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One of the major challenges in computer-aided detection �CAD� of polyps in CT colonography
�CTC� is the reduction of false-positive detections �FPs� without a concomitant reduction in sensi-
tivity. A large number of FPs is likely to confound the radiologist’s task of image interpretation,
lower the radiologist’s efficiency, and cause radiologists to lose their confidence in CAD as a useful
tool. Major sources of FPs generated by CAD schemes include haustral folds, residual stool, rectal
tubes, the ileocecal valve, and extra-colonic structures such as the small bowel and stomach. Our
purpose in this study was to develop a method for the removal of various types of FPs in CAD of
polyps while maintaining a high sensitivity. To achieve this, we developed a “mixture of expert”
three-dimensional �3D� massive-training artificial neural networks �MTANNs� consisting of four
3D MTANNs that were designed to differentiate between polyps and four categories of FPs: �1�
rectal tubes, �2� stool with bubbles, �3� colonic walls with haustral folds, and �4� solid stool. Each
expert 3D MTANN was trained with examples from a specific non-polyp category along with
typical polyps. The four expert 3D MTANNs were combined with a mixing artificial neural network
�ANN� such that different types of FPs could be removed. Our database consisted of 146 CTC
datasets obtained from 73 patients whose colons were prepared by standard pre-colonoscopy
cleansing. Each patient was scanned in both supine and prone positions. Radiologists established
the locations of polyps through the use of optical-colonoscopy reports. Fifteen patients had 28
polyps, 15 of which were 5–9 mm and 13 were 10–25 mm in size. The CTC cases were subjected
to our previously reported CAD method consisting of centerline-based extraction of the colon,
shape-based detection of polyp candidates, and a Bayesian-ANN-based classification of polyps. The
original CAD method yielded 96.4% �27 /28� by-polyp sensitivity with an average of 3.1 �224 /73�
FPs per patient. The mixture of expert 3D MTANNs removed 63% �142 /224� of the FPs without
the loss of any true positive; thus, the FP rate of our CAD scheme was improved to 1.1 �82 /73� FPs
per patient while the original sensitivity was maintained. By use of the mixture of expert 3D
MTANNs, the specificity of a CAD scheme for detection of polyps in CTC was substantially
improved while a high sensitivity was maintained. © 2008 American Association of Physicists in
Medicine. �DOI: 10.1118/1.2829870�
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I. INTRODUCTION

Colorectal cancer is the second leading cause of cancer
deaths in the United States.1 Evidence suggests that early
detection and removal of polyps �i.e., precursors of colorec-
tal cancer� can reduce the incidence of colorectal cancer.2,3

Computers tomography �CT� colonography �CTC�, also
known as virtual colonoscopy, is a technique for detecting
colorectal neoplasms by use of a CT scan of the colon.4 The
diagnostic performance of CTC in detecting polyps, how-
ever, remains uncertain due to a propensity for perceptual

5
errors. Computer-aided detection �CAD� of polyps has been

694 Med. Phys. 35 „2…, February 2008 0094-2405/2008/35„
investigated to overcome these difficulties with CTC.6,7 CAD
has the potential to improve radiologists’ diagnostic perfor-
mance in the detection of polyps.6,7

Several investigators have developed automated or semi-
automated CAD schemes for the detection of polyps in
CTC.8–15 Although current CAD schemes could be useful for
the detection of polyps, some limitations remain. One of the
major limitations with current CAD schemes is a relatively
large number of false-positive detections �FPs�, which could
adversely affect the clinical application of CAD for colorec-
tal cancer screening. A large number of FPs is likely to con-

found the radiologist’s task of image interpretation and thus
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lower radiologist efficiency. In addition, radiologists may
lose their confidence in CAD as a useful tool. Therefore, it is
important to reduce the number of FPs as much as possible
while maintaining a high sensitivity.

Major sources of FPs generated by CAD schemes include
haustral folds, residual stool, rectal tubes, the ileocecal valve,
and extra-colonic structures such as the small bowel and
stomach.17 Although rectal tubes are relatively obvious FPs,
radiologists may lose their confidence in CAD as an effective
tool if the CAD scheme generates such obvious FPs. There-
fore, removal of rectal-tube-induced FPs is desirable. To ad-
dress this issue, we previously reported a three-dimensional
�3D� massive-training artificial neural network �MTANN� for
distinction between polyps and rectal tubes in 3D CTC volu-
metric data.16 The 3D MTANN eliminated all rectal-tube-
induced FPs without removal of any true positives.

