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One of the limitations of the current computer-aided detection �CAD� of polyps in CT colonogra-
phy �CTC� is a relatively large number of false-positive �FP� detections. Rectal tubes �RTs� are one
of the typical sources of FPs because a portion of a RT, especially a portion of a bulbous tip, often
exhibits a cap-like shape that closely mimics the appearance of a small polyp. Radiologists can
easily recognize and dismiss RT-induced FPs; thus, they may lose their confidence in CAD as an
effective tool if the CAD scheme generates such “obvious” FPs due to RTs consistently. In addition,
RT-induced FPs may distract radiologists from less common true positives in the rectum. Therefore,
removal RT-induced FPs as well as other types of FPs is desirable while maintaining a high
sensitivity in the detection of polyps. We developed a three-dimensional �3D� massive-training
artificial neural network �MTANN� for distinction between polyps and RTs in 3D CTC volumetric
data. The 3D MTANN is a supervised volume-processing technique which is trained with input
CTC volumes and the corresponding “teaching” volumes. The teaching volume for a polyp contains
a 3D Gaussian distribution, and that for a RT contains zeros for enhancement of polyps and
suppression of RTs, respectively. For distinction between polyps and nonpolyps including RTs, a 3D
scoring method based on a 3D Gaussian weighting function is applied to the output of the trained
3D MTANN. Our database consisted of CTC examinations of 73 patients, scanned in both supine
and prone positions �146 CTC data sets in total�, with optical colonoscopy as a reference standard
for the presence of polyps. Fifteen patients had 28 polyps, 15 of which were 5–9 mm and 13 were
10–25 mm in size. These CTC cases were subjected to our previously reported CAD scheme that
included centerline-based segmentation of the colon, shape-based detection of polyps, and reduc-
tion of FPs by use of a Bayesian neural network based on geometric and texture features. Appli-
cation of this CAD scheme yielded 96.4% �27/28� by-polyp sensitivity with 3.1 �224/73� FPs per
patient, among which 20 FPs were caused by RTs. To eliminate the FPs due to RTs and possibly
other normal structures, we trained a 3D MTANN with ten representative polyps and ten RTs, and
applied the trained 3D MTANN to the above CAD true- and false-positive detections. In the output
volumes of the 3D MTANN, polyps were represented by distributions of bright voxels, whereas
RTs and other normal structures partly similar to RTs appeared as darker voxels, indicating the
ability of the 3D MTANN to suppress RTs as well as other normal structures effectively. Applica-
tion of the 3D MTANN to the CAD detections showed that the 3D MTANN eliminated all RT-
induced 20 FPs, as well as 53 FPs due to other causes, without removal of any true positives.
Overall, the 3D MTANN was able to reduce the FP rate of the CAD scheme from 3.1 to 2.1 FPs per
patient �33% reduction�, while the original by-polyp sensitivity of 96.4% was maintained. © 2006
American Association of Physicists in Medicine. �DOI: 10.1118/1.2349839�
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I. INTRODUCTION
CT colonography �CTC�, also known as virtual colonoscopy,
is a technique for detecting colorectal neoplasms by use of a

CT scan of the colon, and it is a promising technique for
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providing mass screening for colorectal carcinoma.1 How-
ever, the diagnostic performance of CTC in detecting polyps,
precursors of colorectal cancer, remains uncertain, with a

propensity for perceptual errors and substantial variations
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among readers across different studies.2 Computer-aided de-
tection �CAD� of polyps has the potential to overcome these
difficulties with CTC.3,4 CAD for CTC typically refers to a
computerized scheme for detection of polyps in the CTC
images and displays the locations of suspicious polyps for
radiologists’ review. CAD also has the potential to improve
radiologists’ diagnostic performance in the detection of
polyps.3,4

Several investigators have developed automated or semi-
automated CAD schemes for detection of polyps in CTC,
and have conducted clinical trials to demonstrate the perfor-
mance of their CAD schemes. 5–12 Although the performance
of the current CAD schemes demonstrated promise, some
limitations remain; one of the major limitations is a relatively
large number of false-positive �FP� detections. A large num-
ber of FPs could complicate the clinical application of the
current CAD schemes because these FPs are likely to con-
found the radiologist’s image-interpretation task and thus
may lower their accuracy.

