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In this study, we investigated a pattern-recognition technique based on an artificial neural network
~ANN!, which is called a massive training artificial neural network~MTANN !, for reduction of
false positives in computerized detection of lung nodules in low-dose computed tomography~CT!
images. The MTANN consists of a modified multilayer ANN, which is capable of operating on
image data directly. The MTANN is trained by use of a large number of subregions extracted from
input images together with the teacher images containing the distribution for the ‘‘likelihood of
being a nodule.’’ The output image is obtained by scanning an input image with the MTANN. The
distinction between a nodule and a non-nodule is made by use of a score which is defined from the
output image of the trained MTANN. In order to eliminate various types of non-nodules, we
extended the capability of a single MTANN, and developed a multiple MTANN~Multi-MTANN !.
The Multi-MTANN consists of plural MTANNs that are arranged in parallel. Each MTANN is
trained by using the same nodules, but with a different type of non-nodule. Each MTANN acts as
an expert for a specific type of non-nodule, e.g., five different MTANNs were trained to distinguish
nodules from various-sized vessels; four other MTANNs were applied to eliminate some other
opacities. The outputs of the MTANNs were combined by using the logical AND operation such
that each of the trained MTANNs eliminated none of the nodules, but removed the specific type of
non-nodule with which the MTANN was trained, and thus removed various types of non-nodules.
The Multi-MTANN consisting of nine MTANNs was trained with 10 typical nodules and 10
non-nodules representing each of nine different non-nodule types~90 training non-nodules overall!
in a training set. The trained Multi-MTANN was applied to the reduction of false positives reported
by our current computerized scheme for lung nodule detection based on a database of 63 low-dose
CT scans~1765 sections!, which contained 71 confirmed nodules including 66 biopsy-confirmed
primary cancers, from a lung cancer screening program. The Multi-MTANN was applied to 58 true
positives~nodules from 54 patients! and 1726 false positives~non-nodules! reported by our current
scheme in a validation test; these were different from the training set. The results indicated that 83%
~1424/1726! of non-nodules were removed with a reduction of one true positive~nodule!, i.e., a
classification sensitivity of 98.3%~57 of 58 nodules!. By using the Multi-MTANN, the false-
positive rate of our current scheme was improved from 0.98 to 0.18 false positives per section~from
27.4 to 4.8 per patient! at an overall sensitivity of 80.3%~57/71!. © 2003 American Association
of Physicists in Medicine.@DOI: 10.1118/1.1580485#

Key words: computer-aided diagnosis~CAD!, artificial neural network, pattern recognition, lung
nodule, false positive
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I. INTRODUCTION

Lung cancer continues to rank as the leading cause of ca
death among Americans and is expected to cause 154
deaths in the United States in 2002.1 Some evidence sugges
that early detection of lung cancer may allow more time
therapeutic intervention and thus a more favorable progn
for the patient.2,3 Accordingly, lung cancer screening pro
grams are being conducted in the United States and Jap4,5

with low-dose helical computed tomography~CT! as the
screening modality. Helical CT, however, generates a la
number of images that must be read by radiologists. T
may lead to ‘‘information overload’’ for the radiologists. Fu
thermore, radiologists may miss some cancers during in
1602 Med. Phys. 30 „7…, July 2003 0094-2405 Õ2003Õ30„7…
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pretation of CT images.6,7 Therefore, a computer-aided diag
nostic ~CAD! scheme for detection of lung nodules in low
dose CT images has been investigated as a useful too
lung cancer screening.

Many investigators have developed a number of meth
for the automated detection of lung nodules in CT sca
based on morphological filtering,8,9 geometric modeling,10

fuzzy clustering,11 and gray-level thresholding.12–17 Giger
et al.,12 for example, developed an automated detect
scheme based on multiple gray-level thresholding and g
metric feature analysis. Armatoet al.13–16 extended the
method to include a three-dimensional approach combi
with linear discriminant analysis.
1602Õ1602Õ16Õ$20.00 © 2003 Am. Assoc. Phys. Med.
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A major problem with our current CAD scheme for lun
nodule detection is a relatively large number of false po
tives, which could cause difficulty in the clinical applicatio
of the CAD scheme. A large number of false positives
likely to confound the radiologist’s task of image interpre
tion, thus lowering the radiologist’s efficiency with the CA
scheme. In addition, radiologists may lose their confidenc
CAD as a useful tool. Therefore, it is important to reduce
number of false positives as much as possible, while m
taining a high sensitivity.

Our purpose in this study is to develop a patte
recognition technique based on an artificial neural netw
~ANN!, which is called a massive training artificial neur
network ~MTANN !, for reduction of false positives in com
puterized detection of lung nodules in low-dose CT imag

II. MATERIALS

A. Database of low-dose CT images

The database used in this study consisted of 101 no
fused, low-dose thoracic helical CT~LDCT! scans acquired
from 71 different patients who participated voluntarily in
lung cancer screening program between 1996 and 199
Nagano, Japan.3,18,7 The CT examinations were performe
on a mobile CT scanner~CT-W950SR; Hitachi Medical, To-
kyo, Japan!. The scans used for this study were acquired w
a low-dose protocol of 120 kVp, 25 mA~54 scans! or 50 mA
~47 scans!, 10-mm collimation, and a 10-mm reconstructio
interval at a helical pitch of two.18 The pixel size was 0.586
mm for 83 scans and 0.684 mm for 18 scans. Each rec
structed CT section had an image matrix size of 5123512
pixels. We used 38 of 101 LDCT scans which were acqui
from 31 patients as a training set for our CAD scheme. T
38 scans consisted of 1057 sections and contained 50
ules, including 38 ‘‘missed’’ nodules that represented biop
confirmed lung cancers and were not reported or misrepo
during the initial clinical interpretation.7 The remaining 12
nodules in the scans were classified as ‘‘confirmed beni
(n58), ‘‘suspected benign’’ (n53), or ‘‘suspected malig-
nant’’ (n51). The confirmed benign nodules were det
mined by biopsy or by follow-up over a period of 2 year
The suspected benign nodules were determined by follow
less than 2 years. The suspected malignant nodule was d
mined on the basis of results of follow-up diagnostic C
studies; no biopsy results were available. We used 63 of
LDCT scans which were acquired from 63 patients as a
set. The 63 scans consisted of 1765 sections and conta
71 nodules, including 66 primary cancers that were de
mined by biopsy and five confirmed benign nodules t
were determined by biopsy or by follow-up over a period
2 years. The scans included 23 scans from the same 23
tients as those in the training set, which were acquired
different time ~the interval was about 1 year or 2 years!.
Thus, the training set consisted of 38 LDCT scans includ
50 nodules, and the test set consisted of 63 LDCT sc
including 71 confirmed nodules.

