving image details.

B. Synthesizing Input and Teaching Images

Medical X-ray images are treated in this section because the
analysis of novel technologies such as the NFs is very important,
particularly in the applications to medical systems. The goals of
improving the image quality of medical X-ray image sequences
are 1) to remove quantum noise from low-dose X-ray images to
reduce X-ray exposure to patients and 2) to enhance the edges
in diagnostic regions in the images to discern them clearly.
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X-ray quantum noise is originated from a signal-dependent
Poisson-distributed noise source [30]. The variance of the
Poisson noise increases linearly with signal amplitude, i.e.,
local X-ray exposure. However, the signal-to-noise ratio (SNR)
increases with X-ray exposure. Since in most X-ray systems
the mean brightness is controlled by an automatic gain control
(AGC) in order to make it a constant brightness, the observed
quantum noise decreases with increasing X-ray exposure [31].
Using this property, the input and teaching images for training
can be synthesized from high-dose X-ray images taken at a
high X-ray exposure level.

The low-dose X-ray image , which is the input
image to the NF, can be synthesized from the high-dose X-ray
image with negligible quantum noise as

(10)

(11)

where denotes white Gaussian noise when its standard
deviation is , and is the parameter determining the amount
of radiation dosage. In clinical examinations, the X-ray image
sequence is acquired at very low X-ray dose: Only ten to 500
X-ray quanta contribute to each pixel [32]. The average number
of X-ray quanta captured at one pixel is about 35 [30], [33]. The
Poisson-distributed noise can be approximated by the Gaussian
one when the number of X-ray quanta is more than 20 [34].
Therefore, we can use the Gaussian noise as a model of the
quantum noise.

Moving low-dose X-ray images such as fluoroscopic images
and radiographs are generally inverted to make them look like
traditional film negatives. If the acquired high-dose X-ray image
is inverted, we need to invert the gray levels of the image be-
fore synthesizing. Furthermore, most of medical imaging sys-
tems use a signal-dependent gain, e.g., in fluoroscopic imaging
systems, called white compression (or white suppression); this
measure is taken to prevent halation. In digital radiography sys-
tems, a logarithmic gain curve is sometimes used. In such a
case, we need to perform the inverse transformation of the white
compression and/or the logarithmic gain curve on the high-dose
X-ray image before synthesizing the input and the teaching im-
ages.

The spatial frequency characteristic of quantum noise
depends on that of an acquisition system. If we use a camera
tube-based acquisition system, the modulation transfer function
(MTF) of quantum noise is a bell shape. If we use a CCD-based
acquisition system, the shape of the MTF becomes more flat.
Thus, the actual spatial frequency characteristic of quantum
noise is not white but depends on that of the acquisition system.
We adopted a simpler model because one of issues of this paper
is efficient realization of the NF. If we adopt a complex model,
the analysis may become more complex. However, using a

stricter model would lead to improvement of the performance
of the NF, especially in applications to medical X-ray images
(see the detailed properties of the actual medical X-ray imaging
system in [31] to construct a stricter model).

The teaching image is synthesized from
by performing a highpass filtering, the window

function of which is represented by (12), shown at the bottom
of the page, where

normalized horizontal spatial frequency;
normalized vertical spatial frequency;
parameter determining the passband.

We obtained of 0.24% of the maximum gray level by the
actual measurement of noise in low-dose X-ray images [35] and
used of 1/16.

C. Training the Neural Filter

The spatiotemporal input region of the NF consists of five
pixels [( ), ( ), ( ), ( ), ( )] in each of
five consecutive frames, as Fig. 1 shows. We adopted three-lay-
ered NF because it has been proved theoretically that any con-
tinuous mapping can be approximately realized by three-layered
NNs [21], [22]. The number of units in the input, hidden, and
output layers are 25, 20, and 1, respectively (here referred to as
25-20-1). The number of units in the hidden layer was deter-
mined by trial and error. The experimental results showed that
20 units are enough to train the NF for quantum noise removal.