Haustral folds, residual stool, extra-colonic structures
such as small bowel and stomach, rectal tubes �RTs�, and the
ileocecal valve have been reported as common sources of
FPs generated by CAD schemes.4 Among them, the occur-
rence of RT-induced FPs is relatively low;3 however, RTs
remain a source of FPs in CAD because a portion of a RT,
especially a portion of a bulbous tip, often exhibits a cap-like
shape that closely mimics the appearance of a small polyp.
Moreover, the tip of a RT sometimes touches the colonic
wall; this makes the differentiation of the RT from soft-tissue
structures difficult, and thus it increases the chance that the
tip of the RT is erroneously detected as a polyp. The perfor-
mance of a CAD scheme involves a trade-off between sen-
sitivity and specificity, which can be designed by a threshold
on the output of a classifier. It is important to remove as
many FPs, including RTs, as possible, while the sensitivity of
the CAD scheme is maintained.

On the other hand, the interface between the air and the
surface of a RT is clear; thus, radiologists can easily recog-
nize and dismiss FPs due to RTs. Therefore, radiologists may
lose their confidence in CAD as an effective tool if the CAD
scheme generates such “obvious” FPs due to RTs consis-
tently. Removal of CAD FPs due to RTs is thus desirable not
only for improving the overall performance of CAD, but also
for increasing the confidence of radiologists in CAD.

Although various methods characterizing FPs have been
developed for reduction of their number,13–21 only one of
these methods19 was specifically designed for RTs. We thus
develop a three-dimensional massive-training artificial neural
network �3D MTANN� to this reduction task and evaluate its
performance based on clinical CTC cases.

In the field of image processing, ANN-based supervised
nonlinear image-processing techniques, known as “neural
filters,”22 and “neural edge enhancers,”23 have been investi-
gated for the reduction of quantum noise in coronary
angiograms24 and upper gastric radiographs22 and for the su-
pervised detection of left ventricular contours traced by car-
diologists in ventriculograms.25 By extending the neural filter

and the neural edge enhancer, two-dimensional �2D�
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MTANNs26 have been developed to accommodate the task of
distinguishing a specific opacity from other opacities in
medical images. 2D MTANNs have been applied for reduc-
tion of FPs in the computerized detection of lung nodules in
low-dose CT26,27 and chest radiography,28 for distinction be-
tween benign and malignant lung nodules in CT,29 and for
suppression of ribs in chest radiographs.30 Thus, a MTANN
for processing 3D volume data has not been developed yet.

II. MATERIALS AND METHODS

A. Architecture of a 3D massive-training artificial
neural network „3D MTANN…

To process 3D volume data in CTC, we developed a 3D
MTANN by extending the structure of the 2D MTANN. The
architecture and training of a 3D MTANN are shown in Fig.
1. The 3D MTANN consists of a linear-output multilayer
ANN model,31 which is capable of operating on voxel data
directly. The 3D MTANN is trained with input CTC volumes
and the corresponding “teaching” volumes for enhancement
of polyps and suppression of RTs. The pixel size within a CT
section is generally different from the reconstruction interval
between sections, and the reconstruction interval is often dif-
ferent at different institutions and under different imaging
protocols. To reduce such variations in CTC data, original
CTC data are converted to isotropic volume data. The voxel
values of the isotropic volumes are linearly scaled such that
−1000 Hounsfield unit �HU� corresponds to 0 and 1000 HU
corresponds to 1 �values below 0 and above 1 are allowed�.
The input to the 3D MTANN is the voxel values in a sub-
volume, VS, extracted from an input isotropic volume. The
output, O�x ,y ,z�, of the 3D MTANN is a continuous scalar
value, which corresponds to the center voxel in the subvol-
ume, and is represented by

O�x,y,z� = NN�Ix,y,z� , �1�

where

Ix,y,z = �I�x − i,y − j,z − k��i, j,k � VS� �2�

is the input vector to the 3D MTANN, x ,y, and z are the
coordinate indices, NN�·� is the output of the linear-output
ANN model, and I�x ,y ,z� is the normalized voxel value of
the input isotropic volume.

We use a linear-output ANN model that employs a linear
function instead of a sigmoid function as the activation func-
tion of the output unit, because the output and convergence
characteristics of an ANN are improved significantly with a
linear function when it is applied to the problem of continu-
ous mapping of values in image processing, as follows:23,31

A conventional ANN hardly provides values near zero and
one because of the characteristics of a sigmoid function,
whereas the linear-output multilayer ANN outputs values lin-
early. Theoretically, the training for teaching values near zero
and one converges more slowly than do other values with a
conventional ANN, whereas these values are trained evenly
with a linear-output multilayer ANN model. This affects the
convergence characteristics and the output characteristics of

ANN models. Therefore, the linear-output multilayer ANN
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would be suitable for image/volume processing, where the
teaching values may be continuous values ranging from zero
to one, whereas the conventional ANN is suitable for a clas-
sification task where the teaching values are assigned to
classes �see Ref. 23 for theoretical considerations�. The en-
tire output volume is obtained by scanning of an input CTC
volume with the 3D MTANN in 3D space. It should be noted
that the input CTC volume needs to contain the entire polyp
candidate �a polyp or a RT�.

