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In this study, we investigated a pattern-recognition technique based on an artificial neural network
(ANN), which is called a massive training artificial neural netw@KTANN), for reduction of

false positives in computerized detection of lung nodules in low-dose computed tomog&phy
images. The MTANN consists of a modified multilayer ANN, which is capable of operating on
image data directly. The MTANN is trained by use of a large number of subregions extracted from
input images together with the teacher images containing the distribution for the “likelihood of
being a nodule.” The output image is obtained by scanning an input image with the MTANN. The
distinction between a nodule and a non-nodule is made by use of a score which is defined from the
output image of the trained MTANN. In order to eliminate various types of non-nodules, we
extended the capability of a single MTANN, and developed a multiple MTANNIti-MTANN ).

The Multi-MTANN consists of plural MTANNSs that are arranged in parallel. Each MTANN is
trained by using the same nodules, but with a different type of non-nodule. Each MTANN acts as
an expert for a specific type of non-nodule, e.g., five different MTANNSs were trained to distinguish
nodules from various-sized vessels; four other MTANNs were applied to eliminate some other
opacities. The outputs of the MTANNS were combined by using the logical AND operation such
that each of the trained MTANNS eliminated none of the nodules, but removed the specific type of
non-nodule with which the MTANN was trained, and thus removed various types of non-nodules.
The Multi-MTANN consisting of nine MTANNs was trained with 10 typical nodules and 10
non-nodules representing each of nine different non-nodule #g8esaining non-nodules overall

in a training set. The trained Multi-MTANN was applied to the reduction of false positives reported
by our current computerized scheme for lung nodule detection based on a database of 63 low-dose
CT scans(1765 sections which contained 71 confirmed nodules including 66 biopsy-confirmed
primary cancers, from a lung cancer screening program. The Multi-MTANN was applied to 58 true
positives(nodules from 54 patientand 1726 false positivegion-nodulesreported by our current
scheme in a validation test; these were different from the training set. The results indicated that 83%
(1424/1726 of non-nodules were removed with a reduction of one true positieglule, i.e., a
classification sensitivity of 98.3%57 of 58 nodules By using the Multi-MTANN, the false-
positive rate of our current scheme was improved from 0.98 to 0.18 false positives per §ection

27.4 to 4.8 per patieitat an overall sensitivity of 80.3%%7/71). © 2003 American Association

of Physicists in Medicine[DOI: 10.1118/1.1580485
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[. INTRODUCTION pretation of CT image$/ Therefore, a computer-aided diag-

Lung cancer continues to rank as the leading cause of cancBPStic (CAD) scheme for detection of lung nodules in low-
death among Americans and is expected to cause 154 odtpse CT images h.aS been investigated as a useful tool for
deaths in the United States in 20b8ome evidence suggests UNg cancer screening.

that early detection of lung cancer may allow more timely ~Many investigators have developed a number of methods
therapeutic intervention and thus a more favorable prognosi§" the automated detection of lung nodules in CT scans,
for the patienf® Accordingly, lung cancer screening pro- based on morphological filterirftf, geometric modeling?
grams are being conducted in the United States and 38panfuzzy clustering" and gray-level thresholding: '’ Giger
with low-dose helical computed tomograp¢T) as the €t al,'? for example, developed an automated detection
screening modality. Helical CT, however, generates a largécheme based on multiple gray-level thresholding and geo-
number of images that must be read by radiologists. Thignetric feature analysis. Armatet al™*~*° extended the
may lead to “information overload” for the radiologists. Fur- method to include a three-dimensional approach combined
thermore, radiologists may miss some cancers during intewith linear discriminant analysis.

1602 Med. Phys. 30 (7), July 2003 0094-2405 /2003/30(7)/1602/16/$20.00 © 2003 Am. Assoc. Phys. Med. 1602



1603 Suzuki et al.: Massive training artificial neural network 1603

A major problem with our current CAD scheme for lung 20
nodule detection is a relatively large number of false posi- u Tra?n%ng set (50 nodules)
tives, which could cause difficulty in the clinical application , 16 f E’Trz‘“lmg ;mlf’/[l;;(l\l&
of the CAD scheme. A large number of false positives is 3 D%Z;S:)Uolrno dules)
likely to confound the radiologist’s task of image interpreta- € 12 N [
tion, thus lowering the radiologist’s efficiency with the CAD ”E N
scheme. In addition, radiologists may lose their confidence in 8 N
CAD as a useful tool. Therefore, it is important to reduce the g ¥
number of false positives as much as possible, while main-~ 4 N
taining a high sensitivity. NE g N |_| ﬁ
Our purpose in this study is to develop a pattern- 0 L ; : ; : ;
recognition technique based on an artificial neural network 6 9 12 15 18 21 24 27
(ANN), which is called a massive training artificial neural Diameter [mm]

network (MTANN), for reduction of false positives in com- o ) .
. . . . Fic. 1. Distributions of nodule sizes for our database. The training set con-
pUter'Zed detection of Iung nodules in low-dose CT IMageSiained 50 nodules including 38 “missed” cancers, and the test set contained

71 confirmed nodules including 66 biopsy-confirmed primary cancers. Ten
II. MATERIALS of the 50 nodules were used for training the MTANN.