The images used for training are shown in Fig. 2. These are ra-
diographs of a stomach (size: 512512 pixels; number of gray
levels: 1024) called a double contrast radiograph, which was ac-
quired with a digital radiography system. These images were in-
verted to make them look like traditional film negatives. In these
figures,a70 120-overlayshowsaregionof interest thatwasen-
larged to double the original size. The high-dose X-ray images
were acquired at a high X-ray exposure level based on a common
doseprotocolused in radiography.Thesimulated low-doseX-ray
images , synthesized from the high-dose X-ray images
by using (10), are shown in Fig. 2(a) and (b). In the figures, the
current and the last frame in the input region of the NF are shown.
Theperistalticmovementof thestomachwallcanbeseenbycom-
paring between Fig. 2(a) and (b). The inverse transformation of
the logarithmicgaincurve wasperformed on the high-dose X-ray
image before synthesizing. All images in Fig. 2 are
displayed as the image after performing the inverse transforma-
tionbecausethedoublecontrast radiographisoftendisplayedthis
way. The teaching image , which is synthesized from
the high-dose X-ray image, is shown in Fig. 2(c). These kinds of
images are used for the medical examination of stomach cancer.
Through training with these images, the NF would acquire the
function of noise reduction as well as edge enhancement. The NF
wastrainedon80 000epochswiththetrainingsetintheregionsin-
dicatedby the white rectangular frames (9060pixels) inFig.2.

(12)
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Fig. 2. Images used for training and the output image of the trained NF. (a)
Simulated low-dose X-ray image, the last frame in the input region of the NF
g (x; y; t � 4T ). (b) Simulated low-dose X-ray image, the current frame in
the input region of the NFg (x; y; t ). (c) Teaching image synthesized from a
high-dose X-ray imageT (x; y; t ). (d) Output image of the trained NF. White
rectangular frames in (b) and (c) indicate the training region.

We selected such a small region as the training region because the
features in a smaller region would be easier to analyze. Using a
wider training region would make the NF much more versatile.
The training converged with the errorof 0.024.

The output image of the trained NF is shown in Fig. 2(d).
The noise in the input images is reduced, and the edges become
sharper. The noise reduction and edge enhancement, which are
adapted to the training region, are achieved, although the quality
of the image does not reach the teaching image.

Ingeneral, there isariskoccurringofartifacts in filtering image
sequences using a spatiotemporal input region. Data in the pre-
vious frame may appear in the current frame. There is a tradeoff
between the filter performance and the risk in designing filters.
The balance between the two is important in filter design. The
NF can be designed to balance the risk with the performance,
i.e., since the NF is trained with image sequences in order that
the output image approaches the teaching image that contains no
artifact, the weights yielding artifacts would diminish through
training. However, the training is not completed with the error
of zero. Therefore, there still remains a risk of reappearing fea-
tures of previous frames with the trained NF. Thus, analyzing the
trained NF is of importance. If the trained NF is analyzed, we can
know a risk and may have a way to reduce it.

III. A NALYSIS METHOD FOR THETRAINED NEURAL FILTER

A. Specific Input Signals for Analysis

We have reported the preliminary version of the proposed
method in [36]. If a system is a linear system, it can be ana-
lyzed clearly by using its impulse response. However, it is dif-

ficult to analyze theoretically the NFs trained to solve various
problems because of their nonlinearity. We narrow down the is-
sues to the NF trained to remove quantum noise from images.
Since the quantum noise is signal dependent, the NF trained to
remove it should be realized with the characteristics depending
on gray levels in the images. Furthermore, the trained NF can be
treated as a nonlinear deterministic system. By paying attention
to these points, the trained NF can be analyzed experimentally;
an unknown nonlinear deterministic system such as the trained
NF would be analyzed by using its output responses that are ob-
tained when some input signals for analysis are input to it.

Since the NF is a system that has a lot of inputs, as a prac-
tical matter, all possible combinations of input signals cannot be
tested. Therefore, we need to generate input signals on the basis
of some rule. As described above, the characteristics of the NF
trained to remove quantum noise would depend on the average
gray level in the input region. Let us suppose that the same gray
level is input to all input units, except a certain target-input unit.
In such a case, the same gray level approximately corresponds
to the local average gray level. If we adopt a rule that only the
gray level to the target-input unit is varied, we can obtain the
output response to the target-input unit around the local average
gray level. Thus, we can analyze a nonlinear system with plural
inputs, which is represented by the model having the local av-
erage gray level as a parameter.