The training of a 2D MTANN for chest radiography,28,30

and thick-slice thoracic CT26,27,29 takes a substantially long
time, e.g., 30 h on a PC-based workstation �CPU: Pentium
IV, 1.7 GHz�;26 consequently, efficient architecture and train-
ing are a necessity for a 3D MTANN. Since the average
shape of polyps approximates a sphere, the shape of the sub-
volume input to the MTANN can be spherical rather than
cubic. The volume of a sphere with radius r is � /6 times the
volume of a cube with an edge length of 2r �i.e., the sphere
Medical Physics, Vol. 33, No. 10, October 2006
inscribed in a cube�. By use of a spherical subvolume rather
than a cubic, the computational cost can be reduced to 52%
�� /6� �i.e., by 48%�. Therefore, we employed the digital
quasisphere shown in Fig. 2 as the input subvolume for the
3D MTANN. The number of voxels in this input subvolume
�Fig. 2� is 171, or about 50% �171/343� of the number of
voxels in a cubic subvolume in which the sphere is inscribed.

The number of hidden units may be selected by use of a
method for designing the structure of an ANN.32,33 The
method is a sensitivity-based pruning method, i.e., the sensi-
tivity to the training error is calculated when a certain unit is
removed experimentally, and the unit with the smallest train-
ing error is removed. Removing the redundant hidden units
and retraining for recovering the potential loss due to the
removal are performed repeatedly, resulting in a reduced
structure where redundant units are removed. As a result, the
number of hidden units is determined optimally.

FIG. 1. Architecture and training of a 3D MTANN con-
sisting of a linear-output multilayer ANN model and a
massive-subvolumes training scheme. The input CTC
volume including a polyp or a RT is divided voxel by
voxel into a large number of overlapping 3D subvol-
umes. All voxel values in each of the subvolumes are
entered as input to the 3D MTANN, whereas a voxel
value at each voxel from the teaching volume is used as
the teaching value.

FIG. 2. The spherical-input subvolume of a 3D
MTANN and the slice-by-slice representation of the
digital quasisphere in a 7�7�7 voxel cube. Each 2D
matrix represents an x-y plane at a certain z position in
the input 3D subvolume, where z0 represents the central
slice of the subvolume. A gray square in each matrix
indicates the input voxel to the linear-output ANN in
the 3D MTANN, and a white square indicates a non-
used voxel.
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B. Training of a 3D MTANN

For enhancement of polyps and suppression of RTs in
CTC volumes, the teaching volume contains a 3D distribu-
tion of values that represent the “likelihood of being a
polyp.” We used a 3D Gaussian distribution with standard
deviation �T, the peak of which is located at the center of the
polyp, as a teaching volume for a polyp and a volume that
contains all zeros for a RT, represented by

T�x,y,z�

= � 1
	2��T

exp
−
�x2 + y2 + z2�

2�T
2 � if an actual polyp

0 otherwise.
�

�3�

The 3D MTANN involves training with a large number of
subvolume-voxel pairs; we call it a massive-subvolumes
training scheme. A training volume VT extracted from the
input CTC volume is divided voxel by voxel into a large
number of overlapping subvolumes. Single voxels are ex-
tracted from the corresponding teaching volume as teaching
values. The 3D MTANN is massively trained by use of each
of a large number of the input subvolumes together with each
of the corresponding teaching single voxels. A training set of
pairs of a subvolume and a teaching voxel is represented by

�I�x,y,z�,T�x,y,z��x,y,z � VT�

= ��I1,T1�,�I2,T2�, . . . ,�Ip,Tp�, . . . ,�INT
,TNT

�� , �4�

where VT is a training volume, p is a voxel number in VT, Tp

is a teaching value in the teaching volume that corresponds
to the center voxel in Ip, and NT is the number of voxels in
VT. The error to be minimized by training is given by

E =
1

P


c


x,y,z�VT

�Tc�x,y,z� − Oc�x,y,z��2, �5�

where c is a training case number, and P is the number of
total training voxels in VT’s. The 3D MTANN is trained by a
linear-output backpropagation �BP� algorithm,23,31 which
was derived for the linear-output ANN model by use of the
same method used for deriving the original BP algorithm34

�see Refs. 23 and 31 for details and the property of the
linear-output BP algorithm�. After training, the 3D MTANN
is expected to output the highest value when a polyp is lo-
cated at the center of the subvolume of the 3D MTANN, a
lower value as the distance from the subvolume center in-
creases, and zero when the input subvolume contains a non-
polyp.

