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Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver
often abuts other organs of a similar density. The purpose of this study was to develop a computer-
aided measurement of liver volumes in hepatic CT.
Methods: The authors developed a computerized liver extraction scheme based on geodesic active
contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter
was applied to portal-venous-phase CT images for noise reduction while preserving the liver struc-
ture, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a
nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-
parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an
initial contour that roughly estimated the liver shape. A geodesic active contour segmentation
algorithm coupled with level-set contour evolution refined the initial contour to define the liver
boundaries more precisely. The liver volume was then calculated using these refined boundaries.
Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol
with a multidetector CT system. The liver volumes extracted by the computerized scheme were
compared to those traced manually by a radiologist, used as “gold standard.”
Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold
standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc �7.2%�. The
computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics
�intraclass correlation coefficient was 0.95� with no statistically significant difference
�F=0.77; p�F� f�=0.32�. The average accuracy, sensitivity, specificity, and percent volume error
were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would re-
quire substantially less completion time �compared to an average of 39 min per case by manual
segmentation�.
Conclusions: The computerized liver extraction scheme provides an efficient and accurate way of
measuring liver volumes in CT. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3395579�
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I. INTRODUCTION

More than 7300 liver transplantations are performed each
year in the U.S.1 Evaluating total and segmental liver vol-
umes is crucial because graft size is a major predictor of
success for both donor and recipient. A liver remnant volume
of 30%–40% of the original volume is required for the donor
to survive, whereas a minimum of 40% of the standard liver
mass is required by the recipient.2 Therefore, accurate, non-
invasive liver volumetry is necessary3–6 for planning liver
transplantation. Manual tracing of the liver boundary on each
CT image is the current “gold-standard” technique for liver
volume calculation. Although manual tracing provides accu-
rate results, it is very time consuming and subjective. It takes
more than 30 min, on the average, to determine the liver
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volume for one patient. In addition, manual volumetry has
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relatively large intra- and interobserver variations. With new,
advanced technology, computerized liver volumetry could
replace the current gold-standard manual liver volumetry for
accurate calculation of liver volumes. To this end, the accu-
racy of computerized volumetry must be comparable with
manual volumetry.

Researchers have developed computerized liver extraction
schemes in CT. Bae et al.8 developed an automated liver
segmentation scheme based on thresholding. They evaluated
their scheme with four cases by comparing the liver area in
each slice with that drawn by a radiologist. Gao et al.9 de-
veloped an automated liver segmentation scheme based on
thresholding and morphological filtering and tested their
scheme on ten cases. Nakayama et al.7 developed an auto-
mated liver segmentation method based on thresholding, fea-

ture analysis, and region growing. They compared the liver
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volumes estimated by their scheme for 35 cases to those
obtained by manual tracing by a radiologist and achieved a
correlation coefficient of 0.883 between them. Selvera et
al.10 developed a three-stage automated liver segmentation
scheme that employs preprocessing for excluding neighbor-
ing structures, k-means clustering, and multilayer perceptron
for classification, and postprocessing for removing mis-
segmented objects and smoothing liver contours. They tested
their scheme on 20 cases. Okada et al.11 developed an auto-
mated scheme based on a probabilistic atlas and a statistical
shape model, and they tested their scheme on eight cases.
The above computerized liver extraction schemes employed
thresholding and morphologic filtering, region growing,
k-means clustering, or a statistical shape model for extracting
the liver. Although the above papers stated that their auto-
matically determined volumes were comparable to gold-
standard volumes manually determined by a radiologist,
there is still room for improvement in the accuracy of the
liver extraction. In other areas, researchers reported the ad-
vantages of active contour models and level-set algorithms
over conventional segmentation techniques such as
thresholding,12 morphologic filtering,13 and region
growing.13,14 There is a potential for improving the liver ex-
traction accuracy with new techniques such as geodesic ac-
tive contour models and level-set algorithms.