The specific input signals for analysis are defined as

if
if

(13)

(14)

where
unit number in the input layer ( );
base signal ( );
parameter ( );
target-input unit number ( ).

As is shown in Fig. 3, the output response to a certain target-
input unit is examined. The ramp signal with respect to the pa-
rameter is input to the target-input unit; the base signals ,
which are constant values with respect to, are input to the
other input units. Furthermore, in order to examine the output
responses to the base signals, the value of is varied be-
tween zero and one. By changing the target-input unit from one
to another, the output responses to all of the input units are ex-
amined. The output response of the NF toand is represented
by

(15)

Thus, in the proposed analysis method, the output response to a
target-input unit is obtained like a sensitivity analysis method.
After the sensitivities, i.e., the output responses, of all input units
are obtained, the NF can be represented by some model.

B. Approximate Filter Model

Consider the filter model represented by

(16)
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Fig. 3. Analysis method for unknown nonlinear deterministic systems such as
trained NFs.

where denotes a polynomial of degreerepresented
by

(17)

where denotes a filter coefficient, andrefers to a param-
eter. By substituting (13) into (14), the input vector to the filter
model is represented by

(18)

Substituting the parameterfor , we obtain the output re-
sponse of the filter model toand , to which the specific input
signals for analysis are input, as

(19)

Applying the least-squares method to the approximation of the
output responses, the filter coefficients can be obtained.

Let us now assume that the degreeis equal to one. The
filter model becomes simple, as the following equation shows:

(20)

By replacing and , the
output response of the filter model toand can be represented
by

(21)

where and denote the filter coefficients depending
on . By applying the least-squares method to the approxima-
tion, the filter coefficients and can be obtained. By

Fig. 4. Hardware architecture of the approximate filter.

this approximation, as well as approximating the base signal
to the summation of the inputs, we obtain the approximate filter
model represented by

(22)

where and are implemented as look-up tables with
the summation of the inputs as an index. The last equa-
tion gives the approximate filter model shown in Fig. 4. The
hardware architecture is very simple. It consists of multipliers,
adders, and table memories; it is like a transversal filter, apart
from the nonlinearity of the table memories.

In the NF, since multiplications of the signals by the weights
are dominant over other operations, the computational cost of
the NF is proportional to the number of multiplications. The
number of multiplications of the NF can be derived as

(23)

In contrast, the number of multiplications of the approximate
filter model in case of the degree is represented by

(24)

Therefore, the approximate filter is advantageous in terms of
the computational efficiency when the following condition is
fulfilled:

(25)

If the NF can be approximated accurately by the approximate
filter in case of the degree of one, i.e., the approximate filter
shown in Fig. 4, the number of multiplications corresponds to
the number of units in the input layer as

(26)

Therefore, the computational cost of the NF is reduced to about
in the case where the trained NF can be approximated by

the approximate filter shown in Fig. 4.
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Fig. 5. Output responses of the trained NF to which the specific input signals
for analysis are input.

IV. EXPERIMENTS

A. Results of Analysis and Realizing the Approximate Filter

The proposed analysis method was applied to the NF trained
to improve the image quality of medical X-ray image sequences.
The output responses of the trained NF, to which the specific
input signals for analysis are input, are shown in Fig. 5. In Fig. 5,
the output responses are shown forequal to 0.4, 0.6, and 0.8.
The words Top, Left, Center, Right, and Bottom express spatial
positions of the input region of the NF shown in Fig. 1. The
brightness of curves corresponds to the temporal position of the
frame in the input region, similar to the fading brightness of the
pixels in Fig. 1. A black curve indicates the current frame, and
a brighter curve indicates an older frame. The gradient of each
curve expresses a nonlinear filter gain at the corresponding input
unit. The pixel having the same sign of the gradient as the sign
at the object pixel, i.e., the pixel at the position Center in the
current frame , indicates that the pixel has averaging effect.
The pixel having the opposite sign indicates that the pixel has
spatial/temporal edge enhancement effect. An intersection point
of curves indicates the output response when all input signals are
the same.