C. 3D scoring method for classification of polyps
and RTs

For distinction between polyps and RTs, we developed a
3D scoring method based on the output volume of the trained
3D MTANN. A score for a given polyp candidate from the

3D MTANN is defined as
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S = 
x,y,z�VE

fG��;x,y,z� � O�x,y,z� , �6�

where

fG��;x,y,z� =
1

	2��
exp
−

�x2 + y2 + z2�
2�2 � �7�

is a 3D Gaussian weighting function with standard deviation
� with its center corresponding to the center of the volume
for evaluation, VE; VE is the volume for evaluation that is
sufficient to cover a polyp or a RT; and O�x ,y ,z� is the
output of the trained 3D MTANN. The use of the 3D Gauss-
ian weighting function allows us to combine the individual
voxel-based responses �outputs� of a trained 3D MTANN as
a single score. The score obtained by the above-presented
equations represents the weighted sum of the estimates for
the likelihood that the volume �polyp candidate� contains an
actual polyp near the center, i.e., a higher score would indi-
cate a polyp, and a lower score would indicate a RT. The
concept of this scoring is similar to that of a matched filter.
We use the same 3D Gaussian weighting function as is used
in the polyp teaching volumes. Thresholding is performed on
the scores to distinguish between polyps and RTs.

It is difficult to distinguish a small distribution for a small
polyp in the output volume from a small distribution due to
noise; this difficulty can lower the ability of the 3D MTANN
to differentiate polyps from RTs. To force the 3D MTANN to
output a standard-sized �regular-sized� distribution for
different-sized polyps, the same-sized Gaussian distribution
is used in the teaching volumes. After training in this man-
ner, the 3D MTANN is expected to output relatively regular-
sized distributions for different-sized polyps, e.g., a rela-
tively large output distribution for a small polyp and a
relatively small output distribution for a large polyp. This
property of the regular-sized output distributions is expected
to increase the scores for small polyps and to improve the
overall performance of a 3D MTANN.

D. Simulation experiments

To investigate the fundamental characteristics of the
trained 3D MTANN, we carried out experiments with simu-
lated CTC volumes that contained computer-simulated pol-
yps and RTs. A polyp was modeled as a sphere with diameter
d, and a RT was modeled as a hollow cylinder with diameter
dT, length l, and wall thickness tW, as shown in Fig. 3. We
employed these simple phantom models, because we aimed
at examining only the fundamental characteristics of the
trained 3D MTANN. The simulated CTC volumes with pol-
yps and RTs of three different sizes �d: 6, 15, and 25 mm; dT:
10, 13, and 16 mm� are illustrated in the top image in Fig. 4.
The CT values for the simulated polyps and RTs were set to
60 and 180, respectively, based on measurements of actual
polyps and RTs in the clinical CTC volumes. The length l
was 70 mm; the wall thickness tW was 2 mm. We applied the
3D MTANN trained with actual polyps and RTs �see Sec.
III A� to the phantom CTC volumes, and applied the 3D

scoring method to the resulting output volumes for distinc-
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tion between polyps and RTs. The standard deviation of the
3D Gaussian weighting function was the same as that of the
3D Gaussian distribution in the polyp teaching volume.

E. CTC database and the performance of our
previously reported CAD scheme

We retrospectively collected CTC cases acquired at The
University of Chicago Hospitals. CTC examinations were
performed on 73 patients whose colons were prepared by
standard pre-colonoscopy cleansing and were insufflated
with room air or carbon dioxide. Each patient was scanned in
both supine and prone positions with either a single- or a
multi-detector CT scanner �HiSpeed CTi or LightSpeed
QX/i, GE Medical Systems, Milwaukee, WI� with collima-
tions between 2.5 and 5.0 mm, reconstruction intervals of
1.25–5.0 mm, and tube currents of 60–120 mA with
120 kVp. Thus, our database contained 146 CTC data sets.
Each reconstructed CT section had a matrix size of 512
�512 pixels, with an in-plane pixel size of 0.5–0.7 mm. All
patients also underwent optical colonoscopy on the same day
as the CTC. Radiologists established the locations of polyps
in the CTC data sets by use of the colonoscopy reports, pa-
thology reports, and multiplanar reformatted views of the
CTC on a viewing workstation �GE Advantage Windows
Workstation v.4.2, GE Medical Systems, Milwaukee, WI�. In
this study, we used 5 mm as the lower limit on the size of
polyps, which is considered to be clinically significant.35 Fif-
teen patients had 28 colonoscopy-confirmed polyps, 15 of
which were 5–9 mm in diameter, and 13 were 10–25 mm.
We also created a training RT database by manual extraction
of volumes containing RTs from “normal” �nonpolyp� CTC
cases.