Various methods have been developed for the reduction of
FPs. Gokturk et al.17 developed a CAD scheme based on
statistical pattern recognition, and they applied a 3D pattern-
processing method for the reduction of FPs. Näppi et al.18

developed a method for FP reduction based on volumetric
features and another method19 based on supine-prone corre-
spondence. Acar et al.20 used edge-displacement fields to
model the changes in consecutive cross-sectional views of
CTC data and quadratic discriminant analysis for FP reduc-
tion. Jerebko et al.21 used a standard ANN to classify polyp
candidates in their CAD scheme and improved the perfor-
mance by incorporating a committee of ANNs22 and a com-
mittee of support vector machines.23 Iordanescu and
Summers24 developed an image-segmentation-based ap-
proach for the reduction of FPs due to rectal tubes. Summers
et al.25 developed and analyzed a method for the reduction of
FPs caused by the ileocecal valve. Wang et al.26 developed a
FP reduction method based on internal features of polyps.

Our previously reported CAD scheme27,28 employs an FP
reduction method based on a Bayesian ANN29 with geomet-
ric and texture features.18,28 Our purpose in this study was to
develop a “mixture of expert” 3D MTANNs for further re-
duction of FPs in a polyp-detection CAD scheme while
maintaining high sensitivity.

II. MATERIALS AND METHODS

II.A. CTC database

CTC examinations were performed on 73 patients at The
University of Chicago Medical Center. The patients’ colons
were prepared by standard pre-colonoscopy cleansing with
administration of cathartics following a water diet or low-
fiber diet, and they were insufflated with room air or carbon
dioxide. Each patient was scanned in both supine and prone
positions. Our database thus contained 146 CTC datasets.
The CT scans were performed with either a single- or a
multi-detector-row CT scanner �HiSpeed CTi or LightSpeed
QX/i, GE Medical Systems, Milwaukee, WI�. The CT scan-
ning parameters included collimations between 2.5 and
5.0 mm, reconstruction intervals of 1.0–5.0 mm �1.0 mm
�n=2, 1% of the CTC datasets�, 1.25 mm �n=3, 2%�,

1.5 mm �n=59, 41%�, 2.5 mm �n=79, 54%�, and 5.0 mm
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�n=3, 2%��, and tube currents of 60–120 mA with 120 kVp.
Each reconstructed CT section had a matrix size of 512
�512 pixels, with an in-plane pixel size of 0.5–0.7 mm.
The CT sections were interpolated to isotropic resolution by
use of linear interpolation in the transverse direction. All
patients underwent “reference-standard” optical colonos-
copy. Radiologists established the locations of polyps in the
CTC datasets by use of the colonoscopy and pathology re-
ports, as well as multiplanar re-formatted views of the CTC
on a viewing workstation �GE Advantage Windows Worksta-
tion v.4.2, GE Medical Systems, Milwaukee, WI�. In this
study, we used 5 mm as the threshold for clinically signifi-
cant polyps.30 Fifteen patients had 28 polyps, 15 of which
were 5–9 mm in diameter, and 13 were 10–25 mm. There
was no polyp that was submerged in fluid. Fluid was mini-
mized by use of a saline cathartic preparation as the standard
preparation, not a colon gavage. We also created a training
database of non-polyps by manual extraction of volumes
containing non-polyps from 27 “normal” �non-polyp� CTC
cases.

II.B. Architecture of a “mixture of expert” 3D
massive-training artificial neural networks „3D
MTANNs…

By extension of “neural filters”31,32 and “neural edge
enhancers,”33,34 which are ANN based, supervised nonlinear
image-processing techniques, two-dimensional �2D�
MTANNs35 have been developed to accommodate the task of
distinguishing a specific opacity from other opacities in
medical images. Two-dimensional �2D� MTANNs have been
applied for the reduction of FPs in the computerized detec-
tion of lung nodules in low-dose CT35,36 and chest
radiography,37 for the distinction between benign and malig-
nant lung nodules in CT,38 and for the suppression of ribs in
chest radiographs.39 To process 3D volumetric CTC data, we
developed a 3D MTANN16 by extending the structure of the
2D MTANN.

A single MTANN cannot reduce multiple types of FP
sources effectively, because the capability of a single
MTANN is limited.35 To reduce various types of FPs, we
extended the capability of a single 3D MTANN and devel-
oped a mixture of expert 3D MTANNs. The architecture of a
mixture of expert 3D MTANNs is shown in Fig. 1. A mixture
of expert 3D MTANNs consists of several 3D MTANNs that
are arranged in parallel. Each expert 3D MTANN is trained
independently by use of a specific type of non-polyp and a
common set of actual polyps. Each expert 3D MTANN acts
as an expert for distinguishing polyps from a specific type of
non-polyp, e.g., 3D MTANN No. 1 is trained to distinguish
polyps from rectal tubes; 3D MTANN No. 2 is trained to
distinguish polyps from stool with bubbles; and so on.