A. Database of low-dose CT images

The database used in this study consisted of 101 noninv—vas determined by an experienced chest radioldist,),

. . . and ranged from 4 mm to 27 mm. When the nodule was
fused, Iow-dose thor{;\mc helical C([.D.CT) scans acq'um'ed present in more than one section, the greatest size was used
from 71 different patients who participated voluntarily in a

lUNg cancer screening proaram between 1996 and 1999 i%s the nodule size. Note that the nodules were present in a
9 187 9 Prog L maximum of three sections. The mean diameter of the 50
Nagano, Japah'®’ The CT examinations were performed

; T . : nodules in the training set was 12:8.1 mm, and that of the
E;oa Jn;gZ;]eTiZ zgzgg%g; dv;/(?rst(r)nssRs’t:'dl;a\?vrgry:g:qﬁ:’eg?/vi th?l nodules in the test set was 1347 mm. In the training
alo;/v—dose protocol of 120 KVp, 25 mi4 scansor 50 mA set, 38% of nodules were attached to the pleura, 22% of
(47 scank 10-mm collimation z-'md a 10-mm reconstruction podules were attached to vessels, and 10% of nodules were
. . . " 18 ) . in the hilum. As to the test set, 30% of nodules were attached
interval at a helical pitch of tw&® The pixel size was 0.586

mm for 83 scans and 0.684 mm for 18 scans. Each recor;;o the pleura, 34% of nodules were attached to vessels, and
. . _0 . . . .
structed CT section had an image matrix size of 8522 % of nodules were in the hilum. Three radiologisksL.

. . ._and two other experienced chest radiologisistermined the
pixels. We used 38 of 101 LDCT scans which were vaUIreolillodules in the training set as three categories such as pure

;rgm 31 patlent_staz aftrfcl)rg;g Se:. for ourdCADtS(_:he(?g(.)The round-glass opacitypure GGO; 40% of nodulgésmixed
scans consis e“ 0 ; sections and contained >U no 5GO (28%), and solid nodulé32%); the nodules in the test
ules, including 38 “missed” nodules that represented biopsy-

confirmed lung cancers and were not reported or misre orteS t were determined as pure GGQ4%), mixed GGO
! ung w P ISrep (§0%), and solid noduld46%).

during the initial clinical interpretatioh.The remaining 12
nodules in the scans were classified as “confirmed benign” L
(n=8), “suspected benign”1f=3), or “suspected malig- Sc.)siug$nt scheme for lung nodule detection in low-
nant” (n=1). The confirmed benign nodules were deter-
mined by biopsy or by follow-up over a period of 2 years. Technical details of our current scheme have been pub-
The suspected benign nodules were determined by follow-ufished previously>~*® To summarize the methodology, lung
less than 2 years. The suspected malignant nodule was det@edule identification proceeds in three phases: two-
mined on the basis of results of follow-up diagnostic CTdimensional2D) processing, followed by three-dimensional
studies; no biopsy results were available. We used 63 of 10@3D) analysis, and then the application of classifiers. A gray-
LDCT scans which were acquired from 63 patients as a tedevel-thresholding technique is applied to a 2D section of a
set. The 63 scans consisted of 1765 sections and contain€@T scan for automated lung segmentation. A multiple gray-
71 nodules, including 66 primary cancers that were deterlevel-thresholding technique is applied to the segmented lung
mined by biopsy and five confirmed benign nodules thatvolume. Individual structures are identified by grouping of
were determined by biopsy or by follow-up over a period of spatially contiguous pixels that remain in the volume at each
2 years. The scans included 23 scans from the same 23 paf 36 gray-level thresholds. A structure is identified as a nod-
tients as those in the training set, which were acquired at ale candidate if the volume of the structure is less than that
different time (the interval was about 1 year or 2 years of a 3-cm-diameter sphere. The categorization of nodule can-
Thus, the training set consisted of 38 LDCT scans includinglidates as “nodule” or “non-nodule” is based on a combi-
50 nodules, and the test set consisted of 63 LDCT scansation of a rule-based classifier and a series of two linear
including 71 confirmed nodules. discriminant classifiers applied to a set of nine 2D and 3D
Figure 1 shows the distributions of nodule sizes for thefeatures extracted from each nodule candidate. These fea-
training set and the test set in our database. The nodule sizeres includgl) the mean gray level of the candidat®) the
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Original image Teacher image Fic. 2. Architecture and training of the
- massive training artificial neural net-
work (MTANN). The original image

Nodule including a nodule or non-nodules is
divided pixel by pixel into a large
number of overlapping subregions. All
pixel values in each of the subregions
(e.g., 99 matrix size¢ are entered as

Non-nodule input to the MTANN, whereas a pixel
L] value of each single pixel from the
o N teacher image is used as the teacher
° value. Thus, a large number of subre-
0 gions and the corresponding single
L pixels are used for ftraining, e.g.,
u 19%x19 subregions and 2919 single
Single pixels pixels are used for one nodule image
or one non-nodule image.

Sub-regions

gray-level standard deviatiof3) the gray-level threshold at zuki et al?*~2° developed the neural filters for reduction of
which the candidate was identifie@) volume, (5) spheric- the quantum mottle in x-ray fluoroscopic and radiographic
ity, (6) radius of the sphere of equivalent volun@), eccen- images, and they reported that the performance of the neural
tricity, (8) circularity, and(9) compactness. filter was superior to that of the nonlinear filters utilized in

With our current CAD scheme, the multiple gray-level- medical systems and to that of another, well-known nonlin-
thresholding technique initially identified 20 743 nodule can-ear filter.
didates in 1057 sections of LDCT images in the training On the other hand, in the field of computer vision, Suzuki
set!® Forty-five of 50 nodules were correctly detected. Thenet al3!13* developed a supervised edge detector based on a
a rule-based classifier followed by a series of two linear dismultilayer ANN, called a “neural edge detector.” The neural
criminant classifiers was applied for removal of some falseedge detector can acquire the function of a desired edge de-
positives, thus yielding a detection of 480.099 of 50 nod-  tector through training. It has been reported that the perfor-
ules(from 22 patientstogether with 10781.02 per section  mance of the neural edge detector in the detection of edges
false positives® The sizes of the 10 false negative nodulesfrom noisy images was far superior to that of conventional
ranged from 5 mm to 25 mm, and the mean diameter wasdge detectors such as the Canny edge detector, the Marr—
13.2+6.1 mm. In this study, we used all 50 nodules, theHildreth edge detector, and the Huckel edge detétrin
locations of which were identified by the radiologist, and allits application to the contour extraction of the left ventricular
1078 false positives generated by our CAD scheme in theavity in digital angiography, it has been reported that the
training set, for investigating the characteristics of theneural edge detector can accurately replicate the subjective
MTANN and training the MTANN. The use of radiologist- edges traced by cardiologist&>*
extracted true nodules with computer-generated false posi-
tives was intended to anticipate future improvements in the ) ) . o
nodule detection sensitivity of our CAD scheme. When aB‘ Architecture of massive training artificial neural