Figure 1 shows the distributions of nodule sizes for
training set and the test set in our database. The nodule
Medical Physics, Vol. 30, No. 7, July 2003
i-

s
-

in
e
n-

-
k

.

n-

in

h

n-

d
e
d-
-

ed

’’

-
.
p

ter-

1
st
ed
r-
t
f
pa-
a

g
ns

e
ize

was determined by an experienced chest radiologist~F.L.!,
and ranged from 4 mm to 27 mm. When the nodule w
present in more than one section, the greatest size was
as the nodule size. Note that the nodules were present
maximum of three sections. The mean diameter of the
nodules in the training set was 12.766.1 mm, and that of the
71 nodules in the test set was 13.564.7 mm. In the training
set, 38% of nodules were attached to the pleura, 22%
nodules were attached to vessels, and 10% of nodules w
in the hilum. As to the test set, 30% of nodules were attac
to the pleura, 34% of nodules were attached to vessels,
7% of nodules were in the hilum. Three radiologists~F.L.
and two other experienced chest radiologists! determined the
nodules in the training set as three categories such as
ground-glass opacity~pure GGO; 40% of nodules!, mixed
GGO ~28%!, and solid nodule~32%!; the nodules in the tes
set were determined as pure GGO~24%!, mixed GGO
~30%!, and solid nodule~46%!.

B. Current scheme for lung nodule detection in low-
dose CT

Technical details of our current scheme have been p
lished previously.13–16 To summarize the methodology, lun
nodule identification proceeds in three phases: tw
dimensional~2D! processing, followed by three-dimension
~3D! analysis, and then the application of classifiers. A gr
level-thresholding technique is applied to a 2D section o
CT scan for automated lung segmentation. A multiple gr
level-thresholding technique is applied to the segmented l
volume. Individual structures are identified by grouping
spatially contiguous pixels that remain in the volume at ea
of 36 gray-level thresholds. A structure is identified as a n
ule candidate if the volume of the structure is less than t
of a 3-cm-diameter sphere. The categorization of nodule c
didates as ‘‘nodule’’ or ‘‘non-nodule’’ is based on a comb
nation of a rule-based classifier and a series of two lin
discriminant classifiers applied to a set of nine 2D and
features extracted from each nodule candidate. These
tures include~1! the mean gray level of the candidate,~2! the

FIG. 1. Distributions of nodule sizes for our database. The training set c
tained 50 nodules including 38 ‘‘missed’’ cancers, and the test set conta
71 confirmed nodules including 66 biopsy-confirmed primary cancers.
of the 50 nodules were used for training the MTANN.
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FIG. 2. Architecture and training of the
massive training artificial neural net
work ~MTANN !. The original image
including a nodule or non-nodules i
divided pixel by pixel into a large
number of overlapping subregions. A
pixel values in each of the subregion
~e.g., 939 matrix size! are entered as
input to the MTANN, whereas a pixe
value of each single pixel from the
teacher image is used as the teach
value. Thus, a large number of subre
gions and the corresponding singl
pixels are used for training, e.g.
19319 subregions and 19319 single
pixels are used for one nodule imag
or one non-nodule image.
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gray-level standard deviation,~3! the gray-level threshold a
which the candidate was identified,~4! volume,~5! spheric-
ity, ~6! radius of the sphere of equivalent volume,~7! eccen-
tricity, ~8! circularity, and~9! compactness.

With our current CAD scheme, the multiple gray-leve
thresholding technique initially identified 20 743 nodule ca
didates in 1057 sections of LDCT images in the traini
set.19 Forty-five of 50 nodules were correctly detected. Th
a rule-based classifier followed by a series of two linear d
criminant classifiers was applied for removal of some fa
positives, thus yielding a detection of 40~80.0%! of 50 nod-
ules~from 22 patients! together with 1078~1.02 per section!
false positives.19 The sizes of the 10 false negative nodu
ranged from 5 mm to 25 mm, and the mean diameter w
13.266.1 mm. In this study, we used all 50 nodules, t
locations of which were identified by the radiologist, and
1078 false positives generated by our CAD scheme in
training set, for investigating the characteristics of t
MTANN and training the MTANN. The use of radiologist
extracted true nodules with computer-generated false p
tives was intended to anticipate future improvements in
nodule detection sensitivity of our CAD scheme. When
nodule was present in more than one section, the section
included the largest nodule was used. When we applied
current CAD scheme to the test set, a sensitivity of 81.
~58 of 71 nodules! with 0.98 false positives per sectio
~1726/1765! was achieved. We used the 58 true positiv
~nodules from 54 patients! and 1726 false positives~non-
nodules! for testing the MTANN in a validation test.

III. METHODS

A. Background of ANN and image processing

Recently, in the field of signal processing, nonlinear filte
based on a multilayer ANN, called ‘‘neural filters,’’ hav
been studied. In the neural filter, the multilayer ANN is e
ployed as like a convolution kernel. The neural filters c
acquire the functions of various linear and nonlinear filt
through training. It has been demonstrated that the ne
filters can represent an averaging filter, weighted averag
filters, weighted median filters, morphological filters, m
crostatistic filters, generalized-weighted-order statistical
ters, an epsilon filter, and generalized stack filters.20–23 Su-
Medical Physics, Vol. 30, No. 7, July 2003
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zuki et al.24–30 developed the neural filters for reduction
the quantum mottle in x-ray fluoroscopic and radiograp
images, and they reported that the performance of the ne
filter was superior to that of the nonlinear filters utilized
medical systems and to that of another, well-known non
ear filter.