Each expert 3D MTANN consists of a linear-output
multilayer ANN model,33 which is capable of operating on
voxel data directly. The expert 3D MTANN is trained with
input CTC volumes and the corresponding “teaching” vol-
umes for enhancement of polyps and suppression of a spe-

cific type of non-polyp. The pixel size within a CT section is
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generally different from the reconstruction interval between
sections, and the reconstruction interval is often different at
different institutions and under different imaging protocols.
To reduce such variations in the CTC data, original CTC data
are converted to isotropic volume data by use of a linear
interpolation technique. The voxel values of the isotropic
volumes are linearly scaled such that—1000 Hounsfield units
�HU� corresponds to 0 and 1000 HU corresponds to 1 �val-
ues below 0 and above 1 are allowed�. The input to the
expert 3D MTANN consists of voxel values in a subvolume,
VS, extracted from an input volume. The output of the nth
expert 3D MTANN is a continuous scalar value, which is
associated with the center voxel in the subvolume, and is
represented by

On�x,y,z� = NNn�I�x − i,y − j,z − k���i, j,k� � VS� , �1�

where x, y, and z are the coordinate indices, NNn�·� is the
output of the nth linear-output ANN model, and I�x ,y ,z� is a
voxel value of the input volume.

The training of a 2D MTANN for chest radiography37,39

and thoracic CT35,36,38 takes a substantially long time; con-
sequently, efficient architecture and training are a necessity
for a 3D MTANN. Because the average shape of polyps
approximates a sphere and the operation for processing pol-
yps should be isotropic, the shape of the subvolume input to
an expert 3D MTANN should be spherical rather than cubic.
By use of a spherical subvolume rather than a cubic one, the
computational cost can be reduced to 52% �� /6� �i.e., by
48%�. We employed a digital quasi-sphere as the input sub-
volume for an expert 3D MTANN.16 The number of hidden
units may be selected by use of a method for designing the
structure of an ANN.40,41 This method is a sensitivity-based

FIG. 1. Architecture of a “mixture of expert” 3D MTANNs for distinguish-
ing polyps from various types of FPs. Each 3D MTANN acts as an expert
for distinction between polyps and a specific type of non-polyp for which
the expert 3D MTANN is trained, for example, expert 3D MTANN No. 1 is
trained to distinguish polyps from rectal tubes, expert 3D MTANN No. 2 is
designed for distinction between polyps and stool with bubbles, and so on.
The outputs of individual expert 3D MTANNs are combined with a mixing
ANN so that the mixture of expert 3D MTANNs can remove various types
of non-polyps.
pruning method, i.e., the sensitivity of the unit removal to the
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training error is calculated when a certain unit is removed
experimentally, and the unit with the smallest training error
is removed. Removing the redundant hidden units and re-
training to recover the potential loss due to the removal are
performed repeatedly, resulting in a reduced structure from
which redundant units are removed.

II.C. Training method of expert 3D MTANNs

For enhancement of polyps and suppression of non-
polyps in CTC volumes, the teaching volume contains a 3D
Gaussian distribution with standard deviation �T. This distri-
bution represents the “likelihood of being a polyp” for a
polyp and zero for a non-polyp:

T�x,y,z�

= � 1
	2��T

exp
−
�x2 + y2 + z2�

2�T
2 � for a polyp

0 otherwise.
� .

�2�

A 3D Gaussian distribution is used to approximate an aver-
age shape of polyps. The expert 3D MTANN involves train-
ing with a large number of subvolume-voxel pairs; we call it
a massive-subvolumes training scheme. To enrich the train-
ing samples, a training volume, VT, extracted from the input
CTC volume is divided voxel by voxel into a large number
of overlapping subvolumes. Single voxels are extracted from
the corresponding teaching volume as teaching values. The
expert 3D MTANN is massively trained by use of each of a
large number of the input subvolumes together with each of
the corresponding teaching single voxels; hence the term
“massive-training ANN.” The error to be minimized by train-
ing of the nth expert 3D MTANN is given by

En =
1

Pn



c



�x,y,z��VTn

�Tn,c�x,y,z� − On,c�x,y,z��2, �3�

where c is a training case number, On,c is the output of the
nth expert MTANN for the cth case, Tn,c is the teaching
value for the nth expert MTANN for the cth case, and Pn is
the number of total training voxels in the training volume for
the nth expert 3D MTANN, VTn. The expert 3D MTANN is
trained by a linear-output back-propagation �BP� algorithm.33

After training, the expert 3D MTANN is expected to output
the highest value when a polyp is located at the center of the
subvolume of the expert 3D MTANN, a lower value as the
distance from the subvolume center increases, and zero when
the input subvolume contains a non-polyp.