. . . network (MTANN)

nodule was present in more than one section, the section that
included the largest nodule was used. When we applied our We are extending the neural filters and the neural edge
current CAD scheme to the test set, a sensitivity of 81.7%letector to accommodate various image-processing and
(58 of 71 nodules with 0.98 false positives per section pattern-recognition tasks, and we shall call this technique a
(1726/176% was achieved. We used the 58 true positivesmassive training artificial neural netwotkiTANN). The ar-
(nodules from 54 patientsand 1726 false positivegon-  chitecture and the training method of the MTANN are shown

nodules for testing the MTANN in a validation test. in Fig. 2. The MTANN consists of a modified multilayer
ANN, which can directly handle input gray levels and output
lll. METHODS gray levels. In the MTANN, image processing or pattern rec-

ognition is performed by scanning of an image with the
modified ANN in which the activation functions of the units
Recently, in the field of signal processing, nonlinear filtersin the input, hidden, and output layers are a linear, a sigmoid,
based on a multilayer ANN, called “neural filters,” have and a linear function, respectively. The MTANN employs a
been studied. In the neural filter, the multilayer ANN is em-linear function as the activation function of the unit in the
ployed as like a convolution kernel. The neural filters canoutput layer because the characteristics of an ANN were sig-
acquire the functions of various linear and nonlinear filtersnificantly improved with a linear function when applied to
through training. It has been demonstrated that the neurahe continuous mapping of values in image proces&irif32
filters can represent an averaging filter, weighted averaginfpr example(see Appendix for theoretical consideration
filters, weighted median filters, morphological filters, mi-  The pixel values of the original images are normalized
crostatistic filters, generalized-weighted-order statistical filfirst such that-1000 HU(Hounsfield unitsis zero and 1000
ters, an epsilon filter, and generalized stack filf8fé3Su-  HU is one. The pixel values in a local windoRg are input

A. Background of ANN and image processing
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Scoring _,| Thresholding
with o, with 0,
Fic. 3. Architecture of the multiple
L massive training artificial neural net-
Distinction work (Multi-MTANN ). Each MTANN
Nodule Scoring || Thresholding |_,( Logical between is trained by using a different type of
with o, with 0, AND nodules and non-nodule, but with the same nod-
non-nodules ules. Each MTANN acts as an expert
for distinction between nodules and a
s specific type of non-nodule. The out-
° put of each MTANN is integrated by
Non-nodule ® the logical AND operation.
Original image Scoring | | Thresholding
with gy with 0

to the MTANN so that the inputs to the MTANN are a nor- sinusoidal function, etc. Thus, the MTANN would have a
malized pixel valueg(x,y) of an original image, and spa- high potential for solving existing problems in CAD as well
tially adjacent normalized pixel values. The output of theas image processing and pattern recognition.
MTANN is a continuous value, which corresponds to the In order to distinguish between nodules and various types
center pixel in the local window, represented by of non-nodules, we extended the capability of the single
_ _ . T MTANN and developed a multiple MTANN (Multi-
fO,y)=NN{I(x,y)}=NN{g(x—i,y—j)li,jeRs}, (D) MTANN). The architecture of the Multi-MTANN is shown
where f(x,y) denotes the estimate for the teacher value, in Fig. 3. The Multi-MTANN consists of plural MTANNS
andy are the indices of coordinatedN{-} is the output of that are arranged in parallel. Each MTANN is trained by
the modified multilayer ANNJ(x,y) is the input vector to using a different type of non-nodule, but with the same nod-
the modified multilayer ANN, the elements of which are theules. Each MTANN acts as an expert for distinction between
normalized pixel values in the local windoRis, g(x,y) is  nodules and a specific type of non-nodule, e.g., MTANN No.
the normalized pixel value, ari®s is the local window of the 1 is trained to distinguish nodules from false positives caused
modified multilayer ANN. Note that only one unit is em- by medium-sized vessels; MTANN No. 2 is trained to distin-
ployed in the output layer. The teacher values and thus thguish nodules from soft-tissue-opacity false positives caused
outputs of the MTANN need to be changed according to itshy the diaphragm; and so on. A scoring method is applied to
application. When the task is the distinction between noduleghe output of each MTANN, and then thresholding of the
and non-nodules, the output would be interpreted as thecore from each MTANN is performed for distinction be-
“likelihood of being a nodule.” tween nodules and the specific type of non-nodule. The out-
All pixels in an image may be entered as input by scanput of each MTANN is then integrated by the logical AND
ning of the entire image with the MTANN. The local window operation. If each MTANN can eliminate the specific type of
of the MTANN must be shifted pixel-by-pixel throughout the non-nodule with which the MTANN is trained, then the
image. The MTANN can be designed by training such thatMulti-MTANN will be able to reduce a larger number of
the input images are converted to the teacher images. Tlalse positives than does a single MTANN.
universal approximation property of a multilayer ARIN®
guarantees diverse capabilities of the MTANN; i.e., becausg. Training of MTANN
it has been shown theoretically that a multilayer ANN can
realize any continuous mapping approximately, the MTANN In order to learn the relationship between the input image
can realize through a filtering operation some image-and the teacher image, the MTANN is trained with a set of
processing and pattern-recognition techniques, including’Putimages and the teacher images by adjusting the weights
high-pass, low-pass, and band-pass filtering, noise reductioR€tween layers. The error to be minimized by training is
edge enhancement, edge detection, interpolation, patteﬂ?f'”ed by
matching, object enhancement, object recognition, aspects of 1
the wavelet transform, aspects of Fourier-based texture E= ﬁE {TP—£(P}2, 2
analysis, and segmentation. For example, the modified P
multilayer ANN-based kernel can act as an averaging operavherep is a training pixel numberT(P) is the pth training
tion, gradient operation, Laplacian operation, linear and nonpixel in the teacher image$(® is the pth training pixel in
linear interpolation functions, a wavelet function, part of athe output images, ang is the number of training pixels.
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The MTANN is trained by the modified back-propagation features of nodules without dependence on spatial shift. After
(BP) algorithm?® which was derived for the structure de- training, the MTANN is expected to output the highest value
scribed above, i.e., a linear function is employed as the actiwhen a nodule is located at the center of the local window of
vation function of the unit in the output layer, in the samethe MTANN, a lower value as the distance from the center
way as the original BP algorithri?:** In the modified BP increases, and zero when the input region is a non-nodule.