Since all of the output responses are nearly straight, they can
be approximated by linear functions well, i.e., there is a possi-
bility that this trained NF can be approximated by the approxi-
mate filter model, the degree of which is equal to one, in (21).
We applied the least-squares method to the approximation of the
output responses to linear functions. The mean absolute error
between the output responses and linear functions was calcu-
lated in order to examine the accuracy in approximation. As a
result, the mean absolute error was only 2.05%. This result indi-
cates that the degree of one is enough to approximate this trained
NF. Therefore, this trained NF can be approximated by the ap-
proximate filter shown in Fig. 4.

Abdominal radiographs are acquired at a speed up to 30
frames/s, where each image consists of 10241024 pixels

10 bits. The previously discussed 25-20-1 NF requires 520
multiplications per pixel. Consequently, real-time filtering of
abdominal images would require 16.4 billion multiplications

per second. By using the approximate filter, the cost of hard-
ware of the NF is reduced to about 1/20. According to (25),
the approximate filter in case where the degreeis less than
or equal to ten is advantageous in terms of the computational
efficiency. We can chose the appropriate degree, according
to the accuracy required by its application. In general, if we
use the approximate filter model including the higher order
terms and their mixed terms, the approximation would be more
robust and accurate.

Figs. 6 and 7 show the results of calculation of the filter coef-
ficients of the approximate filter obtained from the output re-
sponses. The gradient of the line approximating the curve in
Fig. 5 corresponds to the filter coefficient at the corre-
sponding position in the corresponding frame, e.g., since the
gradient of the line at the object pixel in case whereequals
to 0.6 in Fig. 5 is about 0.24, the filter coefficient
at the object pixel is about 0.24. Since the gradients of some
lines in older frames are negative, the corresponding filter coef-
ficients in the older frames are negative.

The filter coefficients at the center pixels Fig. 6(c) are rela-
tively greater than those at the other pixels. The same sign of
a filter coefficient as the sign of the filter coefficient at the ob-
ject pixel indicates the averaging effect. This effect would re-
duce quantum noise adapting to the gray level. The filter co-
efficients decrease in proportion to the temporal distance from
the current frame . This characteristic is due to the training to
process time-varying images. They are negative in the frames

and . This indicates that the edge enhancement
is mainly performed in these frames. Since these negative coef-
ficients may cause an artifact in the case of motion, we need to
perform a subjective evaluation with specialists to confirm the
occurrence of no artifact (the results of the subjective evalua-
tion will be shown in the latter section). If any artifact-disturbing
clinical diagnosis is observed, we have to reduce the artifact by
making the negative coefficients smaller, for example. The filter
coefficients in the middle of are relatively greater than the
others. This is caused by the gray-level histogram in the training
region; the frequencies around the middle of gray levels are rel-
atively high, as Fig. 8 shows. Furthermore, the filter coefficients
at the Top and Bottom are relatively greater than are those at the
Left and Right. This is due to the fact that the training region
shown in Fig. 2 contains mainly vertically directional patterns.
This indicates that the characteristics are adapted to the training
region. This fact suggests that it is better to use a wider region
as a training region for practical use. Using a wider training re-
gion would make the NF, as well as the approximate filter, much
more versatile.

Furthermore, the sensitivity of the unit in the input layer can
be analyzed by using the filter coefficients. The sensitivity of
the th unit in the input layer is defined as

(27)

where denotes a normalization factor. The result of calcu-
lation is shown in Fig. 9. The sensitivity of the object pixel is
the highest of all. The sensitivity decreases in proportion to the
distance from the center pixel in the current frame. This charac-
teristic is due to the training to process time-varying images.
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Fig. 6. Results of calculation of the filter coefficients of the approximate filtera (D).

Fig. 7. Results of calculation of the filter coefficient of the approximate filter
b(D).

B. Accuracy in Approximation

The accuracy in approximation between the trained NF and
its approximate filter is evaluated. First, the output image of the
NF and that of the approximate filter are compared. These are
shown in Fig. 10(a) and (b). In both images, the noise in the input
images is reduced effectively, and the edges become sharper. At
first sight, the difference between them cannot be distinguished.