The CTC cases were subjected to our previously reported
CAD scheme,36–38 which included centerline-based extrac-
tion of the colon,39 shape-based detection of polyps,37,38 and
reduction of FPs by use of a Bayesian neural network40

based on geometric and texture features.41,42 We evaluated
CAD detections on supine and prone CTC volumes indepen-

FIG. 3. Schematic illustration of a polyp phantom �a sphere� and a RT phan-
tom �a hollow cylinder�. These simple phantom models are employed for
examining only the fundamental characteristics of the trained 3D MTANN.
dently. This CAD scheme yielded a 96.4% �27/28 polyps�
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by-polyp sensitivity with 3.1 �224/73� FPs per patient.
Among these FPs, 20 FPs were caused by RTs. Forty-eight
true-positive polyp detections in both supine and prone CTC
volumes constituted 27 polyps. These CAD detections were
used for training and evaluation of the 3D MTANN.

III. RESULTS

A. Training of a 3D MTANN

We manually selected 10 representative polyp volumes
�10 actual polyps� from the 48 true-positive volumes �con-
taining 27 actual polyps� in our CTC database and ten RTs
from the training RT database �which was not used for test-
ing� as the training cases for a 3D MTANN, as shown in Fig.
5. The selection was made by one of the authors �K.S.� based
on the visual appearance of polyps and RTs in terms of size,
shape, and contrast, so that these cases represent the database
�ideally the population�. For example, when there were two
polyps similar to each other in terms of size and contrast, we
selected only one of them because the other would be redun-
dant. Ten cases were used for each category �polyp or RT�,
because the performance of a 3D MTANN was highest when
the number of training cases was 20 �10 polyps and 10 RTs�
in our experiment �see Sec. IV�. A three-layer structure was
employed for the 3D MTANN, because it has been proved
theoretically that any continuous mapping can be realized
approximately by a three-layer ANN.43 The size of the train-
ing volume and the standard deviation of the 3D Gaussian
distribution in the teaching volume were 13�13�13 voxels
and 4.5 voxels, respectively, which were empirically deter-
mined based on our previous studies.26,27,44 The number of
hidden units was selected to be 25 by use of a method for
designing the structure of an ANN.32,33 With the above-noted
parameters, training of the 3D MTANN was performed
500 000 times and converged to a mean absolute error be-

FIG. 4. Illustrations of polyp and RT phantoms of three different sizes and
the corresponding output volumes of the 3D MTANN trained with actual
polyps and RTs. In the output volumes, the simulated polyps are represented
by bright voxels, whereas the simulated RTs appear as darker voxels.
tween teaching and output values of 0.073. To check the
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completion of the training, we applied the trained 3D
MTANN to the training cases. In the output volumes shown
in Fig. 5, training polyps are represented by distributions of
bright voxels, whereas training RTs are almost dark, as ex-
pected. It should be noted that the output distribution for a
small polyp �the farthest left image� is stronger and larger
than the original polyp in the input volume, demonstrating
the ability of the 3D MTANN to enhance small polyps.

B. Simulation experiments

We applied the 3D MTANN trained with actual polyps
and RTs to the phantom volumes. The output volumes corre-
sponding to the simulated polyps demonstrate bright voxels,
whereas those corresponding to the simulated RTs appear
mostly dark, but with some brighter segments on the upper
and lower edges �Fig. 4�. The scores for various-sized simu-
lated polyps together with those for simulated RTs are shown
in Fig. 6. The performance of the 3D MTANN decreased for
simulated polyps less than 10 mm. The curve for polyps ex-
ceeds the maximum score for RTs at a polyp size of 4.5 mm,
indicating that simulated polyps larger than 4.5 mm could be
distinguished from RT phantoms by use of the 3D MTANN.

We investigated the effect of off-centering of the detected
polyps on the performance of a 3D MTANN. Off-centering
can always happen for irregular polyps or when an initial
detection scheme fails to segment polyps. We used a simu-
lated polyp 10 mm in diameter. The result indicates that the

FIG. 5. Illustrations of training �a� polyps and �b� RTs. The central axial
slices of the volumes are shown. Teaching volumes for polyps contain 3D
Gaussian distributions, whereas those for RTs are zeros, i.e., they are com-
pletely dark. In the output volumes of the trained 3D MTANN, polyps are
represented by bright voxels, whereas RTs are almost dark.
scores decrease when the position of the simulated polyp is

Medical Physics, Vol. 33, No. 10, October 2006
off-centered, as shown in Fig. 7. A detected polyp whose size
is 10 mm can be off-centered by a range between 5 and
5 mm. The scores for the simulated polyps off-centered from
−5 through 5 mm were above the maximum score for RTs.
Therefore, the 3D MTANN was robust against off-centering
in the distinction between polyps and RTs.