algorithm, the correction of the weight between thié unit In the Multi-MTANN, each MTANN is trained indepen-

in the hidden layer and the unit in the output layer is repre-dently by use of the same nodules and a different set of

sented by non-nodules. First, the false positiveg®n-nodulesreported
Avvgz—n.a-o::—n(T—f)o:, 3 by the CAD scheme for lung nodule detection in CT are

classified into a number of groups. The number of groups

where is the learning rateQ! is the output of thenth unit ~ may be determined by the number of different kinds of false

in the hidden layer, and s the delta of the delta ruf€:*°By positives. Typical non-nodules in each group are selected as

use of the delta, the corrections of any weights can be defaining samples for each MTANN separately, whereas typi-

rived in the same way as in the derivation of the BP algo-cal nodules are selected as training samples for all MTANNS.

rithm. The input images and the teacher images are used to train
For distinguishing between nodules and non-nodules, theach MTANN in the same way as a single MTANN is

teacher image is designed to contain the distribution for thérained, based on the modified BP algoritfiriThe indi-

likelihood of being a nodule, i.e., the teacher image for nodvidual MTANNs are expected to act as experts for the spe-

ules should contain a certain distribution, the peak of whickcific type of non-nodule after training.

is located at the center of the nodule, and that for non-

nodules should contain zeros. As the distance increases from Scoring of the MTANN output for testing

the center of the nodule, the likelihood of being a nodule

decreases; therefore, we use a two-dimensional Gaussian When an original image for theth nodule candidate is

function with standard deviatioa; at the center of the nod- €entered into thenth trained MTANN for testing, the output

ule as the distribution for the likelihood of being a nodule,image for thesth nodule candidate is obtained by scanning of

whereot may be determined as a measure representing tH&e original image with the trained MTANN. The distinction

size of nodules. between a nodule and a non-nodule is determined by use of
Figure 2 illustrates the training for an input image that& score defined from the output image of thid trained

contains a nodule near the center. First, the input image iMTANN, described as follows:

divided pixel-by-pixel into a large number of overlapping

subregions. The centers of consecutive subregions in Fig. 2 S,s= E fo(on i X,y) X frs(X,Y), (5)

differ by just one pixel. The size of the subregion corre- xy<Re

sponds to that of the local windoRg of the MTANN. All whereS,; is the score of thath trained MTANN for thesth

pixel values in each of the subregions are entered as input teodule candidateRg is the region for evaluatiorf,,¢(x,y) is

the MTANN, whereas one pixel from the teacher image isthe output image of thath trained MTANN for thesth nod-

entered into the output unit in the MTANN as the teacherule candidate where its center corresponds to the center of

value. This single pixel is chosen at the location in theRg, fg(o,;X,y) is a two-dimensional Gaussian function

teacher image that corresponds to the center of the inpwtith standard deviatiorr, where its center corresponds to

subregion. By presenting each of the input subregions tothe center oRg, andn is the MTANN number in the Multi-

gether with each of the teacher single pixels, the MTANN isSMTANN. This score represents the weighted sum of the es-

trained. The training set for each nodule or non-nodule imagémate for the likelihood of the image containing a nodule

is represented by the following equations: near the center, i.e., a higher score would indicate a nodule,
(1.06Y) %y € R} = {11, | Lo} and a lower score would indicate a non-nodule.
SOOYIPOY ERTI= st M52 lsqre o lsngr In the Multi-MTANN, the distribution in the output image
[TOWIXY €RAE={Tar Tezr o Taguo Tan (4 of each trained MTANN may be different according to the

type of non-nodule trained. The output from each trained
wheres is the image numbeRy is the training regiongis  MTANN is scored independently by use of a two-
the pair number of the input subregion and the teacher pixellimensional Gaussian function with a different standard de-
N+t is the number of pixels iRy, 15(X,y) is the input vector viation o,. The standard deviations, were determined by
representing the subregion extracted from stfeinput im-  use of a training set. The distinction between nodules and the
age, andli((x,y) is thesth teacher image. Thus, a large num- specific type of non-nodule is determined by thresholding the
ber of input subregions overlap each other, and the correscore with a different threshol@, for each trained MTANN,
sponding teacher pixels in the teacher image are used fdrecause the appropriate threshold for each trained MTANN
training. The MTANN is trained with massive training may be different according to the type of non-nodule trained.
samples to achieve high generalization ability. The MTANN The threshold,, may be determined by use of a training set
would be robust against variation in patterns, especiallyso as not to remove any nodules, but eliminate non-nodules
shifted patterns, because it is trained with numerous shifteds much as possible. The outputs of the expert MTANNS are
patterns. The MTANN would be able to learn the essentiacombined by use of the logical AND operation such that
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(b) (®)
Fic. 4. lllustration of (a) _nodules and(b) non-nodules used as training pg 5. Output images of the MTANN for nodule candidates@fnodules
samples for MTANN training. and (b) non-nodules in training samples shown in Fig&)4nd 4b), re-

spectively. These images illustrate the results in which the trained MTANN
is applied to the training samples.