Fig. 8. Histogram of gray level in the training region.

To compare more precisely, the image quality is evaluated quan-
titatively using the blurred signal-to-noise ratio (BSNR) and the
improvement in signal-to-noise ratio (ISNR) [37], [38]. These
metrics are often used to evaluate image restoration techniques
that restore the images degraded by blurring and noise. The
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Fig. 9. Results of calculation of the sensitivity of each unit in the input layer.

Fig. 10. Comparison of image quality between the output image of the trained
NF, whose structure is 25-20-1 and that of its approximate filter. (a) Output
image of the trained NF. (b) Output image of the approximate filter.

BSNR and the ISNR are defined as

BSNR

(28)
where

(29)

and where
region for evaluation;
noise in the input image;
spatial average value within in

;
spatial average value within in

;
and

ISNR

(30)
The results are shown in Fig. 11. was set to the region in-
cluding whole of the stomach. The average BSNR, i.e., the SNR
of the input image, is 11.6 dB. The average ISNR of the NF is
1.866 dB, after using only one frame (number 15) in the training.

Fig. 11. Comparison of the performance of the trained NF, whose structure is
25–20–1, with that of its approximate filter in terms of the ISNR.

We do not need the entire sequence for training. The average
ISNR of the approximate filter is 1.866 dB. The ISNR of the ap-
proximate filter is nearly equal to that of the NF in not only the
training frame but also the nontraining ones. This result shows
that the approximate filter is a very good approximation of the
trained NF.

C. Experiments to Verify the Versatility

1) Neural Filter With Large Input Region:In order to
evaluate the versatility of the proposed analysis method, an
experiment on the NF with a large input region was performed.
The input region of the NF is expanded to that consisting
of five-by-five pixels in the consecutive five frames. The
numbers of units in the input and hidden layers are 125 and
20, respectively. The output image of the trained large NF is
shown in Fig. 12(a). As the input region is expanded, the noise
is reduced much more, and the edges are sharper than those in
the output image of the small NF. The trained large NF was
analyzed by using the proposed analysis method, and then,
its approximate filter was obtained. The output image of the
approximate filter is shown in Fig. 12(b). At first sight, the
difference between them cannot be distinguished. The results
of calculation of the ISNR are shown in Fig. 13. The average
ISNRs of the approximate filter and the NF are 6.826 and 6.823
dB, respectively. This result shows that the proposed analysis
method does function well in the case of the expanding input
region.

In order to improve the quality of image sequences, various
dynamic filters have been proposed so far [39]–[48]. A real-time
system for fluoroscopic filtering has been developed and ap-
plied to gastrointestinal studies [45]. A matched filter-type al-
gorithm has been developed to optimize the SNR of the con-
trast signal in an angiographic image sequence [40]. The hard-
ware of a recursive temporal filter has been developed [39], [41].
A spatiotemporal filtering technique with object detection has
been developed to reduce noise while minimizing motion and
spatial blur [48]. Stochastic temporal filtering techniques have
been developed to enhance fluoroscopic images [46], [47]. We
compared the NF with the adaptive weighted averaging filter
(AWAF) [43]. The AWAF is developed for noise suppression in
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Fig. 12. Comparison of image quality between the output image of the trained
large NF, whose structure is 125–20–1 and that of its approximate filter. (a)
Output image of the trained large NF. (b) Output image of the approximate filter.
(c) Output image of the AWAF.

Fig. 13. Comparison of the performance of the trained large NF, whose
structure is 125–20–1, with that of its approximate filter in terms of the ISNR.

image sequences without spatial blur. This is the well-known
representative as a dynamic filter with good performance. To
compare fairly, the input region of the AWAF was set to the
same size of the NF; the highpass filtering that was used to
synthesize the teaching image for the NF was performed on the
output image of the AWAF. The image processed by the AWAF
is shown in Fig. 12(c). There remains much noise in the pro-
cessed image. We cannot discern well the folds of the stomach
wall due to the noise. In these kind of images, the fold of the
stomach wall is extremely important because medical doctors
diagnose stomach cancer on the basis of the convergence pat-
tern of the folds. The average ISNR of the AWAF is 1.3 dB. It
is relatively lower because the AWAF would not be developed