C. Experiments with actual polyps and RTs

We applied the trained 3D MTANN to 48 true-positive
volumes �27 actual polyps� and 20 actual RTs �FPs� gener-
ated by our previously reported CAD scheme for detection of
polyps. The output volumes for nontraining cases are shown
in Fig. 8. The centers of the input volumes corresponded to
the locations of polyp detections �containing true positives
and FPs� provided by the CAD scheme; thus, this experiment
included the effect of actual off-centering of polyp candi-
dates produced by the initial detection scheme. Various pol-
yps, including a flat lesion �fourth image from the left in the
third row in Fig. 8�a�� and small sessile polyps �the farthest
right images in the first and third rows in Fig. 8�a��, are
represented in the output by distributions of bright voxels,
whereas RTs appear as darker voxels, indicating the ability of

FIG. 6. Effects of simulated polyp sizes on the scores provided by the
trained 3D MTANN. Also shown for reference are the minimum and maxi-
mum scores provided for the simulated RTs. Based on the scores, polyps
larger than 4.5 mm can be distinguished from RTs by the 3D MTANN.

FIG. 7. Effect of off-centering of simulated polyps �10 mm in diameter� on
the performance of the trained 3D MTANN. The scores for simulated polyps
off-centered from −5 to 5 mm are above the maximum score for RTs, indi-
cating the robustness of the 3D MTANN against off-centering in the distinc-

tion between polyps and RTs.
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the 3D MTANN to enhance actual polyps and suppress ac-
tual RTs. We applied the 3D scoring method to the output
volumes for polyps and RTs. The same standard deviation of
the 3D Gaussian weighting function as that for the 3D
Gaussian distribution in the polyp teaching volume was used.
Distributions of scores for 38 nontraining true-positive vol-
umes �10 training polyp volumes were excluded from the 48
true-positive volumes� and 20 actual RTs in an independent
test are shown in Fig. 9. No polyp score overlaps with a RT
score, indicating that the 3D MTANN achieved a specificity
of 100%; in other words, the 3D MTANN was able to elimi-
nate all RTs without removal of any true positives.

D. Evaluation of the performance for false-positive
reduction

We applied the trained 3D MTANN to all 224 nontraining
actual nonpolyps �FPs� produced by our original CAD
scheme. The distributions of the scores are shown in Fig. 10.
Although the two distributions overlap, a substantial fraction
of nonpolyps can be eliminated by use of the 3D MTANN.

FIG. 8. Illustrations of �a� various nontraining polyps and the corresponding
output volumes of the trained 3D MTANN and �b� nontraining RTs and the
corresponding output volumes. In the output volumes, polyps appear as
distributions of bright voxels, whereas RTs appear as dark voxels.
We evaluated the overall performance of the 3D MTANN for
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FP reduction by use of free-response receiver-operating-
characteristic �FROC� analysis.45 The FROC curve of the
trained 3D MTANN is shown in Fig. 11. The FROC curve
indicates that the 3D MTANN was able to eliminate 33%
�73/224� of all nonpolyps �FPs� without removal of any of
48 true-positive volumes, i.e., a 96.4% �27/28� overall by-
polyp sensitivity was achieved at an FP rate of 2.1 �151/73�
per patient.

Because the 48 true-positive volumes included the 10
training polyps, this evaluation could be biased. In order to
reduce this bias, we excluded the 10 training polyps from the
evaluation of the 3D MTANN. The FROC curve for only
nontraining cases is shown in Fig. 11. The FROC curves
indicate that the performance of the 3D MTANN for non-
training cases only is the same as that for the entire database
when the number of FPs per patient is greater than 2, e.g.,
classification sensitivity of 100% �38/38� was achieved at a
FP rate of 2.1 �151/73� per patient under both conditions.
Among 73 FPs removed by the 3D MTANN, 20 were caused
by RTs. The remaining 53 FPs included low-contrast small
pieces of stool, tips of folds, and thin folds. The small stool
and folds were removed probably because the MTANN
tended to provide relatively low scores for small objects, as

FIG. 9. Distributions of the independent test scores of 38 nontraining true-
positive volumes and 20 nontraining actual RTs that were detected as FPs by
our previously reported CAD scheme for detection of polyps.

FIG. 10. Distributions of the scores for 48 true-positive volumes, containing
27 actual polyps, and 224 nonpolyps �FPs� generated by our previously

reported CAD scheme for detection of polyps.



3821 Suzuki et al.: MTANN for false-positive reduction in CAD of polyps 3821
shown in the phantom experiment illustrated in Fig. 6. Thin
folds were removed probably because such a fold resembles
a part of a RT. Typical examples of FPs that were not re-
moved by the 3D MTANN are shown in Fig. 12; they in-
clude a bulbous-shaped fold, stool with bubbles, high-
contrast stool, and the ileocecal valve.