On the other hand, in the field of computer vision, Suzu
et al.31–34 developed a supervised edge detector based o
multilayer ANN, called a ‘‘neural edge detector.’’ The neur
edge detector can acquire the function of a desired edge
tector through training. It has been reported that the per
mance of the neural edge detector in the detection of ed
from noisy images was far superior to that of conventio
edge detectors such as the Canny edge detector, the M
Hildreth edge detector, and the Huckel edge detector.31,32 In
its application to the contour extraction of the left ventricu
cavity in digital angiography, it has been reported that
neural edge detector can accurately replicate the subjec
edges traced by cardiologists.33,34

B. Architecture of massive training artificial neural
network „MTANN…

We are extending the neural filters and the neural e
detector to accommodate various image-processing
pattern-recognition tasks, and we shall call this techniqu
massive training artificial neural network~MTANN !. The ar-
chitecture and the training method of the MTANN are sho
in Fig. 2. The MTANN consists of a modified multilaye
ANN, which can directly handle input gray levels and outp
gray levels. In the MTANN, image processing or pattern re
ognition is performed by scanning of an image with t
modified ANN in which the activation functions of the uni
in the input, hidden, and output layers are a linear, a sigm
and a linear function, respectively. The MTANN employs
linear function as the activation function of the unit in th
output layer because the characteristics of an ANN were
nificantly improved with a linear function when applied
the continuous mapping of values in image processing,35,36,32

for example~see Appendix for theoretical consideration!.
The pixel values of the original images are normaliz

first such that21000 HU~Hounsfield units! is zero and 1000
HU is one. The pixel values in a local windowRS are input
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FIG. 3. Architecture of the multiple
massive training artificial neural net
work ~Multi-MTANN !. Each MTANN
is trained by using a different type o
non-nodule, but with the same nod
ules. Each MTANN acts as an expe
for distinction between nodules and
specific type of non-nodule. The out
put of each MTANN is integrated by
the logical AND operation.
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to the MTANN so that the inputs to the MTANN are a no
malized pixel valueg(x,y) of an original image, and spa
tially adjacent normalized pixel values. The output of t
MTANN is a continuous value, which corresponds to t
center pixel in the local window, represented by

f ~x,y!5NN$I ~x,y!%5NN$g~x2 i ,y2 j !u i , j PRS%, ~1!

where f (x,y) denotes the estimate for the teacher valuex
andy are the indices of coordinates,NN$•% is the output of
the modified multilayer ANN,I (x,y) is the input vector to
the modified multilayer ANN, the elements of which are t
normalized pixel values in the local windowRS , g(x,y) is
the normalized pixel value, andRS is the local window of the
modified multilayer ANN. Note that only one unit is em
ployed in the output layer. The teacher values and thus
outputs of the MTANN need to be changed according to
application. When the task is the distinction between nodu
and non-nodules, the output would be interpreted as
‘‘likelihood of being a nodule.’’

All pixels in an image may be entered as input by sc
ning of the entire image with the MTANN. The local windo
of the MTANN must be shifted pixel-by-pixel throughout th
image. The MTANN can be designed by training such t
the input images are converted to the teacher images.
universal approximation property of a multilayer ANN37,38

guarantees diverse capabilities of the MTANN; i.e., beca
it has been shown theoretically that a multilayer ANN c
realize any continuous mapping approximately, the MTAN
can realize through a filtering operation some ima
processing and pattern-recognition techniques, includ
high-pass, low-pass, and band-pass filtering, noise reduc
edge enhancement, edge detection, interpolation, pa
matching, object enhancement, object recognition, aspec
the wavelet transform, aspects of Fourier-based tex
analysis, and segmentation. For example, the modi
multilayer ANN-based kernel can act as an averaging op
tion, gradient operation, Laplacian operation, linear and n
linear interpolation functions, a wavelet function, part of
Medical Physics, Vol. 30, No. 7, July 2003
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sinusoidal function, etc. Thus, the MTANN would have
high potential for solving existing problems in CAD as we
as image processing and pattern recognition.

In order to distinguish between nodules and various ty
of non-nodules, we extended the capability of the sin
MTANN and developed a multiple MTANN ~Multi-
MTANN !. The architecture of the Multi-MTANN is shown
in Fig. 3. The Multi-MTANN consists of plural MTANNs
that are arranged in parallel. Each MTANN is trained
using a different type of non-nodule, but with the same no
ules. Each MTANN acts as an expert for distinction betwe
nodules and a specific type of non-nodule, e.g., MTANN N
1 is trained to distinguish nodules from false positives cau
by medium-sized vessels; MTANN No. 2 is trained to disti
guish nodules from soft-tissue-opacity false positives cau
by the diaphragm; and so on. A scoring method is applied
the output of each MTANN, and then thresholding of t
score from each MTANN is performed for distinction b
tween nodules and the specific type of non-nodule. The o
put of each MTANN is then integrated by the logical AN
operation. If each MTANN can eliminate the specific type
non-nodule with which the MTANN is trained, then th
Multi-MTANN will be able to reduce a larger number o
false positives than does a single MTANN.

C. Training of MTANN

In order to learn the relationship between the input ima
and the teacher image, the MTANN is trained with a set
input images and the teacher images by adjusting the wei
between layers. The error to be minimized by training
defined by

E5
1

2P (
p

$T~p!2 f ~p!%2, ~2!

wherep is a training pixel number,T(p) is the pth training
pixel in the teacher images,f (p) is the pth training pixel in
the output images, andP is the number of training pixels
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1606 Suzuki et al. : Massive training artificial neural network 1606
The MTANN is trained by the modified back-propagatio
~BP! algorithm,35 which was derived for the structure de
scribed above, i.e., a linear function is employed as the a
vation function of the unit in the output layer, in the sam
way as the original BP algorithm.39,40 In the modified BP
algorithm, the correction of the weight between themth unit
in the hidden layer and the unit in the output layer is rep
sented by

DWm
O52h•d•Om

H52h~T2 f !Om
H , ~3!

whereh is the learning rate,Om
H is the output of themth unit

in the hidden layer, andd is the delta of the delta rule.39,40By
use of the delta, the corrections of any weights can be
rived in the same way as in the derivation of the BP alg
rithm.