each of the trained MTANNSs eliminates none of the nodules,
but removes some of the specific type of non-nodule fo

r o . .
which the MTANN was trained. MTANN Rg, the standard deviation of the two-dimensional

Gaussian functiofr;, and the size of the training region in

the teacher imagR; were determined empirically based on
IV. RESULTS the training set(see details in the Discussion sec)ioRg
was selected to be>® pixels. The number of units in the

scans(a total of 1057 LDCT 51X 512-pixel imageswhich hidden layer was set at 25. Thus, the numbers of units in the
included 50 nodules. The 10 nodules and 10 false positive'gpm' hidden, and output layers were 81, 25, and one, re-

were used as the training samples for the MTANN. Examplegpecuve'y' or Was determined as 5.0 .plxels, which corre-
of the training samplega region of 40<40 pixels is dis- sponds approximately to the average diameter of the nodules.

played as an exampl@re shown in Fig. 4. One of the co- Rt was selected to be X9 pixels. With the parameters

authors (K.S.) selected 10 typical nodules as training ggg‘g%othe tLalnlng of theh MTANN wats _pgrforme(]zcl on
samples from the three categorigaire GGO, mixed GGO, epochs—one epoch means one training run 1or one

: . . : training data set—and converged with a mean absolute error
and solid nodulgdetermined by three radiologists.L. and L
two other experienced chest radiologiste the basis of the of 11.2%. The training was stopped at 500 OOO.ep.ochs, be-
gcjause the performance did not incredsee details in the

The training set in our database consisted of 38 LDC

visual appearance of these patterns. The distribution of nod:; . ) . .
; - . - . iscussion section The training took CPU time of 29.8

ule sizes of training samples is shown in Fig. 1. Six of the 1 . .
9 b 9 ours on a PC-based workstatig6PU: Pentium 1V, 1.7

nodules were present in one section, two nodules wer ; : .
present in two sections, and two nodules were present i H2), anq the time for app'lylng the trained MTANN to nod-
ée candidates was negligibly small.

three sections. When a nodule was present in more than ot
section, the section that included the largest nodule was used.
Note that eight of the 10 training nodules were included in
40 nodules detected by our current CAD scheme. Three of
the 10 nodules were attached to the pleura, three nodules
were attached to vessels, and one nodule was in the hilum. A
radiologist(F.L.) classified the false positives reported by our
current CAD scheme as four major groups such as small
(including peripheral vessels (40% of false positives
medium-sized vessel80%), soft-tissue opacities including
opacities caused by the partial volume effect between the
lung region and the diaphragf20%), and part of normal
structures in the mediastinum, including large vessels in the
hilum (10%). Because smal(including peripheral vessels
were included in the medium-sized vessel images, we se-
lected medium-sized vessels as the group used for training &
samples. The radiologist selected 10 vessels with relatively
high contrast from the group of the medium-sized vessels,
because they are dominant over all medium-sized vessels.
A three-layer structure was employed as the structure of
the modified multilayer ANN, because any continuous map- (b)

ping can be approximately reali_zed by three'laye_r ANKE. Fic. 6. lllustration of(a) 10 nodules andb) the corresponding output im-
The parameters such as the size of the local window of theges of the MTANN for nontraining cases.

Medical Physics, Vol. 30, No. 7, July 2003



1608 Suzuki et al.: Massive training artificial neural network

1608

0.3

0.25
Nodules

Non-nodules

<
8}
T

0.15

=]
—

Relative frequency

0.05

Fic. 8. Histograms of the scores for 40 nodules and 1068 non-nodules,
which were different from the ten nodules and ten non-nodules used as
training samples.

(b)

Fic. 7. lllustration of (a) false positivesi(non-nodules and (b) the corre-
sponding output images of the MTANN for nontraining cases. The top,
second, third, and fourth rows show typical examples of very stmelud-

ing peripheral vessels, medium-sized vessels with relatively high contrast,
some other vessels, and some other opacities, respectively. In the third row,
the images are medium-sized vessélslatively large fuzzy vessels
medium-sized vesselselatively small branching vessglsmall (including
peripheral vessels, and peripheral vessels with a light background. In the
fourth row, the images are large vessels in the hilum, relatively large vessels
with some opacities, soft-tissue opacities caused by the partial volume ef-
fect, and some abnormal opacitigecal interstitial opacities respectively.

The results of applying the trained MTANN to the nod-
ules used for training are shown in Fig. 5. Before we applied
the trained MTANN, pixels outside the segmented lung re-
gions reported by our current lung nodule detection
schem&~*®were set to-1000 HU. The nodules in the out-
put images of the MTANN are represented by light distribu-
tions near the center, whereas the output images for false
positives(non-nodules are almost uniformly dark. It is ap-
parent that the distinction between nodules and non-nodules
in the output images of the MTANN is superior to that in the

original images. Therefore, the MTANN was able to learn

Fic. 9. lllustration of two nodulegtop rowused for training the Multi-
MTANN and nine corresponding pairs of output images from the nine

important features related to the input images and the teachgfranns trained separately with different types of non-nodules, as shown

images.
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Medium-sized vessels
(vessels with relatively
high contrast)

Medium-sized vessels
(relatively large
fuzzy vessels)

Medium-sized vessels
(relatively small
branching vessels)

Small (including
peripheral) vessels

Fic. 10. lllustration of(a) nine sets of non-nodulésvo
examples in each groypnd(b) the corresponding out-
put images from the nine trained MTANNS for training
samples.