IV. DISCUSSION

A limitation of this study is the use of a limited number
CTC cases with polyps. Use of a larger database will provide
more reliable evaluation results on the performance of the
3D MTANN. However, it should be noted that, although the
3D MTANN was trained with only 10 polyps, the perfor-
mance for 27 polyps including the 10 polyps and that for
only nontraining 17 polyps were very similar, especially at
higher sensitivity levels; this is a good indication of the ro-
bustness of the 3D MTANN. This observation of the gener-
alization ability of the 3D MTANN is consistent with that of
MTANNs in our previous study.44 Therefore, we expect that
the performance of the 3D MTANN for a large database
would potentially be comparable to that obtained in this
study.

We investigated the effect of the intra-observer variation
in selecting training cases on the performance of a 3D

FIG. 11. The solid curve is a FROC curve that shows the overall perfor-
mance of the trained 3D MTANN when it was applied to the entire database
of 27 polyps �48 true-positive volumes� and 224 nonpolyps �FPs�, and the
dotted curve shows the performance of the 3D MTANN when it was tested
on the nontraining-case-only database from which the 10 training polyps
were excluded. These FROC curves indicate that the 3D MTANN yielded a
reduction of 33% �73/224� of nonpolyps �FPs� without removal of any true
positives, i.e., it achieved 100% �48/48� classification sensitivity.

FIG. 12. Typical examples of sources of the remaining FPs that were not
removed by the 3D MTANN. From left to right, a bulbous-shaped fold,

high-contrast stool, stool with bubbles, and the ileocecal valve.
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MTANN, because the performance would depend on the
manual selection of training cases. The same person who
selected the training cases �the first time� described in Sec.
III selected two more sets of training cases �the second and
third times� in the same way as described in Sec. III A. To
reduce a bias, each of the three selections was made at least
one month apart. As a result, 80% of cases overlapped be-
tween the sets selected at the first and second times; 50%
between the sets selected at the first and third times; and 40%
between the sets selected at the second and third times. The
performance of the trained 3D MTANNs with the three dif-
ferent sets was evaluated by receiver-operating-characteristic
�ROC� analysis.46,47 The performance of the three 3D
MTANNs for nontraining cases was slightly different, as
shown in Fig. 13. The Az values �area under the ROC
curve�48 for the 3D MTANNs trained with the sets selected
the first, second, and third times were 0.78, 0.75, and 0.77,
respectively. The difference between the Az values with the
sets selected at the first and second times was statistically
significant �two-tailed p-value �0.05�,49 but those for other
combinations were not.

We conducted an observer study to investigate the differ-
ence in the performance of 3D MTANNs when different ob-
servers selected training cases. Two observers �medical im-
aging scientists who had no experience with CT
colonography� participated in the observer study. They �ob-
servers B and C� were asked to select training cases from our
databases. The cases selected by observer A �K.S.� over-
lapped with 35% and 60% of the cases selected by observers
B and C, respectively. The performances of 3D MTANNs
trained with the cases selected by the three different observ-
ers for nontraining cases are slightly different, as shown in
Fig. 14. Az values of 0.78, 0.74, and 0.73 were obtained for
observers A, B, and C, respectively. The differences between

FIG. 13. Effect of the intra-observer variation in selecting training cases on
the performance of a 3D MTANN. Three training sets were selected by an
observer with at least a one-month interval �80% of cases overlapped be-
tween the sets selected at the first and second time; 50% percent between the
sets selected at the first and third time�. ROC curves indicate that the per-
formances of the 3D MTANNs trained with three different training sets were
slightly different �Az values of 0.78, 0.75, and 0.77 for the first, second, and
third times, respectively�. The difference between Az values with the sets
selected at the first and second times was statistically significant, but those
in other combinations were not.
Az values in any combinations were not statistically signifi-
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cant �two-tailed p-value �0.05�.49 Thus, the performance of
the 3D MTANN depended on the observer who selected the
training cases, although it did not have a statistically signifi-
cant difference.

We investigated the effect of random selection of training
cases on the performance of a 3D MTANN, which may be
considered as the worst-case scenario because random selec-
tion is a “blind” sampling without any knowledge. Five sets
of training cases were selected randomly from our databases.
The performance of the 3D MTANNs trained with five dif-
ferent training sets for nontraining cases is shown in Fig. 15.
The performance �Az values� ranged from 0.58 to 0.73 across
the five different 3D MTANNs. The average performance
�Az value of 0.75� of the 3D MTANNs trained with the sets
selected by the three observers was different by 0.07 from
that �Az value of 0.67� of the 3D MTANNs trained with

FIG. 14. Effect of the inter-observer variation in selecting training cases on
the performance of a 3D MTANN. ROC curves indicate that the perfor-
mance of the 3D MTANNs trained with the cases selected by three different
observers was slightly different �Az values of 0.78, 0.74, and 0.73 for ob-
servers A, B, and C, respectively�. The differences among Az values were
not statistically significant.