Fig. 14. Comparison of image quality between the output image of the trained
large NF, whose structure is 125–20–1, and that of its approximate filter in
filtering real low-dose X-ray angiograms, which are not used for training. (a)
Last frame in the input region of the NFg (x; y; t � 4T ). (b) Current frame
in the input region of the NFg (x; y; t ). (c) Output image of the trained large
NF. (d) Output image of the approximate filter.

for removing the quantum noise in abdominal radiographs. In
contrast, in the output images of the NF and the approximate
filter, there remains less noise, and we can discern the folds of
the stomach wall better.

To compare the computational costs, the CPU execution
times of the filters were measured on a workstation (CPU:
UltraSparc-II 300 MHz, Sun microsystems). The results of the
NF, the approximate filter, and the AWAF are 24.1, 3.7, and
37.6, respectively. The results show that the approximate filter
is efficient in computational cost. According to (23) and (26),
the computational cost reduction is about , i.e., 1/20 in
this case. However, the actual execution time does not reach it
because there is some overhead in software.

2) Evaluation With Real Low-Dose X-ray Images:Apart
from abdominal radiography, coronary X-ray angiography is
commonly used in medical practice. Both methods have in
common that images are acquired at rates up to 30 frames/s.
In addition, since the NFs were trained using the simulated
low-dose X-ray images, evaluation with real low-dose X-ray
images is of importance. Accordingly, the approximate filter
was applied to real low-dose angiograms of coronary arteries.
The angiograms are shown in Fig. 14(a) and (b). These
angiograms were actually acquired at a low X-ray exposure
level in clinical X-ray fluoroscopy, i.e., a common low-dose
protocol in fluoroscopy was used (the tube current and the tube
voltage of the X-ray tube were 1.6 mA and 58 kV, respectively).
Although there are many factors in the imaging chain that affect
the overall image quality, the noise power attributed to quantum
noise dominates the whole noise power at lower spatial fre-
quencies in a low-dose scenario such as X-ray fluoroscopy
[49]. The real low-dose X-ray images used in this experiment
should dominate low spatial frequency quantum noise.
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TABLE I
QUANTITATIVE EVALUATION OF THE ACCURACY IN APPROXIMATION BETWEEN

THE TRAINED NF AND ITS APPROXIMATE FILTER

The output image of the NF is shown in Fig. 14(c). Since, in
a cardiac imaging system, a nonlinear gray level transformation
is performed prior to storage, the compensation of the nonlinear
transformation was performed before filtering. In the image, the
quantum noise is reduced effectively. We can see the arteries
better. However, if we use the images, including the low spatial
frequency quantum noise for training the NF, the image quality
would be much better. Furthermore, in the output image, we can
see no artifacts caused by data in the previous frame, although
the arteries move quite rapidly. This would be due to the fact that
the rapid movement of the stomach wall is partially contained
in the images used for training. If no rapid movement was con-
tained in the images used for training, the artifacts might occur
in the output image.

In order to evaluate the image quality for clinical use, we per-
formedasubjectiveevaluationwithcardiologists.Theevaluation
was performed using a real digital angiography system in a hos-
pital.Theprocessed imagesequenceswere loaded into thesystem
andweredisplayedunder thesameconditionsas incommonclin-
ical use. By the evaluation, it was confirmed that there was no
artifact-disturbing diagnosis, such as the artifact caused by reap-
pearing features of the previous frames, in the images.

The output image of the approximate filter is shown in
Fig. 14(d). The difference between the output image of the
NF and that of the approximate filter cannot be distinguished.
Furthermore, we performed a subjective evaluation with car-
diologists. By the evaluation, it was confirmed that there was
no difference between the two in terms of clinical use. This
shows that the approximate filter functions well in filtering real
low-dose angiograms, which are the different kind of images
from the training images. The mean absolute errors between the
output images of the NFs and those of the approximate filters
are summarized in Table I. The errors in all cases are quite
small. This result leads to the conclusion that the approximate
filter has enough versatility to apply it to medical systems.