Peripheral vessels with
light background

Large vessels
in the hilum

Relatively large vessels
with some opacities

Soft-tissue opacities

caused by the partial
volume effect

Abnormal opacities

The trained MTANN was applied to 1068 false-positive MTANN was not effective for those false positives, because
nodule candidates not used for training. The execution timéhey are quite different from the vessels used for training in
was very short, only 1.4 seconds for 1000 nodule candidateserms of the appearance of patterns such as the contrast, size,
The results for nontraining cases are shown in Figs. 6 and gray-level shape, geometric shape, the background gray
In the output image of the MTANN for noduldfig. 6), the level, and texture.
nodules are represented by light distributions as expected. The scoring method was applied to the output images of
The output images for very smdlhcluding peripheralves-  the MTANN. The standard deviation of the Gaussian func-
sels and medium-sized vessélgth relatively high contragt  tion for scoring was determined as =4.0 by use of empiri-
are almost uniformly dark, as shown in Fig. 7. Because 70%al analysis based on the training ¢éste details in the Dis-
of false positives are smallincluding peripheral and cussion section We used arRg of 25X25 pixels. Figure 8
medium-sized vessels, we can reduce a large number of falséows the distribution of the scores for the 40 nodules and
positives by using the output images of the MTANN. How- 1068 non-nodules used for testing; these were different from
ever, the output images for other vessels and other opacitiegke 10 nodules and 10 non-nodules used for training. Al-
such as medium-sized vessélelatively large fuzzy ves- though the two distributions overlap, it is possible to distin-
selg, medium-sized vesselselatively small branching ves- guish a large number of non-nodules from nodules. We de-
selg, small (including peripheralvessels, peripheral vessels termined the threshold so as not to eliminate any nodules, but
with a light background, large vessels in the hilum, relativelyto remove non-nodules as much as possible. We could re-
large vessels with some opacities, soft-tissue opacitiemove 66%(706/1068 of false positivegnon-nodules
caused by the partial volume effect between peripheral ves- In order to eliminate the remaining false positives, we
sels and the diaphragm, and some abnormal opa¢foeal  prepared training samples for the Multi-MTANN. The radi-
interstitial opacities are relatively light. Thus, this trained ologist (F.L.) classified the remaining false positivéson-
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nodulesg reported by the single MTANN into seven groups
such as medium-sized vessels, sntaitluding peripheral
vessels, parts of normal structures including large vessels in
the hilum, vessels with some opacities, opacities caused by
the partial volume effect, abnormal opacities, and other
opacities. Two major groups were divided into subgroups
based on the visual appearance of patterns. The group of
medium-sized vessels was divided into two subgroups such
as relatively large fuzzy vessels and relatively small branch-
ing vessels. The group of small vessels was divided into two
subgroups such as smadihcluding peripheral vessels and
peripheral vessels with a light background. One of the co-
authors(K.S.) selected 10 representative non-nodules from
each of the groups or the subgroups except the group of other
opacities as the training samples for each MTANN; thus, the
Multi-MTANN employed nine MTANNSs. The same 10 nod-
ules were used as training samples for all nine MTANNS.
Therefore, 10 nodules and 90 non-nodules were used for
training the Multi-MTANN. Examples of the training
samples are shown in Figs(®p row) and 1@a). The single
MTANN trained with medium-sized vesselwith relatively

high contrastwas used as MTANN No. 1. Non-nodules for
the training of MTANN from No. 1 to No. 5 ranged from
medium-sized vessels to smdjberipheral vessels. Non-
nodules for the training of MTANN from No. 6 to No. 9
were large vessels in the hilum, relatively large vessels with
some opacities, soft-tissue opacities caused by the partial
volume effect between peripheral vessels and the diaphragm,
and some abnormal opacitiéfecal interstitial opacities re-
spectively. Each MTANN was trained in the same way as a
single MTANN.

The results of applying each of the trained MTANNS to
the false-positive nodule candidates and the nodules used as
training samples are shown in Figs. 9 andd0The output
images of the MTANNSs corresponding to nodules demon-
strate light distributions near the center, whereas the output
images corresponding to false positive®n-nodules are
relatively dark.

The trained Multi-MTANN was applied to the 988 false- Fic. 11. lllustration of four nodulegnontraining casésin the top row and
positive nodule candidates and 40 nodules not used durin@'ne corresponding sets of output images of the nine trained MTANNS.
training (i.e., the cases were different from the training cases
of 10 nodules and 90 non-nodu)e$he results for nontrain-

ing cases are shown in Figs. 11 and)2As shown in Fig. t?vity as a funqion of the number of.fals.e positivgs per sec-
tion at a specific operating point, which is determined by the

11, the output images of MTANNSs for nodules are repre- ; ;
sented by light distributions. The output images for falsethreésholdé, . With the single MTANN(MTANN No. 1), we

positives are relatively dark around the center, as shown if&" achieve a classification sensitivity of 10046/40 with
Fig. 12b). The output images for large vessels in the hilum0-36 falsé positives per section. The number of false posi-
(sixth row), soft-tissue opacitieights and ninth rowsand ~ tVES Per section is defined by

abnormal opacitiegninth row) are also dark, whereas the REP
individual MTANNSs trained for vessel@MTANN from No. FPS= TEP-EPT" (6)
1 to No. 5 were not effective for these false positives. (Wj

The scoring method was applied to the output images of
the individually trained MTANNSs, where, was determined where RFP is the number of remaining false positives after
empirically based on the training set to be within the rangeapplication of a false-positive reduction method, SEC is the
from 0.5 to 5.5 for the different MTANNS. The performance number of section images in the complete database of CT
of the individual MTANNs was evaluated by free-responsescans, TFP is the total number of false positives reported by
receiver operating characterisEROQ curves' as shown the CAD scheme, and FPT is the number of false positives
in Fig. 13. The FROC curve expresses a classification sensitsed as training samples, so that the fact that some false
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Fic. 12. lllustration of(a) nine sets of
non-nodules(four examples in each
group and (b) the corresponding out-
put images from the nine trained
MTANNSs for nontraining cases. The
left-most images from the second to
the ninth rows correspond to the im-
ages in the third and fourth rows in
Fig. 7, for which MTANN No. 1 was
not effective.

|

.