For distinguishing between nodules and non-nodules,
teacher image is designed to contain the distribution for
likelihood of being a nodule, i.e., the teacher image for n
ules should contain a certain distribution, the peak of wh
is located at the center of the nodule, and that for n
nodules should contain zeros. As the distance increases
the center of the nodule, the likelihood of being a nod
decreases; therefore, we use a two-dimensional Gaus
function with standard deviationsT at the center of the nod
ule as the distribution for the likelihood of being a nodu
wheresT may be determined as a measure representing
size of nodules.

Figure 2 illustrates the training for an input image th
contains a nodule near the center. First, the input imag
divided pixel-by-pixel into a large number of overlappin
subregions. The centers of consecutive subregions in Fi
differ by just one pixel. The size of the subregion corr
sponds to that of the local windowRS of the MTANN. All
pixel values in each of the subregions are entered as inp
the MTANN, whereas one pixel from the teacher image
entered into the output unit in the MTANN as the teach
value. This single pixel is chosen at the location in t
teacher image that corresponds to the center of the in
subregion. By presenting each of the input subregions
gether with each of the teacher single pixels, the MTANN
trained. The training set for each nodule or non-nodule im
is represented by the following equations:

$I s~x,y!ux,yPRT%5$I s1 ,I s2 ,...,I sq ,...,I sNT
%,

~4!
$Ts~x,y!ux,yPRT%5$Ts1 ,Ts2 ,...,Tsq ,...,TsNT

%,

wheres is the image number,RT is the training region,q is
the pair number of the input subregion and the teacher pi
NT is the number of pixels inRT , I s(x,y) is the input vector
representing the subregion extracted from thesth input im-
age, andTs(x,y) is thesth teacher image. Thus, a large num
ber of input subregions overlap each other, and the co
sponding teacher pixels in the teacher image are used
training. The MTANN is trained with massive trainin
samples to achieve high generalization ability. The MTAN
would be robust against variation in patterns, especi
shifted patterns, because it is trained with numerous shi
patterns. The MTANN would be able to learn the essen
Medical Physics, Vol. 30, No. 7, July 2003
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features of nodules without dependence on spatial shift. A
training, the MTANN is expected to output the highest val
when a nodule is located at the center of the local window
the MTANN, a lower value as the distance from the cen
increases, and zero when the input region is a non-nodu

In the Multi-MTANN, each MTANN is trained indepen
dently by use of the same nodules and a different se
non-nodules. First, the false positives~non-nodules! reported
by the CAD scheme for lung nodule detection in CT a
classified into a number of groups. The number of grou
may be determined by the number of different kinds of fa
positives. Typical non-nodules in each group are selecte
training samples for each MTANN separately, whereas ty
cal nodules are selected as training samples for all MTAN
The input images and the teacher images are used to
each MTANN in the same way as a single MTANN
trained, based on the modified BP algorithm.35 The indi-
vidual MTANNs are expected to act as experts for the s
cific type of non-nodule after training.

D. Scoring of the MTANN output for testing

When an original image for thesth nodule candidate is
entered into thenth trained MTANN for testing, the outpu
image for thesth nodule candidate is obtained by scanning
the original image with the trained MTANN. The distinctio
between a nodule and a non-nodule is determined by us
a score defined from the output image of thenth trained
MTANN, described as follows:

Sns5 (
x,yPRE

f G~sn ;x,y!3 f ns~x,y!, ~5!

whereSns is the score of thenth trained MTANN for thesth
nodule candidate,RE is the region for evaluation,f ns(x,y) is
the output image of thenth trained MTANN for thesth nod-
ule candidate where its center corresponds to the cente
RE , f G(sn ;x,y) is a two-dimensional Gaussian functio
with standard deviationsn where its center corresponds
the center ofRE , andn is the MTANN number in the Multi-
MTANN. This score represents the weighted sum of the
timate for the likelihood of the image containing a nodu
near the center, i.e., a higher score would indicate a nod
and a lower score would indicate a non-nodule.

In the Multi-MTANN, the distribution in the output image
of each trained MTANN may be different according to th
type of non-nodule trained. The output from each train
MTANN is scored independently by use of a two
dimensional Gaussian function with a different standard
viation sn . The standard deviationssn were determined by
use of a training set. The distinction between nodules and
specific type of non-nodule is determined by thresholding
score with a different thresholdun for each trained MTANN,
because the appropriate threshold for each trained MTA
may be different according to the type of non-nodule train
The thresholdun may be determined by use of a training s
so as not to remove any nodules, but eliminate non-nod
as much as possible. The outputs of the expert MTANNs
combined by use of the logical AND operation such th
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1607 Suzuki et al. : Massive training artificial neural network 1607
each of the trained MTANNs eliminates none of the nodul
but removes some of the specific type of non-nodule
which the MTANN was trained.

IV. RESULTS

The training set in our database consisted of 38 LD
scans~a total of 1057 LDCT 5123512-pixel images! which
included 50 nodules. The 10 nodules and 10 false posit
were used as the training samples for the MTANN. Examp
of the training samples~a region of 40340 pixels is dis-
played as an example! are shown in Fig. 4. One of the co
authors ~K.S.! selected 10 typical nodules as trainin
samples from the three categories~pure GGO, mixed GGO
and solid nodule! determined by three radiologists~F.L. and
two other experienced chest radiologists! on the basis of the
visual appearance of these patterns. The distribution of n
ule sizes of training samples is shown in Fig. 1. Six of the
nodules were present in one section, two nodules w
present in two sections, and two nodules were presen
three sections. When a nodule was present in more than
section, the section that included the largest nodule was u
Note that eight of the 10 training nodules were included
40 nodules detected by our current CAD scheme. Three
the 10 nodules were attached to the pleura, three nod
were attached to vessels, and one nodule was in the hilu
radiologist~F.L.! classified the false positives reported by o
current CAD scheme as four major groups such as sm
~including peripheral! vessels ~40% of false positives!,
medium-sized vessels~30%!, soft-tissue opacities including
opacities caused by the partial volume effect between
lung region and the diaphragm~20%!, and part of normal
structures in the mediastinum, including large vessels in
hilum ~10%!. Because small~including peripheral! vessels
were included in the medium-sized vessel images, we
lected medium-sized vessels as the group used for trai
samples. The radiologist selected 10 vessels with relativ
high contrast from the group of the medium-sized vess
because they are dominant over all medium-sized vesse