II.D. 3D scoring method for combining output voxels

For combining output voxels from the trained expert 3D
MTANNs, we developed a 3D scoring method, as shown in
Fig. 2. A score for a given polyp candidate from the nth

expert 3D MTANN is defined as
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Sn = 

�x,y,z��VE

fG��n;x,y,z� � On�x,y,z� , �4�

where

fG��n;x,y,z� =
1

	2��n

exp
−
�x2 + y2 + z2�

2�n
2 � �5�

is a 3D Gaussian weighting function with standard deviation
�n, and with its center corresponding to the center of the
volume for evaluation, VE; and On�x ,y ,z� is the output vol-
ume of the nth trained expert 3D MTANN, where its center
corresponds to the center of VE. The use of the 3D Gaussian
weighting function allows us to combine the responses �out-
puts� of a trained expert 3D MTANN as a 3D distribution. A
3D Gaussian function is used for scoring, because the output
of a trained expert 3D MTANN is expected to be similar to
the 3D Gaussian distribution used in the teaching volume.
This score represents the weighted sum of the estimates for
the likelihood that the volume �polyp candidate� contains a
polyp near the center, i.e., a higher score would indicate a
polyp, and a lower score would indicate a non-polyp.

II.E. Mixing ANN for combining expert 3D MTANNs

The scores from the expert 3D MTANNs are combined by
use of a mixing ANN such that different types of non-polyps
can be distinguished from polyps. The mixing ANN consists
of a linear-output multilayer ANN model with a linear-output
BP training algorithm33 for processing of continuous output/
teaching values; the activation functions of the units in the
input, hidden, and output layers are an identity, a sigmoid,
and a linear function, respectively. One unit is employed in
the output layer for distinction between a polyp and a non-
polyp. The scores of each expert 3D MTANN are used for
each input unit in the mixing ANN; thus, the number of input
units corresponds to the number of expert 3D MTANNs, N.
The scores of each expert 3D MTANN act as the features for
distinguishing polyps from a specific type of non-polyp for
which the expert 3D MTANN is trained. The output of the

FIG. 2. Schematic illustration of a scoring method for combining output
voxels from a trained expert 3D MTANN to obtain a case-based score.
mixing ANN for the cth polyp candidate is represented by
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Mc = NN��Sn,c��1 � n � N� , �6�

where NN�·� is the output of the linear-output ANN model.
The teaching values for polyps are assigned the value one,
and those for non-polyps are zero. Training of the mixing
ANN may be performed by use of a leave-one-lesion-out
cross-validation scheme.42 After training, the mixing ANN is
expected to output a higher value for a polyp and a lower
value for a non-polyp. Thus, the output can be considered to
be a “likelihood of being a polyp.” By thresholding the out-
put, a distinction between polyps and non-polyps can be
made. The balance between true-positive rate and FP rate is
determined by the selected threshold value. If the scores of
each expert 3D MTANN properly characterize the specific
type of non-polyp for which the expert 3D MTANN is
trained, the mixing ANN combining several expert 3D
MTANNs will be able to distinguish polyps from various
types of non-polyps.

III. RESULTS

III.A. Performance of our previously reported CAD
scheme

We applied our previously reported CAD scheme27,28 to
the 73 CTC cases. The scheme included centerline-based ex-
traction of the colon,43 shape-based detection of polyps,8,10

and initial reduction of FPs by use of a Bayesian ANN29

based on geometric and texture features.18,28 We evaluated
supine and prone CTC volumes independently. This CAD
scheme achieved a 96.4% �27 /28 polyps� by-polyp sensitiv-
ity with an average of 3.1 �224 /73� FPs per patient. Forty-
eight true-positive polyp detections in both supine and prone
CTC volumes represented 27 polyps. We combined our pre-
viously reported CAD scheme with the mixture of expert 3D
MTANNs for further reduction of FPs, as shown in Fig. 3.

III.B. Training of expert 3D MTANNs

We manually selected ten representative polyp volumes
�ten polyps� from the 48 true-positive volumes �containing
27 polyps� in our CTC database as the training polyp cases
for expert 3D MTANNs. We classified CAD-generated FP
sources into eight categories, i.e., rectal tubes, small bulbous
folds, solid stool, stool with bubbles, colonic walls with
haustral folds, elongated folds, strip-shaped folds, and the
ileocecal valve. We manually selected ten non-polyps in each
of the eight categories from the training non-polyp database
�which was not used for testing�. The above training volume
selections were made by one of the authors �K.S.� based on
the visual appearance of polyps and non-polyps in terms of
size, shape, and contrast.16 The ten polyps and the ten rectal
tubes were the same as those used in our previous study.16

The number of sample volumes for each category was ten,
because the performance of an expert 3D MTANN was
found to be highest when the number of training sample
volumes was 20 �i.e., ten polyps and ten non-polyps� in our