(a) (b)

positives were used to train the MTANN does not artificially vessels, which were dominant over all vessels. The perfor-
lower the overall false-positive rate. With the single MTANN mance of MTANN No. 5 trained with peripheral vessels with
(MTANN No. 1), the false-positive rate of our current a light background was lower than that of MTANN No. 4
scheme could be improved from 1.02 to 0.36 false positivesrained with small(including peripheral vessels, because
per section, while maintaining the current sensitivity. NoteMTANN No. 5 was not effective for small vessels without a
that 38 out of 50 nodules used in this study were missed biight background, which were dominant over all small ves-
radiologists. sels.

The performance of the MTANNSs varied considerably, FROC curves of Multi-MTANNs obtained with various
because the FROC curves were obtained by testing theumbers of the individual MTANNs are shown in Fig. 14.
MTANNSs with all nontraining false positives including vari- The FROC curve was the optimized curve where the thresh-
ous types of non-nodules. The MTANNS trained with domi-old 6, of each MTANN in the Multi-MTANN was deter-
nant false positives such as medium-sized and sgimellud-  mined such that the highest performance was obtained, i.e.,
ing peripheral vessels seem to have a better overallthe thresholdd, was determined so as not to remove any
performance for all false positives, because the number afodules in the training set, but to remove non-nodules as
medium-sized and smalincluding peripheral vessels was much as possible. First, the threshold with which none of the
the largest of all false positives. The performance ofnodules was eliminated was calculated for each MTANN.
MTANN No. 2 trained with relatively large fuzzy medium- The threshold with the largest number of eliminating non-
sized vessels was lower among the MTANNSs trained withnodules among all thresholds was used for plotting the
medium-sized vesseldNos. 1-3, because MTANN No. 2 FROC curve first. After each of the thresholds was used once
was not effective for the vessels with high contrast and smalfor plotting the FROC curve, the second threshold with
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Fic. 15. Number of remaining false positives obtained by Multi-MTANNs

at a classification sensitivity of 100%, obtained with various numbers of
MTANNSs. The number of false positives reported by our current CAD
scheme on a database of 38 LDCT scans was reduced from 988 to 76 by use
of the Multi-MTANN consisting of nine MTANNS.

which only one nodule was eliminated was calculated. Then,

each of the second thresholds was used for plotting the

FROC curve in the same manner. These procedures were
performed repeatedly, and then the entire FROC curve was
obtained by use of the sequences of threshé|ds).

We used MTANN No. 1 as the dominant MTANN be-
cause MTANN No. 1 had the highest single performance, as
shown in Fig. 13. When the Multi-MTANN employed nine
MTANNS, 91% (902/988 of false positives(non-nodules
were removed without eliminating any true positives, i.e., we
can achieve a classification sensitivity of 10046/40 with

(b) No. 6 to No. 9, for 40 nodules and 988 false positives. See details in th€),08 false positives per section. Figure 15 shows the number

Discussion section for MTANN(90 FP3$ and MTANN (nine different
types.

of false positives that remain after application of the Multi-
MTANN at a classification sensitivity of 100% obtained with
various numbers of MTANNS.

The test set in our database consisted of 63 LDCT scans
(a total of 1765 LDCT images and contained 71 nodules
including 66 biopsy-confirmed primary cancers. The single
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Fic. 14. FROC curves of the Multi-
MTANNSs obtained with various num-
bers of the individual MTANNSs for 40
nodules and 988 false positives. FROC
curve of the Multi-MTANN consisting
of nine MTANNSs indicates 100% clas-
sification sensitivity and a reduction in
the false-positive rate from 1.02 to
0.08 per section.
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= Multi-MTANN (9 MTANNs) g 57 true pc_)sitives(nodules) a}nd 1726
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MTANN (MTANN No. 1) and the Multi-MTANN which  tras). Note that a set with a larger number of training
employed nine MTANNs were applied to the 58 true posi-samples included a set with a smaller number of training
tives (nodules and 1726 false positivegnon-nodules  samples. There was little increase in the Az valte area
which were reported by our current CAD scheme for the testinder the ROC curvé® when the number of training
set. Note that none of the parameters of the single MTANNsamples was greater than 2Q0 nodules and 10 non-
and the Multi-MTANN were changed. The FROC curves of nodules. This is the reason for using 20 training samples for
the single MTANN and the Multi-MTANN in a validation the MTANN.
test are shown in Fig. 16. The FROC curve of the Multi- Because diagnostic radiology is progressing rapidly as
MTANN was plotted by use of the sequences of threSh0|d$echno|ogy advances, a timely development of CAD
6n(t), which were obtained by generating the optimizedschemes for diagnostic radiology is important. However, it is
FROC curve for the training set. By using the single difficult for us to obtain a large number of training abnormal
MTANN, we can remove 54%938/1726 of false positives  cases, particularly for a CAD scheme for diagnosis with a
(non-nodulep without eliminating any true positive@od-  new modality such as a lung cancer screening with CT. The
ules, i.e., a classification sensitivity of 100%8/58. The  MTANN was able to be trained with such a small number of
number of eliminated non-nodules increased as the numb‘%faining samples. The key of this high generalization ability
of MTANNS in the Multi-MTANN increased. When we used might be due to the division of one nodule image into a large
the Multi-MTANN including nine MTANNS, 83%(1424/  nymper of subregions. We treated the distinction between
1728 of non-nodules were removed with a reduction of onensqules and non-nodules as an image-processing task, in
true positive, i.e., a classification sensitivity of 98.3%7 of ~ other words, as a highly nonlinear filter that performs both
58 nodules Note that the performance for the cases inpoqyle enhancement and non-nodule suppression. This al-
which 23 cases from the same patients as those in the traif5,.ed us to train the MTANN not on a case basis, but on a
ing set were excluded was almost the same, i.e., one trug yregion basis. The results might suggest that there are
positive was missed at 0.17 false positive per section. Theres, o ‘consistent features of nodules in the local window.
fore, by using the MUI“'MTANN' the false-positive rate of In order to gain insight into such a high generalization
our curre_n_t CAD SCheT“e was improved from 0_'98 to 0'18ability of the MTANN, we investigated the effect of the num-
false pos'“"‘?.s per sectldlforom 27.4 10 4.8 per patienat an ber of training subregions, i.e., the size of the training region
overall sensitivity of 80.3%57/71. Ry, on the performance for nontraining cases consisting of
40 nodules and 1068 non-nodules. Figurébl&hows the
V. DISCUSSION Az value when the number of training subregions is varied.
In order to gain insight into the MTANN, we conducted The results show that the performance of the MTANN de-
some experiments with the single MTAN(dorresponds to creased as the number of training subregions decreased.
MTANN No. 1). Figure 17a) shows the effect of the number However, there was no increase in Az value when the size of
of training samples on the performance for nontraining caseghe training regiorRy was increased from 2019 to 25<25.
The performance was evaluated by using receiver operatinghis is the reason for employing ¥949 as the size of the
characteristidROC) analysis*?“3 One of the author¢K.S)  training regionR;. This result suggests that the reason for
selected nodules and non-nodules as training samples frothe high generalization ability of the MTANN is related to
the training set. The non-nodules were selected from théhe large number of training subregions used. It should be
group of medium-sized vesse(with relatively high con- noted that the low performance with a small number of train-
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for scoring on the performance for nontraining cases.