A three-layer structure was employed as the structure
the modified multilayer ANN, because any continuous m
ping can be approximately realized by three-layer ANNs.37,38

The parameters such as the size of the local window of

FIG. 4. Illustration of ~a! nodules and~b! non-nodules used as trainin
samples for MTANN training.
Medical Physics, Vol. 30, No. 7, July 2003
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MTANN RS , the standard deviation of the two-dimension
Gaussian functionsT , and the size of the training region i
the teacher imageRT were determined empirically based o
the training set~see details in the Discussion section!. RS

was selected to be 939 pixels. The number of units in the
hidden layer was set at 25. Thus, the numbers of units in
input, hidden, and output layers were 81, 25, and one,
spectively.sT was determined as 5.0 pixels, which corr
sponds approximately to the average diameter of the nodu
RT was selected to be 19319 pixels. With the parameter
above, the training of the MTANN was performed o
500 000 epochs—one epoch means one training run for
training data set—and converged with a mean absolute e
of 11.2%. The training was stopped at 500 000 epochs,
cause the performance did not increase~see details in the
Discussion section!. The training took CPU time of 29.8
hours on a PC-based workstation~CPU: Pentium IV, 1.7
GHz!, and the time for applying the trained MTANN to nod
ule candidates was negligibly small.

FIG. 5. Output images of the MTANN for nodule candidates of~a! nodules
and ~b! non-nodules in training samples shown in Figs. 4~a! and 4~b!, re-
spectively. These images illustrate the results in which the trained MTA
is applied to the training samples.

FIG. 6. Illustration of~a! 10 nodules and~b! the corresponding output im-
ages of the MTANN for nontraining cases.
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1608 Suzuki et al. : Massive training artificial neural network 1608
The results of applying the trained MTANN to the no
ules used for training are shown in Fig. 5. Before we appl
the trained MTANN, pixels outside the segmented lung
gions reported by our current lung nodule detect
scheme13–16were set to21000 HU. The nodules in the out
put images of the MTANN are represented by light distrib
tions near the center, whereas the output images for f
positives~non-nodules! are almost uniformly dark. It is ap
parent that the distinction between nodules and non-nod
in the output images of the MTANN is superior to that in t
original images. Therefore, the MTANN was able to lea
important features related to the input images and the tea
images.

FIG. 7. Illustration of ~a! false positives~non-nodules! and ~b! the corre-
sponding output images of the MTANN for nontraining cases. The t
second, third, and fourth rows show typical examples of very small~includ-
ing peripheral! vessels, medium-sized vessels with relatively high contr
some other vessels, and some other opacities, respectively. In the third
the images are medium-sized vessels~relatively large fuzzy vessels!,
medium-sized vessels~relatively small branching vessels!, small ~including
peripheral! vessels, and peripheral vessels with a light background. In
fourth row, the images are large vessels in the hilum, relatively large ves
with some opacities, soft-tissue opacities caused by the partial volum
fect, and some abnormal opacities~focal interstitial opacities!, respectively.
Medical Physics, Vol. 30, No. 7, July 2003
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FIG. 8. Histograms of the scores for 40 nodules and 1068 non-nodu
which were different from the ten nodules and ten non-nodules use
training samples.

FIG. 9. Illustration of two nodules~top row!used for training the Multi-
MTANN and nine corresponding pairs of output images from the n
MTANNs trained separately with different types of non-nodules, as sho
in Fig. 10.
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FIG. 10. Illustration of~a! nine sets of non-nodules~two
examples in each group! and~b! the corresponding out-
put images from the nine trained MTANNs for trainin
samples.
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The trained MTANN was applied to 1068 false-positi
nodule candidates not used for training. The execution t
was very short, only 1.4 seconds for 1000 nodule candida
The results for nontraining cases are shown in Figs. 6 an
In the output image of the MTANN for nodules~Fig. 6!, the
nodules are represented by light distributions as expec
The output images for very small~including peripheral! ves-
sels and medium-sized vessels~with relatively high contrast!
are almost uniformly dark, as shown in Fig. 7. Because 7
of false positives are small~including peripheral! and
medium-sized vessels, we can reduce a large number of
positives by using the output images of the MTANN. How
ever, the output images for other vessels and other opac
such as medium-sized vessels~relatively large fuzzy ves-
sels!, medium-sized vessels~relatively small branching ves
sels!, small ~including peripheral! vessels, peripheral vesse
with a light background, large vessels in the hilum, relativ
large vessels with some opacities, soft-tissue opac
caused by the partial volume effect between peripheral v
sels and the diaphragm, and some abnormal opacities~focal
interstitial opacities! are relatively light. Thus, this traine
Medical Physics, Vol. 30, No. 7, July 2003
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MTANN was not effective for those false positives, becau
they are quite different from the vessels used for training
terms of the appearance of patterns such as the contrast,
gray-level shape, geometric shape, the background g
level, and texture.

The scoring method was applied to the output images
the MTANN. The standard deviation of the Gaussian fun
tion for scoring was determined ass154.0 by use of empiri-
cal analysis based on the training set~see details in the Dis-
cussion section!. We used anRE of 25325 pixels. Figure 8
shows the distribution of the scores for the 40 nodules
1068 non-nodules used for testing; these were different fr
the 10 nodules and 10 non-nodules used for training.
though the two distributions overlap, it is possible to dist
guish a large number of non-nodules from nodules. We
termined the threshold so as not to eliminate any nodules,
to remove non-nodules as much as possible. We could
move 66%~706/1068! of false positives~non-nodules!.