16
previous study, and the performance of 2D/3D MTANNs
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was not sensitive to the number of sample regions/volumes
over different types of non-lesions in our previous
studies.16,35,38,44,45

We trained eight expert 3D MTANNs with the ten polyps
and ten non-polyps in each category. A three-layer structure
was employed for the expert 3D MTANNs.46 The size of the
training volume and the standard deviation of the 3D Gauss-
ian distribution in the teaching volume were 15�15�15
voxels �i.e., cubic shape� and 4.5 voxels, respectively, which
were determined empirically based on our previous
studies.16,35,36,44 The number of hidden units was selected to
be 25 by use of a method for designing the structure of an
ANN.40,41 With the parameters above, training of the expert
3D MTANNs was performed by 500 000 iterations. We se-
lected four among the eight expert 3D MTANNs for the mix-
ture of expert 3D MTANNs by experimental analysis, be-
cause the mixture of these four expert 3D MTANNs ��1�
rectal tubes, �2� stool with bubbles, �3� colonic walls with
haustral folds, and �4� solid stool� demonstrated the highest
performance �described in the next subsection�. Figure 4
shows all ten training polyps and samples of non-polyps.

III.C. Evaluation of the performance for false-positive
reduction

We applied the trained expert 3D MTANNs to the 27
polyps �48 true-positive volumes� and all 224 non-training
FPs identified by our previously reported CAD scheme. The
output volumes for these testing cases are shown in Fig. 5.

FIG. 3. Schematic diagram of CAD of polyps in CTC based on our previ-
ously reported CAD scheme with the addition of a mixture of expert 3D
MTANNs for further reduction of FPs.
The centers of the input volumes corresponded to the detec-
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tion results provided by the CAD scheme �including both
true positives and FPs�; thus, this experiment included the
effect of actual off-centering of polyp candidates produced
by the initial CAD scheme. Various polyps, including a flat

FIG. 4. Illustrations of all ten actual polyps used for training of all the expert
3D MTANNS and five of the non-polyps in each of four categories used for
training four different expert 3D MTANNs. The central axial slices of the
volumes are shown.

FIG. 5. Illustrations of �a� various testing polyps and the corresponding out-
put volumes of four trained expert 3D MTANNs and �b� four different
categories of testing FPs and the output volumes from corresponding expert
3D MTANNs. In the output volumes, polyps appear as distributions of
bright voxels �i.e., they are enhanced�, whereas different types of FPs appear

as dark voxels �i.e., they are suppressed�.
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lesion �the third image from the left in Fig. 5�a��, are repre-
sented in the output by distributions of bright voxels,
whereas various types of non-polyps appear as darker voxels,
indicating the ability of the expert 3D MTANNs to enhance
polyps and suppress different types of non-polyps. The flat
lesion was enhanced by the 3D MTANN, because the 3D
MTANN approach is basically voxel-based determination of
likelihood of being a polyp, which is less shape dependent
compared to a morphologic-feature-based approach. We ap-
plied the 3D scoring method to the output volumes for pol-
yps and non-polyps. The 3D Gaussian weighting function
used the same standard deviation as that for the 3D Gaussian
distribution in the polyp teaching volume, i.e., �n,=�T. Dis-
tributions of scores from the expert 3D MTANNs for the 27
polyps and all FPs are shown in Fig. 6. Although the two
distributions in each graph overlap, a substantial fraction of
FPs can be eliminated by use of the expert 3D MTANNs.

To distinguish between polyps and FPs, we merged the
scores from the four individual expert 3D MTANNs with a
mixing ANN. Figure 7 shows the distributions of the output
values of the trained mixing ANN in a leave-one-lesion-out
cross-validation test.42 In the leave-one-lesion-out cross-
validation test, the two instances of a polyp in supine and

FIG. 6. Distributions of the four 3D MTANN scores for 27 polyps �open
circles� and 224 FPs generated by our previously reported CAD scheme for
the detection of polyps.
prone scans are left out simultaneously for testing in order to
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remove the bias associated with the use of multiple instances
from the same lesion for training. Thus, a training set and a
testing set were completely separated in each run of the
leave-one-lesion-out cross-validation test. Although the two
distributions overlap, all polyps can be distinguished from
the majority of non-polyps. We evaluated the overall perfor-
mance of the mixture of expert 3D MTANNs for FP reduc-
tion by use of free-response receiver-operating-characteristic
�FROC� analysis.47 The FROC curve of the trained mixture
of expert 3D MTANNs is shown in Fig. 8. The FROC curve
was obtained by a change in the threshold value for the out-
put of the mixing ANN. This FROC curve indicates that the
mixture of expert 3D MTANNs was able to eliminate 63%
�142 /224� of non-polyps �FPs� without removal of any of the

FIG. 7. Distributions of the output values from the trained mixing ANN for
27 polyps and 224 FPs generated by our previously reported CAD scheme
in a leave-one-lesion-out cross-validation test.