ing subregions was not caused by a large training error, as
deviation oy of the two-dimensional Gaussian function in

Figure 17c) shows the effect of the number of training the teacher image, and the standard deviadgigpiof the two-
epochs on the performance. There was little increase in Adimensional Gaussian function for scori(fgr MTANN No.
value when the number of training epochs was greater thah) were changed, and the performance for nontraining cases
500 000. This is the reason for determining the condition foiin the training set was obtained, as shown in Fig. 18.

shown in Fig. 17b).

stopping the training. Note that overtraining was not seen

over 500 000 epochs.

matrix size of the subregiofiocal window Rg, the standard
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In order to estimate roughly the number of units in the

hidden layer required, a method for designing the optimal
We investigated the effect of the parameter change on thstructure of an ANKP~*’ was applied to the trained

performance. The parameters of the MTANN such as theMTANN. The method is a sensitivity-based pruning method,

i.e., the sensitivity to the training error was calculated when
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from each of nine non-nodule typése., nine left images in
Fig. 10 were used The results are shown in Fig. (3. The
performance of the Mulit-MTANN was higher than that of APPENDIX

both_ MTANNS. This resu!t suggests that the_: capability of the The MTANN consists of the modified multilayer ANN
Multi-MTANN was superior to that of the single MTANN. . . L . .
. ... which employs a linear function instead of a sigmoid func-
We examined the performance of the MTANN which is . o ) .

: . " . tion as the activation function of the unit in the output layer.
directly applied to the false positives reported by the multiple . . I

ray-level-thresholding technique in our current CAD " Order to clarify the basic property of the modified
gray 9 q multilayer ANN and the modified BP algorithm, we consid-

scheme, instead of a combination of the rule-based and linear . . - .
discriminant classifiers and the MTANN in this study. The%r(ad the relationship between the modified multilayer ANN

ority of the fal it ted by th itiol and the original multilayer ANN theoretically. As for the
majority ol the Taise positives reported by the muttiple gray'structure, we can understand easily that it is difficult for the
level-thresholding technique were relatively large vessel

%riginal multilayer ANN to output values near one and zero,

wh(:sde bc ontrast wast réz:l[t)lvel?/] h'gh.' c?n;!oaredl tobthoze re(i/hereas the modified multilayer ANN can output all values
ported by our curren scheme including rule-based an qually. In the modified BP algorithm, the correction of the

linear discriminant classifiers. We applied MTANN No. 1 to . o ; o
. : . . " weight between the unit in the hidden layer and the unit in

20,743 nodule candidates including 45 nodules identified b hegoutput layer is represented by y

the multiple gray-level-thresholding technique. We achieve

5.87 false positives per section at a classification sensitivity 9E 90° aX E

of 100%, i.e., an overall sensitivity of 90%. At an overall AWQ=-—7 5 =—7 Of,’_(X)O,'j]
sensitivity of 80%, 1.85 false positives per section were 90° X 5Wg 90

achieved. The false positives eliminated by the rule-based JE

and linear discriminant classifiers were different from those - 77—0?1, (A1)
eliminated by the MTANN, although some of them over- 700

lapped. A combination of the rule-based and linear discrimi- o o .
nant classifiers and the MTANN rather than the MTANN WhereO™ is the output of the unit in the output layef,is

alone might be useful for distinction between nodules andf€ inPut value to the activation function, afflis the de-
non-nodules in a CAD scheme. rivative of the linear function where the slope coefficient is

assumed to be 1.0. On the other hand, the correction of the
weight in the original BP algorithm is represented by

JE JE
AWRS==n— 5 f{X)Op="—7-50%1-0)0},
(A2)

VI. CONCLUSION

We developed a pattern-recognition technique based on an . o ) ] ) )
artificial neural network, called a massive training artificial Wherefs is the derivative of a sigmoid function. Comparing

neural networkMTANN), and developed an extended ver- the two equations, we find that the difference is just the
sion of the MTANN, called a multiple MTANN(Multi- derivative of the activation function. Therefore, we can re-

MTANN), for reduction of false positives in the computer- Write the righ'f-hand side of EA2) as the following equa-
ized detection of lung nodules in low-dose CT images. Thé!ON Using7s:

MTANN and the Multi-MTANN will be useful for substan- E E

tially reducing the number of_ false positives in CAD  _ nﬁ—oo(l—oo)oﬁz _ ,755_ OZ. (A3)
schemes for lung nodule detection. 90° ©
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