Our purpose of this study was to develop a computerized
liver extraction scheme based on a geodesic active contour
segmentation technique coupled with level-set algorithms for
measuring liver volumes in hepatic CT. �We use the term
“extraction” instead of “segmentation” here to avoid poten-
tial confusion for abdominal radiologists because segmenta-
tion is a specific term used by abdominal radiologists for
segmentation of liver segments. We still use the term seg-
mentation for image segmentation techniques because it is a
well-accepted standard term for such techniques in the
pattern-recognition community.� We evaluated our scheme
on 15 prospective liver donors under a liver transplant pro-
tocol with a multidetector CT system, and we compared
computerized volumetry to gold-standard manual volumetry.

II. MATERIALS AND METHODS

The Institutional Review Board �IRB� approved this ret-
rospective study. Informed consent for the use of cases in
this study was waived by the IRB because patient data were
deidentified. This study complied with the Health Insurance
Portability and Accountability Act, and it met all standards
for good clinical research according to the National Institutes
of Health’s �NIH� and local IRB’s guidelines.

II.A. Hepatic CT database

Our database consisted of dynamic contrast-enhanced he-
patic CT scans of 15 prospective living liver donors. Scans
were obtained under a liver transplant protocol with a mul-
tidetector CT system with a 16-, 40-, or 64-channel detector
scanner �Brilliance, Philips Medical Systems, The Nether-
lands�. Contrast medium was administered to the patients for

acquisition of arterial-phase and portal-venous-phase CT im-
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ages. The CT scanning parameters included collimation of 3
mm �n=11� or 4 mm �n=4� and reconstruction intervals of
2.5 mm �n=2� or 3.0 mm �n=13�. Each reconstructed CT
slice had a matrix size of 512�512 pixels, with an in-plane
pixel size of 0.5–0.8 mm.

A board-certified abdominal radiologist �specializing in
liver imaging� traced the contour of the liver on each CT
slice very carefully. The number of slices in each case ranged
from 52 to 77 �average: 62.3�. The time required to complete
the manual tracing was recorded. To calculate the entire liver
volume for each case, we summed the volumes obtained by
multiplying the areas of the manually traced regions in each
slice by the reconstruction interval. �We do not use the terms
slice thickness or collimation because they do not always
equal a reconstruction interval �or distance between slices.��
Liver volumes obtained by use of our computerized liver
extraction scheme were compared to manual liver volumes,
used as the “current gold standard.”

II.B. Computer-aided measurement scheme for liver
volumes in CT

We developed a computerized liver volumetry scheme in
CT that is based on fast marching and geodesic active con-
tour segmentation15 coupled with level-set contour
evolution,16 as shown in Fig. 1. The scheme was applied to
portal-venous-phase images in order to maximize the inten-
sity difference between liver parenchyma and nonliver tissue.

II.B.1. Preprocessing for extraction

To accurately segment the liver from a series of axial,
portal-venous-phase CT images using a level-set-based
methodology, the images must first be preprocessed by filters
that reduce noise and enhance anatomic structures. Subse-
quent to combining the series of CT images into a 3D vol-
ume, f�x ,y ,z�, the volume was passed through a noise-

FIG. 1. Flow chart for our computer-aided measurement scheme for liver
volumes in hepatic CT.
reduction filter employing an anisotropic diffusion
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algorithm17 to obtain a noise-reduced CT image, fN�x ,y ,z�.
This denoising filter smoothes noise in the image while pre-
serving structures such as liver vessels and liver boundaries.
The anisotropic diffusion filter follows a differential equation
called a modified curvature diffusion equation,18

� f

�t
= ��f � � · c���f ��

�f

��f �
, �1�

where � is the gradient operator,

c���f �� = e−���f �/K�2
�2�

is the diffusion coefficient, and K is a user-specified conduc-
tance parameter �set to 3.0 in this scheme� to control the
filter’s sensitivity to edge contrast.