FIG. 8. The solid curve is an FROC curve that shows the overall perfor-
mance of the mixture of expert 3D MTANNs when it was applied to the
entire database of 27 polyps �48 true-positive volumes� and 224 FPs, and the
dotted curve shows the performance of the mixture of expert 3D MTANNs
when it was tested on the non-training-case-only database from which the
ten training polyps were excluded. The error bars indicate that the difference
between the sensitivities at an FP rate of 1.1 per patient under the two
testing conditions is not statistically significant. It should be noted that the
sensitivity for the non-training-case-only database was slightly lower be-
cause of the different number of polyps used, not because of detection
misses. These FROC curves indicate that the mixture of expert 3D
MTANNs yielded a reduction of 63% �142 /224� of non-polyps �FPs� with-
out removal of any true positives, i.e., it achieved 100% �27 /27 or 17 /17�

classification sensitivity.
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27 polyps, i.e., a 96.4% �27 /28� overall by-polyp sensitivity
was achieved at an FP rate of 1.1 �82 /73� per patient.

Because the 27 polyps included the ten training polyps,
this evaluation could be biased. In order to reduce this bias,
we excluded the ten training polyps from the evaluation of
the mixture of expert 3D MTANNs. The FROC curve for
only non-training cases is shown in Fig. 8. The FROC curves
indicate that the performance of the mixture of expert 3D
MTANNs for non-training cases only is similar to that for the
entire database, e.g., a classification sensitivity of 100%
�17 /17� was achieved at an FP rate of 1.1 �82 /73� per patient
�there is no statistically significant difference between the
sensitivities for the entire database and the non-training-case-
only database, as indicated by the error bars representing
95% confidence intervals48�. The 17 polyps included a polyp
on a haustral fold, polyps attached to folds, and polyps
touching stool. Thus, the mixture of expert 3D MTANNs was
able to distinguish polyps under such varied situations from
normal structures. Typical examples of FPs that were not
removed by the mixture of expert 3D MTANNs are shown in
Fig. 9; they include a haustral fold, medium-sized solid stool,
a part of the rectum attached to a rectal tube, and stool ad-
hering to the colonic wall.

We investigated the effect of the change in the number of
expert 3D MTANNs on the performance of the mixture of
expert 3D MTANNs. The performance was evaluated by
receiver-operating-characteristic �ROC� analysis.49,50 It
should be noted that the number of expert 3D MTANNs
corresponds to the number of input units in the mixing ANN.
The mixing ANN was evaluated by use of a leave-one-
lesion-out cross-validation test. We examined all possible
combinations of expert 3D MTANNs. Figure 10 shows the
average area under the ROC curve �AUC� values51 of the
mixture of expert 3D MTANNs over various numbers of
expert 3D MTANNs. The results show that the average per-
formance of the mixture of expert 3D MTANNs was highest
when the number of expert 3D MTANNs was four, although
the difference was very small. The differences in any com-
binations of the AUC values for the mixtures of expert 3D
MTANNs were not statistically significant �two-tailed p
value �0.05�.52

We also investigated the effect of the change in the num-
ber of hidden units in the mixing ANN. The mixing ANN
was evaluated by use of a leave-one-lesion-out cross-
validation test. The number of expert 3D MTANNs �i.e., the
number of input units� was four. We examined all possible
combinations of four expert 3D MTANNs. Figure 11 shows

FIG. 9. Typical examples of sources of the remaining FPs that were not
removed by the mixture of expert 3D MTANNs at the specific operating
point reported in the text. From left to right, a haustral fold, medium-sized
solid stool, a part of the rectum attached to a rectal tube, and stool adhering
to the colonic wall.
the average performance of the mixing ANN with various
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numbers of hidden units �an average was taken over possible
combinations of four expert 3D MTANNs�. The differences
of any combinations of the AUC values for the mixing ANNs
were not statistically significant �two-tailed p value
�0.05�.52 Thus, the performance did not demonstrate a sen-
sitivity to the number of hidden units.

IV. DISCUSSION

A limitation of this study is the number of CTC cases with
polyps: use of a larger database will provide more reliable
evaluation results for the performance of the mixture of ex-
pert 3D MTANNs. However, it should be noted that, al-
though the mixture of expert 3D MTANNs was trained with
only ten polyps, the performance for 27 polyps including the
ten polyps and that for only 17 non-training polyps were
very similar, which reflects the robustness of the mixture of
expert 3D MTANNs. This observation on the generalization
ability of the mixture of expert 3D MTANNs is consistent
with that of MTANNs in our previous studies16,35,38,44 which

FIG. 10. Effect of change in the number of expert 3D MTANNs on the
performance of the mixture of expert 3D MTANNs in a leave-one-lesion-out
cross-validation test. Average performance over possible combinations of
expert 3D MTANNs is shown. The standard deviations are shown as error
bars. The AUC value was highest when four expert 3D MTANNs were used.