FIG. 15. Effect of random sampling of training cases on the performance of
a 3D MTANN. Five ROC curves drawn by dashed lines represent the per-
formance of the 3D MTANNs trained with five different training sets
sampled randomly. The performance ranged from an Az value of 0.58 to
0.73 �average of 0.67 with a standard deviation of 0.063� across the five
different 3D MTANNs. The average performance �Az value of 0.75� of the
3D MTANNs trained with three training sets selected by different observers
was higher than that of the 3D MTANNs trained with randomly selected

cases by 0.07 at a statistically significant level.
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randomly selected cases at a statistically significant level
�two-tailed p-value �0.05� by Student’s t-test. This result
was consistent with our previous study50 of the distinction
between nodules and non-nodules in thoracic CT with a
MTANN: the performance �Az value� of the MTANN was
lower by 0.06–0.09 when training cases were selected ran-
domly, compared to a human selection �the difference be-
tween the performance of the MTANNs based on random
selection and human selection was statistically significant�.

Imperfect selection of training cases degrades the perfor-
mance of a 3D MTANN, as indicated by the three experi-
ments mentioned earlier. The performance could drop by Az
values of 0.04–0.05 when different observers selected train-
ing cases. The worst-case scenario for selection would be
random selection without any knowledge. The performance
could drop by Az values of 0.02–0.17 compared to the hu-
man selection. These results suggest that training cases
should be selected by an informed human observer.

We investigated the effect of the number of training cases
on the performance of a 3D MTANN. Training sets contain-
ing different numbers of cases were selected from our data-
bases so that a set with a smaller number of training cases
was a subset of a set with a larger number of training cases.
The performance of 3D MTANNs trained with different
numbers of training cases �from 6 to 30� is shown in Fig. 16.
To reduce a bias, we excluded the 30 training cases from the
evaluation. There was little increase in the Az value when the
number of training cases was greater than 14 �7 polyps and 7
RTs�. The difference between an Az value obtained with 6
training cases and that obtained with 20 training cases was
statistically significant �two-tailed p-value �0.05�,49 but
those for other combinations were not. The 3D MTANN
trained with 20 cases had the highest Az value. This was the
reason for using 20 training cases. This tendency was con-
sistent with that in our previous studies with MTANNs in the
distinction between nodules and non-nodules in thoracic
CT.26–29,44,50

Iordanescu et al. developed an image-segmentation-based
approach for reduction of FPs due to RTs,19 which finds the

FIG. 16. Effect of change in the number of training cases on the perfor-
mance of a 3D MTANN. There is little increase in the Az value when the
number of training cases is greater than 14 �7 polyps and 7 RTs�. The Az
value was highest when 20 training cases were used.
hole of the RT by matched filtering, extrapolates the axis,
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and segments the RT by a conditional morphological dilation
method. The FP-reduction technique developed in this study
was able to track and label 72% of RTs successfully, and to
reduce FPs by 9.2%. In constant, 3D MTANN uses a voxel-
based classification approach for the same reduction task.
The 3D MTANN was able to remove 100% of RTs, which
corresponds to 8.9% �20/224� of all FPs. Therefore, the per-
formance of the two methods is comparable.

A potential advantage of the 3D MTANN might be the
reduction of FPs other than RTs; the 3D MTANN was able to
remove 24% �53/224� of other types of FPs. A reason for
this removal might be that some parts of RTs could be simi-
lar to parts of other types of FPs. It should be noted that, in
spite of a large number of studies, accurate segmentation is
still difficult for complicated patterns; thus, incorrect seg-
mentation can occur for those patterns; for example, a
region-growing technique may fail to segment a RT because
of its holes or blockages inside the RT. The segmentation-
based approach may also fail with RTs that are not compat-
ible with the assumed model of the RT, such as changes in
the diameter, shape, wall thickness of the RT, and twisting of
a flexible RT, whereas the 3D MTANN approach does not
require segmentation, but only the location of a potential RT.
Further investigations are needed for determining the advan-
tages and disadvantages of these two approaches.

V. CONCLUSION

We developed a 3D MTANN for reduction of FPs due to
RTs in a CAD scheme for detection of polyps in CTC. With
the 3D MTANN, we were able to eliminate the FPs due to
RTs without removal of any true positives. Thus, our 3D
MTANN could be useful for improving the specificity of a
CAD scheme.
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