In order to eliminate the remaining false positives, w
prepared training samples for the Multi-MTANN. The rad
ologist ~F.L.! classified the remaining false positives~non-
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1610 Suzuki et al. : Massive training artificial neural network 1610
nodules! reported by the single MTANN into seven group
such as medium-sized vessels, small~including peripheral!
vessels, parts of normal structures including large vesse
the hilum, vessels with some opacities, opacities caused
the partial volume effect, abnormal opacities, and ot
opacities. Two major groups were divided into subgrou
based on the visual appearance of patterns. The grou
medium-sized vessels was divided into two subgroups s
as relatively large fuzzy vessels and relatively small bran
ing vessels. The group of small vessels was divided into
subgroups such as small~including peripheral! vessels and
peripheral vessels with a light background. One of the
authors~K.S.! selected 10 representative non-nodules fr
each of the groups or the subgroups except the group of o
opacities as the training samples for each MTANN; thus,
Multi-MTANN employed nine MTANNs. The same 10 nod
ules were used as training samples for all nine MTANN
Therefore, 10 nodules and 90 non-nodules were used
training the Multi-MTANN. Examples of the training
samples are shown in Figs. 9~top row! and 10~a!. The single
MTANN trained with medium-sized vessels~with relatively
high contrast! was used as MTANN No. 1. Non-nodules fo
the training of MTANN from No. 1 to No. 5 ranged from
medium-sized vessels to small~peripheral! vessels. Non-
nodules for the training of MTANN from No. 6 to No. 9
were large vessels in the hilum, relatively large vessels w
some opacities, soft-tissue opacities caused by the pa
volume effect between peripheral vessels and the diaphra
and some abnormal opacities~focal interstitial opacities!, re-
spectively. Each MTANN was trained in the same way a
single MTANN.

The results of applying each of the trained MTANNs
the false-positive nodule candidates and the nodules use
training samples are shown in Figs. 9 and 10~b!. The output
images of the MTANNs corresponding to nodules dem
strate light distributions near the center, whereas the ou
images corresponding to false positives~non-nodules! are
relatively dark.

The trained Multi-MTANN was applied to the 988 false
positive nodule candidates and 40 nodules not used du
training ~i.e., the cases were different from the training ca
of 10 nodules and 90 non-nodules!. The results for nontrain-
ing cases are shown in Figs. 11 and 12~b!. As shown in Fig.
11, the output images of MTANNs for nodules are rep
sented by light distributions. The output images for fa
positives are relatively dark around the center, as show
Fig. 12~b!. The output images for large vessels in the hilu
~sixth row!, soft-tissue opacities~eights and ninth rows!, and
abnormal opacities~ninth row! are also dark, whereas th
individual MTANNs trained for vessels~MTANN from No.
1 to No. 5! were not effective for these false positives.

The scoring method was applied to the output images
the individually trained MTANNs, wheresn was determined
empirically based on the training set to be within the ran
from 0.5 to 5.5 for the different MTANNs. The performanc
of the individual MTANNs was evaluated by free-respon
receiver operating characteristic~FROC! curves,41 as shown
in Fig. 13. The FROC curve expresses a classification se
Medical Physics, Vol. 30, No. 7, July 2003
in
by
r
s
of

ch
-
o

-

er
e

.
or

h
ial
m,

a

as

-
ut

ng
s

-
e
in

f

e

si-

tivity as a function of the number of false positives per se
tion at a specific operating point, which is determined by
thresholdun . With the single MTANN~MTANN No. 1!, we
can achieve a classification sensitivity of 100%~40/40! with
0.36 false positives per section. The number of false p
tives per section is defined by

FPS5
RFP

SEC3STFP-FPT

TFP
D , ~6!

where RFP is the number of remaining false positives a
application of a false-positive reduction method, SEC is
number of section images in the complete database of
scans, TFP is the total number of false positives reported
the CAD scheme, and FPT is the number of false positi
used as training samples, so that the fact that some f

FIG. 11. Illustration of four nodules~nontraining cases! in the top row and
nine corresponding sets of output images of the nine trained MTANNs.
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FIG. 12. Illustration of~a! nine sets of
non-nodules~four examples in each
group! and ~b! the corresponding out-
put images from the nine trained
MTANNs for nontraining cases. The
left-most images from the second t
the ninth rows correspond to the im
ages in the third and fourth rows in
Fig. 7, for which MTANN No. 1 was
not effective.
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positives were used to train the MTANN does not artificia
lower the overall false-positive rate. With the single MTAN
~MTANN No. 1!, the false-positive rate of our curren
scheme could be improved from 1.02 to 0.36 false positi
per section, while maintaining the current sensitivity. No
that 38 out of 50 nodules used in this study were missed
radiologists.

The performance of the MTANNs varied considerab
because the FROC curves were obtained by testing
MTANNs with all nontraining false positives including var
ous types of non-nodules. The MTANNs trained with dom
nant false positives such as medium-sized and small~includ-
ing peripheral! vessels seem to have a better over
performance for all false positives, because the numbe
medium-sized and small~including! peripheral vessels wa
the largest of all false positives. The performance
MTANN No. 2 trained with relatively large fuzzy medium
sized vessels was lower among the MTANNs trained w
medium-sized vessels~Nos. 1–3!, because MTANN No. 2
was not effective for the vessels with high contrast and sm
Medical Physics, Vol. 30, No. 7, July 2003
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vessels, which were dominant over all vessels. The per
mance of MTANN No. 5 trained with peripheral vessels wi
a light background was lower than that of MTANN No.
trained with small~including peripheral! vessels, becaus
MTANN No. 5 was not effective for small vessels without
light background, which were dominant over all small ve
sels.

FROC curves of Multi-MTANNs obtained with variou
numbers of the individual MTANNs are shown in Fig. 1
The FROC curve was the optimized curve where the thre
old un of each MTANN in the Multi-MTANN was deter-
mined such that the highest performance was obtained,
the thresholdun was determined so as not to remove a
nodules in the training set, but to remove non-nodules
much as possible. First, the threshold with which none of
nodules was eliminated was calculated for each MTAN
The threshold with the largest number of eliminating no
nodules among all thresholds was used for plotting
FROC curve first. After each of the thresholds was used o
for plotting the FROC curve, the second threshold w
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FIG. 13. FROC curves of the trained MTANNs for~a! No. 1 to No. 5, and
~b! No. 6 to No. 9, for 40 nodules and 988 false positives. See details in
Discussion section for MTANN~90 FPs! and MTANN ~nine different
types!.
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which only one nodule was eliminated was calculated. Th
each of the second thresholds was used for plotting
FROC curve in the same manner. These procedures w
performed repeatedly, and then the entire FROC curve
obtained by use of the sequences of thresholdsun(t).