D. Neural Filter Trained to Remove Quantum Noise From
Natural Images

In order to evaluate the versatility of the proposed analysis
method, an experiment on the NF trained to remove quantum
noise from two-dimensional natural images was performed.
Since the target image is static, we adopted the spatial region as
the input region of the NF. In order to reduce noise sufficiently,
the spatial input region of the NF was set to that consisting of
11 11 pixels. The number of units in the input and hidden
layers are 121 and 50, respectively. The image used in this

Fig. 15. Comparison of image quality between the output image of the NF
trained to reduce quantum noise in natural images and that of its approximate
filter. (a) Noisy input image. (b) Teaching image. (c) Output image of the trained
NF. (d) Output image of the approximate filter.

experiment is the Lena image (size: 512512 pixels; number
of gray levels: 256) from the University of Southern California
image database. Fig. 15(a) and (b) shows the noisy input image
synthesized by using (10) and the teaching image, respectively.

was set to 5% of the maximum gray level. In order to
acquire the features in the entire image, the training set is
made by sampling 5000 points at random from the images.
The training was performed on 100 000 epochs and converged
with the error of 0.018. Then, a method for designing the
structure of the NF in [50]–[52] was applied to the trained
NF. The optimal structure, which is the smallest structure with
this error, was obtained: The number of units in the input and
hidden layers became 22 and 8, respectively.

The output images of the trained NF and its approximate filter
are shown in Fig. 15(c) and (d), respectively. The ISNRs of
the NF and the approximate filter are 7.564 and 7.699 dB, re-
spectively. Furthermore, in order to evaluate the generalization
ability, these filters were applied to the test images that are not
used for training. The output images of the filters in filtering
the test images are shown in Fig. 16. The results of calculation
of the ISNRs are shown in Table II. The ISNRs of the approx-
imate filter are slightly better than those of the NF. The output
responses of the NF were slightly saturated, like those shown in
Fig. 5. They were approximated by linear functions. This ap-
proximation makes the gain of the approximate filter higher,
particularly at the saturated parts. By this effect, the contrast
of the image was improved. This is the reason the ISNRs of the
approximate filter are better. These results demonstrate that the
proposed analysis method and the approximate filter function
well in approximation of the NF trained with natural images.
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Fig. 16. Comparison of image quality between the output image of the
trained NF and that of its approximate filter in filtering test images. (a) Noisy
input images. (b) Output images of the trained NF. (c) Output images of the
approximate filter.

TABLE II
QUANTITATIVE EVALUATION OF THE ACCURACY IN APPROXIMATION BETWEEN

THE TRAINED NF AND ITS APPROXIMATE FILTER

V. CONCLUSIONS

In this paper, a novel method for analyzing the NFs for re-
moving quantum noise from images has been proposed. The ex-
periments to analyze the NFs trained to remove quantum noise
from medical X-ray image sequences and natural images were
performed. The proposed method has been proved to be useful
to analyze unknown nonlinear deterministic systems with plural
inputs such as the trained NFs. The results of the analysis of
the trained NFs made the characteristics clear, leading to their
efficient approximate filters. The experimental results demon-
strated that the approximate filters, constructed of simple hard-
ware, are sufficient for approximation of the trained NFs and
efficient at computational cost.

The problem of filtering Poisson noise can be simplified
to a case of filtering invariant Gaussian noise by means of
a squire-root operation, the form of which is the following:

, where is a constant. By applying the
square-root operation to a signal with Poisson noise, we
can obtain a signal with a constant noise variance, i.e., the
signal-dependent quantum noise becomes signal-independent
additive noise after the square-root operation [53]. Using this
operation prior to filtering, we may be able to obtain a simpler
implementation of the approximate filter for medical images.
We will perform the experiment to investigate the effectiveness
of this operation prior to filtering.

We plan in the near future to study the the extension of the
proposed analysis method so that NNs trained to solve var-
ious problems, e.g., various kinds of NN models such as ra-
dial basis function networks, etc., can be handled. We will per-
form the mathematical analyses on the statistical properties of
the quantum noise and on the removal of noise using NNs.
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