Subsequent to the anisotropic diffusion noise reduction, a
scale-specific gradient magnitude filter was applied to the
noise-reduced CT images to enhance the liver boundaries for
the succeeding level-set-based segmentation. The scale of
enhancing edges is controlled by the standard deviation � of
a Gaussian filter, which is applied prior to a differential op-
erator, represented by

fG = fN � fg��� = fN �
1

�2��1/2�
exp−�x2+y2+z2�/2�2

, �3�

where � denotes a convolution operator. The standard devia-
tion � was set to 0.5 in this scheme. The following differen-
tial operator was used for calculating the magnitude of the
image gradient at each voxel:

fM = ��fG� =�� � fG

�x
�2

+ � � fG

�y
�2

+ � � fG

�z
�2

. �4�

Receiving the gradient magnitude image, fM�x ,y ,z�, as
input, a nonlinear grayscale converter enhanced the contrast
of the liver parenchyma as a final preprocessing step prior to
level-set-based segmentation. This converter was based on a
sigmoid function, represented by

fS =
1

1 + exp	−�fM−��/�
 , �5�

where � is a parameter specifying the intensity range to be
enhanced and � is a parameter specifying a value at the
center of the intensity range. � and � were �1.5 and 4.0 in
this scheme, respectively. The voxel intensities of this en-
hanced volume were then normalized to floating point inten-
sity values ranging from 0 to 1. This normalized volume was
used as a speed function for the succeeding level-set-based
segmentation.

II.B.2. Liver extraction

Extracting the liver from an abdominal CT volume was
accomplished by use of a two-step approach involving a geo-
desic active contour model15 with a level-set methodology.16

The fast-marching level-set algorithm19 was used to estimate
an initial rough contour of the liver; then, a geodesic active
contour level-set algorithm15 was used to refine this initial

approximation.
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For generating an initial contour that roughly estimates
the shape of the liver, a fast-marching level-set algorithm19

was employed in this scheme. This algorithm is a simplified,
efficient version �or a special case� of general level-set algo-
rithms. In the fast-marching level-set algorithm, the evolu-
tion of a closed contour �or curve� is expressed as a function
of time t, with speed, F�p�, in the normal direction at a point,
p, on the contour. The time at which the contour crosses a
point, p, is obtained by solving the following partial differ-
ential equation, called the Hamilton–Jacobi equation,

d�

dt
= − F�p����� , �6�

where ��p , t� is a level-set function, with the initial level set
at t=0 given by

��p,t = 0� = 	 , �7�

and 	 a closed contour �curve� in R2 space. The fast-
marching algorithm requires one or more seed points from
which the initial contour can be generated. Naturally, the
seed points �5–10 points for each case with a median of 7; it
took about 15 s for each case to put seed points� in our
scheme were placed by the radiologist within the borders of
the liver; this allowed the fast-marching algorithm to expand
outward toward the anatomic borders of the liver. The output
of the fast-marching algorithm is a time-crossing map that
indicates, for each pixel, how much time it would take for
the front representing the contour to arrive at the pixel loca-
tion. The level-set evolution stops if the maximum number of
iterations is reached. Because the front �i.e., the contour�
propagates continuously over time, it is desirable to stop the
process once a certain time has been reached. The maximum
number of iterations was set to 100 in this scheme.

Next, a geodesic active contour level-set segmentation re-
fined the initial contour �i.e., the initial level set� determined
by the fast-marching algorithm to approximate the liver
boundaries more precisely. The evolution of a geodesic ac-
tive contour level-set function, ��p , t�, is controlled by the
following partial differential equation:

d�

dt
= − �A�p� · �� − �F�p����� + 
Z�p������ , �8�

where A is an advection vector function, F is an expansion
�or speed� function, and Z is a spatial modifier function for
the mean curvature �. The user-defined scalar constants �, �,
and 
 allow us to determine the extent to which each of the
three functions �advection, expansion, and curvature� affect
the change, d� /dt, of the contour of the level set, �. In this
scheme, �=1.0, �=0.5, and 
=5.0. The spatial modifier
term acts as a smoothing term where areas of high curvature,
assumed to be due to noise, are smoothed out. This algorithm
requires an initial level set that represents a rough estimate of
the actual contour of the liver. We used the initial contour
determined by the fast-marching algorithm as the initial level
set. In this way, the level-set algorithm only refines the initial
contour according to the partial differential equation �Eq.

�8��. This algorithm used the liver-parenchyma-enhanced im-



2162 Suzuki et al.: Computer-aided measurement of CT liver volumes 2162
age as the speed �or expansion� term for evolution of the
front �i.e., contour�. With this image, the expansion speed of
the front is very low close to high image gradients, whereas
it moves rather fast in low-gradient areas. This arrangement
makes the contour expand rapidly until it reaches the edges
of anatomic structures in the image and then slow down
rapidly as these edges are approached. The level-set evolu-
tion stops if the convergence criterion is reached. The con-
vergence criterion is defined in terms of the root-mean-
square �RMS� change in the level-set function. The evolution
has converged if the RMS change is below a user-specified
threshold, determined as 0.02 in this scheme.