We used MTANN No. 1 as the dominant MTANN be
cause MTANN No. 1 had the highest single performance
shown in Fig. 13. When the Multi-MTANN employed nin
MTANNs, 91% ~902/988! of false positives~non-nodules!
were removed without eliminating any true positives, i.e.,
can achieve a classification sensitivity of 100%~40/40! with
0.08 false positives per section. Figure 15 shows the num
of false positives that remain after application of the Mul
MTANN at a classification sensitivity of 100% obtained wi
various numbers of MTANNs.

The test set in our database consisted of 63 LDCT sc
~a total of 1765 LDCT images!, and contained 71 nodule
including 66 biopsy-confirmed primary cancers. The sin

e

FIG. 15. Number of remaining false positives obtained by Multi-MTANN
at a classification sensitivity of 100%, obtained with various numbers
MTANNs. The number of false positives reported by our current CA
scheme on a database of 38 LDCT scans was reduced from 988 to 76 b
of the Multi-MTANN consisting of nine MTANNs.
C

FIG. 14. FROC curves of the Multi-
MTANNs obtained with various num-
bers of the individual MTANNs for 40
nodules and 988 false positives. FRO
curve of the Multi-MTANN consisting
of nine MTANNs indicates 100% clas-
sification sensitivity and a reduction in
the false-positive rate from 1.02 to
0.08 per section.
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FIG. 16. FROC curves of the single
MTANN ~MTANN No. 1! and the
Multi-MTANN consisting of nine
MTANNs for the test set consisting o
57 true positives~nodules! and 1726
false positives~non-nodules! in a vali-
dation test. FROC curve of the Multi-
MTANN indicates 80.3% overall sen-
sitivity and a reduction in the false-
positive rate from 0.98 to 0.18 pe
section.
si

es
NN
o

lti-
ld
ed
le

b
d

ne

in
ra
tr
er
f

.1

d

r
se
ti

fro
th

g
ing

-
for

as
D

t is
al
a
he
of
ity
rge
een
k, in
th
al-
a

are

on
-

ion
of

ed.
e-
sed.

e of

for
o
be

in-
MTANN ~MTANN No. 1! and the Multi-MTANN which
employed nine MTANNs were applied to the 58 true po
tives ~nodules! and 1726 false positives~non-nodules!,
which were reported by our current CAD scheme for the t
set. Note that none of the parameters of the single MTA
and the Multi-MTANN were changed. The FROC curves
the single MTANN and the Multi-MTANN in a validation
test are shown in Fig. 16. The FROC curve of the Mu
MTANN was plotted by use of the sequences of thresho
un(t), which were obtained by generating the optimiz
FROC curve for the training set. By using the sing
MTANN, we can remove 54%~938/1726! of false positives
~non-nodules! without eliminating any true positives~nod-
ules!, i.e., a classification sensitivity of 100%~58/58!. The
number of eliminated non-nodules increased as the num
of MTANNs in the Multi-MTANN increased. When we use
the Multi-MTANN including nine MTANNs, 83%~1424/
1726! of non-nodules were removed with a reduction of o
true positive, i.e., a classification sensitivity of 98.3%~57 of
58 nodules!. Note that the performance for the cases
which 23 cases from the same patients as those in the t
ing set were excluded was almost the same, i.e., one
positive was missed at 0.17 false positive per section. Th
fore, by using the Multi-MTANN, the false-positive rate o
our current CAD scheme was improved from 0.98 to 0
false positives per section~from 27.4 to 4.8 per patient! at an
overall sensitivity of 80.3%~57/71!.

V. DISCUSSION

In order to gain insight into the MTANN, we conducte
some experiments with the single MTANN~corresponds to
MTANN No. 1!. Figure 17~a! shows the effect of the numbe
of training samples on the performance for nontraining ca
The performance was evaluated by using receiver opera
characteristic~ROC! analysis.42,43 One of the authors~K.S.!
selected nodules and non-nodules as training samples
the training set. The non-nodules were selected from
group of medium-sized vessels~with relatively high con-
Medical Physics, Vol. 30, No. 7, July 2003
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trast!. Note that a set with a larger number of trainin
samples included a set with a smaller number of train
samples. There was little increase in the Az value~the area
under the ROC curves!44 when the number of training
samples was greater than 20~10 nodules and 10 non
nodules!. This is the reason for using 20 training samples
the MTANN.

Because diagnostic radiology is progressing rapidly
technology advances, a timely development of CA
schemes for diagnostic radiology is important. However, i
difficult for us to obtain a large number of training abnorm
cases, particularly for a CAD scheme for diagnosis with
new modality such as a lung cancer screening with CT. T
MTANN was able to be trained with such a small number
training samples. The key of this high generalization abil
might be due to the division of one nodule image into a la
number of subregions. We treated the distinction betw
nodules and non-nodules as an image-processing tas
other words, as a highly nonlinear filter that performs bo
nodule enhancement and non-nodule suppression. This
lowed us to train the MTANN not on a case basis, but on
subregion basis. The results might suggest that there
some consistent features of nodules in the local window.

In order to gain insight into such a high generalizati
ability of the MTANN, we investigated the effect of the num
ber of training subregions, i.e., the size of the training reg
RT , on the performance for nontraining cases consisting
40 nodules and 1068 non-nodules. Figure 17~b! shows the
Az value when the number of training subregions is vari
The results show that the performance of the MTANN d
creased as the number of training subregions decrea
However, there was no increase in Az value when the siz
the training regionRT was increased from 19319 to 25325.
This is the reason for employing 19319 as the size of the
training regionRT . This result suggests that the reason
the high generalization ability of the MTANN is related t
the large number of training subregions used. It should
noted that the low performance with a small number of tra
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1614 Suzuki et al. : Massive training artificial neural network 1614
ing subregions was not caused by a large training error
shown in Fig. 17~b!.

Figure 17~c! shows the effect of the number of trainin
epochs on the performance. There was little increase in
value when the number of training epochs was greater t
500 000. This is the reason for determining the condition
stopping the training. Note that overtraining was not se
over 500 000 epochs.