FIG. 11. Effect of change in the number of hidden units on the performance
of the mixing ANN in a leave-one-lesion-out cross-validation test. Average
performance over possible combinations of four expert 3D MTANNs is
shown. The standard deviations are shown as error bars. The performance

was not sensitive to the number of hidden units.
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involved 109 lung nodules in thoracic CT,35,36 76 malignant
nodules and 413 benign nodules in thoracic CT,38 and 91
lung nodules in chest radiography.37 Therefore, we expect
that the performance of the mixture of expert 3D MTANNs
for a large database would potentially be comparable to that
obtained in this study.

The four categories used for the four expert 3D MTANNs
were rectal tubes, stool with bubbles, colonic walls with
haustral folds, and solid stool, because this combination
achieved the highest performance among all combinations of
FP categories in terms of the AUC value. The other four
categories �small bulbous folds, elongated folds, strip-shaped
folds, and the ileocecal valve� were not selected, probably
because the category of colonic walls with haustral folds
includes patterns in these four categories and thus correlates
well with the four categories. In effect, three of the four
categories are subcategories of haustral folds, and the ileoce-
cal valve generally appears similar to a thickened haustral
fold.

In previous study,16 we investigated the effect of the intra-
and inter-observer variations in selecting training cases on
the performance of an expert 3D MTANN, because the per-
formance would depend on the manual selection of training
cases. The differences in the performance of the trained 3D
MTANNs with the three different sets selected by the same
observer at different times �i.e., the intra-observer variation�
were not statistically significant �two-tailed p-value �0.05�.
The differences in the performance of the trained 3D
MTANNs depended on which observer selected the training
cases �i.e., the inter-observer variation�, although these dif-
ferences were not statistically significant �two-tailed p-value
�0.05�. Moreover, we investigated the effect of the number
of training cases on the performance of an expert 3D
MTANN.16 The expert 3D MTANN trained with 20 cases
had the highest AUC value, which provides the rationale for
using 20 training cases in this study. This 20-case training
approach was consistent with our previous MTANN studies
in the distinction between nodules and non-nodules in tho-
racic CT.35–38,44

The MTANN is trained not on a case �whole volume�
basis, but on a subvolume �i.e., the 7-by-7-by-7 input sub-
volume� basis. The MTANN does not see a whole polyp at a
time, but sees local subvolumes one by one and gathers the
local pattern features in the subvolumes. The local pattern
features may include the mean CT value, the gray-level dis-
tribution, edges, texture, curvedness, and shape, all of which
can, in theory, be calculated from voxels in a local volume.
The MTANN is trained to learn those local pattern features
in different-sized polyps in an effort to distinguish polyps
from non-polyps. If the local pattern features are similar, the
trained MTANN outputs similar values for both a medium-
sized polyp and a larger polyp. The performance of the
MTANN would, thus, be less dependent on the sizes of ob-
jects, but dependent on local pattern features.

It is difficult to distinguish a small distribution for a small
polyp in the output volume from a small distribution due to
noise; this difficulty can lower the ability of the 3D MTANN

to differentiate polyps from non-polyps. To force the 3D
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MTANN to output a standard-sized �regular-sized� distribu-
tion for different-sized polyps, the same-sized Gaussian dis-
tribution is used in the teaching volumes. After training in
this manner, the 3D MTANN is expected to output relatively
regular-sized distributions for different-sized polyps, e.g., a
relatively large output distribution for a small polyp and a
relatively small output distribution for a large polyp. This
property of the regular-sized output distributions is expected
to increase the scores for small polyps and to improve the
overall performance of a 3D MTANN. In conjunction with
the training with the same-sized Gaussian distribution, we
used the Gaussian weighting function with a fixed size for
scoring the output volume of the trained 3D MTANN for
each polyp candidate. This fixed-size approach allows 3D
MTANNs to be relatively robust against size variations of
polyps.

The 3D MTANNs were able to be trained with ten
polyps and ten non-polyps. The key to this property is
the division of cases into a large number of over-
lapping subvolumes.44 By dividing a case �volume�
into a large number of subvolumes, a 3D MTANN can
be trained not on a case basis, but on a subvolume
basis. The massive training with a large number of
training subvolume samples �3375 samples�20 cases
=67 500 samples� allows a 3D MTANN to avoid the
“over-fitting” problem53 of ANNs. This problem often
occurs when the number of training samples is too
small for determining the parameters of an ANN. The
number of training samples required is, in general,
greater than the number of parameters of an ANN.
For example, an ANN with a 7-9-1 structure
�7 inputs�9 input-hidden-layer weights�9 hidden-output-
layer weights�10 offsets�100 parameters� required 400–
800 training samples to achieve an adequate performance for
non-training cases.54 The massive training with a large num-
ber of training samples �67 500�, which, however, are not
completely independent, would contribute to the proper de-
termination of the parameters �343 inputs�25 input-hidden-
layer weights�25 hidden-output-layer weights�21 offsets
�8621 parameters� of the 3D MTANN, and avoid the over-
fitting problem. Thus, the massive training with a large
number of training subvolume samples allows a 3D MTANN
to be trained with a small number of cases.