We investigated the effect of the parameter change on
performance. The parameters of the MTANN such as
matrix size of the subregion~local window! RS , the standard

FIG. 17. Effect of ~a! the number of training samples,~b! the number of
training subregions, and~c! the number of training epochs on the perfo
mance for nontraining cases.
Medical Physics, Vol. 30, No. 7, July 2003
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deviation sT of the two-dimensional Gaussian function
the teacher image, and the standard deviations1 of the two-
dimensional Gaussian function for scoring~for MTANN No.
1! were changed, and the performance for nontraining ca
in the training set was obtained, as shown in Fig. 18.

In order to estimate roughly the number of units in t
hidden layer required, a method for designing the optim
structure of an ANN45–47 was applied to the trained
MTANN. The method is a sensitivity-based pruning metho
i.e., the sensitivity to the training error was calculated wh

FIG. 18. Effect of~a! the matrix size of the subregionRS , ~b! the standard
deviationsT of the two-dimensional Gaussian function in the teacher ima
and~c! the standard deviationsn of the two-dimensional Gaussian functio
for scoring on the performance for nontraining cases.
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1615 Suzuki et al. : Massive training artificial neural network 1615
a certain unit was removed virtually, and the unit with t
minimum training error was removed first. The redunda
units in the hidden layer were removed on the basis of
effect of removing each unit on the training error, and th
the MTANN was retrained to recover the potential loss d
to this removal. Each process was performed alternately
sulting in a reduced structure where redundant units w
removed. As a result, the optimal number of units in t
hidden layer was determined as 22 units.

In order to compare the capability of the single MTAN
with that of the Multi-MTANN, we conducted experimen
to train the MTANN with various types of non-nodules. W
trained the MTANN with the same training samples as u
by the Multi-MTANN, i.e., 10 nodules and 90 non-nodul
representing nine different non-nodule types. In addition,
trained the MTANN with 10 nodules and nine non-nodu
from each of nine non-nodule types~i.e., nine left images in
Fig. 10 were used!. The results are shown in Fig. 13~a!. The
performance of the Mulit-MTANN was higher than that
both MTANNs. This result suggests that the capability of t
Multi-MTANN was superior to that of the single MTANN.

We examined the performance of the MTANN which
directly applied to the false positives reported by the multi
gray-level-thresholding technique in our current CA
scheme, instead of a combination of the rule-based and li
discriminant classifiers and the MTANN in this study. Th
majority of the false positives reported by the multiple gra
level-thresholding technique were relatively large vess
whose contrast was relatively high, compared to those
ported by our current CAD scheme including rule-based
linear discriminant classifiers. We applied MTANN No. 1
20,743 nodule candidates including 45 nodules identified
the multiple gray-level-thresholding technique. We achiev
5.87 false positives per section at a classification sensiti
of 100%, i.e., an overall sensitivity of 90%. At an overa
sensitivity of 80%, 1.85 false positives per section we
achieved. The false positives eliminated by the rule-ba
and linear discriminant classifiers were different from tho
eliminated by the MTANN, although some of them ove
lapped. A combination of the rule-based and linear discri
nant classifiers and the MTANN rather than the MTAN
alone might be useful for distinction between nodules a
non-nodules in a CAD scheme.

VI. CONCLUSION

We developed a pattern-recognition technique based o
artificial neural network, called a massive training artific
neural network~MTANN !, and developed an extended ve
sion of the MTANN, called a multiple MTANN~Multi-
MTANN !, for reduction of false positives in the compute
ized detection of lung nodules in low-dose CT images. T
MTANN and the Multi-MTANN will be useful for substan-
tially reducing the number of false positives in CA
schemes for lung nodule detection.
Medical Physics, Vol. 30, No. 7, July 2003
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APPENDIX

The MTANN consists of the modified multilayer ANN
which employs a linear function instead of a sigmoid fun
tion as the activation function of the unit in the output lay
In order to clarify the basic property of the modifie
multilayer ANN and the modified BP algorithm, we consi
ered the relationship between the modified multilayer AN
and the original multilayer ANN theoretically. As for th
structure, we can understand easily that it is difficult for t
original multilayer ANN to output values near one and ze
whereas the modified multilayer ANN can output all valu
equally. In the modified BP algorithm, the correction of t
weight between the unit in the hidden layer and the unit
the output layer is represented by

DWm
O52h

]E

]OO

]OO

]X

]X

]Wm
O

52h
]E

]OO
f L8~X!Om

H

52h
]E

]OO
Om

H , ~A1!

whereOO is the output of the unit in the output layer,X is
the input value to the activation function, andf L8 is the de-
rivative of the linear function where the slope coefficient
assumed to be 1.0. On the other hand, the correction of
weight in the original BP algorithm is represented by

DWm
OC52h

]E

]OO
f S8~X!Om

H52h
]E

]OO
OO~12OO!Om

H ,

~A2!

where f S8 is the derivative of a sigmoid function. Comparin
the two equations, we find that the difference is just t
derivative of the activation function. Therefore, we can
write the right-hand side of Eq.~A2! as the following equa-
tion, usinghS :

2h
]E

]OO
OO~12OO!Om

H52hS

]E

]OO
Om

H . ~A3!
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When the training proceeds, the output of the origin
multilayer ANN OO should approach the teacher valueT.
Therefore, the learning rate of the original BP algorithm c
be approximated by

hS5h•OO~12OO!'h•T~12T!. ~A4!

This equation shows that the learning rate of the original
algorithm is modulated by the derivative of a sigmoid fun
tion, which is 0.5 when the teacher value is 0.5, and is z
when the teacher value is zero or one. In other words,
learning rate of the modified BP algorithm corresponds
that of the original BP algorithm before the modulatio
Therefore, in the original BP algorithm, the teacher values
zero and one are never trained, and the training for
teacher value near zero and one converges more slowly.
would affect the convergence characteristic and the ou
characteristic. Therefore, the modified multilayer ANN wi
the modified BP algorithm would be suitable for image p
cessing where the teacher values may be continuous va
ranging from zero to one, whereas the multilayer ANN
suitable for a classification task where the teacher signa
assigned to a class.
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suzuki@uchicago.edu
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8695, Japan.
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