In our previous study,38 we performed an experiment to
gain insight into the enrichment of the input information to
an MTANN by the division of cases into subregions. We
examined the relationship between ten training lesions and
76 lesions in the entire database in the input multidimen-
sional vector space. We applied principal-component analy-
sis �also referred to as Karhune–Loeve analysis�55 on the
input vector to the MTANN. The result of our analysis
showed that the ten training cases represented the entire da-
tabase of 76 cases very well in the input vector space, i.e.,
the ten training lesions covered, on average, 94% of the com-
ponents of each lesion. Because all components of each le-
sion are combined with the scoring method in the MTANN,

the non-covered 6% of components would not be critical at
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all for the classification accuracy. Thus, the division of each
lesion into a large number of subregions enriched the input
information on lesions for the MTANN.

In our previous study,38 we did experiments to examine
the effect of the number of MTANNs and that of the number
of hidden units on the performance of multiple MTANNs. In
the experiments, we used a relatively large database contain-
ing 76 malignant nodules and 413 benign nodules in thoracic
CT. The result showed that, as the number of MTANNs in-
creased from two to eight, the AUC value went up from 0.81
and peaked at 0.88 when the number of MTANNs was six,
and then declined to 0.84. As to the number of hidden units,
as the number of hidden units increased from two to seven,
the AUC value went up from 0.84 and peaked at 0.88 when
the number of MTANNs was four, and then declined to 0.86.
Thus, the trend of the changes on the performance was simi-
lar when the number of positive cases was larger, but the
amount of the changes was slightly larger.

Wang et al.26 have developed an FP reduction method
consisting of extraction of three types of internal features
�i.e., geometric, morphologic, and texture features� and clas-
sification based on the features, whereas the first FP reduc-
tion method in our CAD scheme consists of extraction of
geometric �including morphologic� and texture features and a
Bayesian ANN with the features for classification. Although
the features and the classifiers used are different, both FP
reduction methods can be considered as standard methods in
a CAD scheme. On the other hand, some researchers have
developed a specialized method for the reduction of FPs due
to a specific FP source. Such a method can be used as a
second FP reduction method �or an additional FP reduction
method� in a CAD scheme. Iordanescu and Summers24 have
developed an image-segmentation-based approach for the re-
duction of FPs due to rectal tubes. Summers et al.25 have
developed a method for the reduction of FPs caused by the
ileocecal valve. As a second FP reduction method, we have
developed a single 3D MTANN specifically designed for re-
moval of rectal-tube-induced FPs.16 With this single 3D
MTANN, we were able to eliminate all rectal-tube-induced
FPs without removal of any true positives. Our mixture of
expert 3D MTANNs was not specifically trained for the ileo-
cecal value, but an expert 3D MTANN eliminated FPs due to
the ileocecal valve. Therefore, the two FP reduction methods
by Iordanescu and Summers et al. can be considered as al-
ternatives to two expert 3D MTANNs.

In our previous study,16 we have investigated the effect of
the inter-observer variation in selecting training cases on the
performance of a 3D MTANN. The results indicated that the
performance of the 3D MTANNs trained with the cases se-
lected by three different observers was slightly different
�AUC values of 0.78, 0.74, and 0.73; the differences among
the AUC values were not statistically significant�. Thus, the
performance of the 3D MTANN did depend on the observer
who selected the training cases, but the difference was rela-

tively small.
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V. CONCLUSION

We developed a mixture of expert 3D MTANNs for the
reduction of multiple types of FPs in a CAD scheme for the
detection of polyps in CTC. With this mixture of expert 3D
MTANNs, we were able to eliminate various types of FPs
without removal of any true positives and achieved a classi-
fication sensitivity of 100% �17 /17� with a reduction in the
number of FPs by 63% �142 /224�. Overall, a 96.4% �27 /28�
by-polyp sensitivity with an FP rate of 1.1 �82 /73� per pa-
tient was achieved. Thus, our 3D MTANN could be useful
for improving the performance of a CAD scheme. We be-
lieve that a CAD scheme for the detection of polyps with a
low FP rate would be useful for radiologists in detecting
polyps in CTC.
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