After the geodesic active contour level-set segmentation
algorithm generated a refined contour of the liver, threshold-
ing was employed for converting the output level set to a
binary liver segmentation image. For eliminating potential
anomalies—particularly impulse noise that could result from
an imperfect extraction of the liver—a median filter was ap-
plied to the extracted liver. Then, connected-component
labeling20,21 was applied to the binary liver images for the
calculation of the area of each extracted liver region. Finally,
the liver volume was calculated by summing up of the areas
of the liver region in each slice.

II.C. Evaluation of the computer-aided measurement
scheme

The computer-estimated liver volumes were compared to
the gold-standard manually determined liver volumes with
respect to the mean and difference in the liver volume.
Agreement between computer-estimated volumetry and the
manual volumetry was evaluated by using the intraclass cor-
relation coefficient.22,23 Analysis of variance was performed
to obtain the F-statistics. Linear association was also evalu-
ated by using Pearson’s product-moment correlation coeffi-
cient as additional information. A t-test for the significance
of the coefficient was performed. Figure 2 shows a schematic
diagram for evaluating a computer-estimated liver region
compared to the gold-standard manually drawn liver region.
We determined true-positive �TP� segmentation, false-
negative �FN� segmentation, false-positive �FP� segmenta-
tion, and true-negative �TN� segmentation for detailed analy-
sis. TP was defined as an overlapping area �the number of

FIG. 2. Schematic diagram for evaluating a computer-estimated region com-
pared to a “gold-standard” manually drawn region.
pixels� between a computer-estimated region, C, and a gold-
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standard manual region, G, represented by TP=C�G. FN
was represented by FN=G−C�G. FP was represented by
FP=C−C�G. TN was represented by TN= I−C�G, where
I is the entire image. We defined the accuracy, sensitivity,
and specificity of the extraction as

accuracy = �TP + TN�/I , �9�

sensitivity = TP/G = TP/�TP + FN� , �10�

specificity = TN/�TN + FP� , �11�

respectively. We also defined the percent �absolute� volume
error between the computer volume and the manual volume
E as

E = ��FN + FP�/G� . �12�

In order to examine the robustness of our scheme against
seed point changes, we conducted an experiment to move the
seed points selected by a radiologist systematically. We
moved all of the original seed points by a certain distance d.
The locations of new seed points were determined randomly,
i.e., each new seed point was on a circle with a radius of d,
the center of which was at the location of the original seed
point. We changed the distance between the original seed
points and the new seed points, d, from 3 to 12 mm at a step
of 3 mm, because it is not likely that one person will select
new seed points that are different from the seed points se-
lected by another person by more than 10 mm, on the aver-
age. We created five different sets of new seed points with
each distance �i.e., 20 sets of new seed points in total�. We
applied our scheme with the 20 sets of new seed points and
evaluated the performance.

III. RESULTS

Figure 3 illustrates the intermediate images taken from
each step of our scheme for an example case. The noise in
the original CT image in Fig. 3�a� was reduced by the aniso-
tropic diffusion filter, while maintaining the liver structures
such as the portal vein and the liver border, as shown in Fig.
3�b�. A scale-specific gradient magnitude filter was applied to
the noise-reduced image to enhance the liver boundary, as
shown in Fig. 3�c�. The nonlinear grayscale converter en-
hanced the liver boundary for the use of the subsequent geo-
desic active contour segmentation, as shown in Fig. 3�d�.
Finally, the liver was extracted by using the fast-marching
and geodesic active contour level-set segmentation, as shown
in Fig. 3�e�. After the extraction, the median filter was ap-
plied for removal of impulse noise in the extracted liver.
Liver volumes were calculated using the extracted liver
regions.

The mean liver volume obtained by use of our scheme
was 1504 cc, with a standard deviation of 407 cc �range:
956–2381 cc�, whereas the mean gold-standard manual vol-
ume was 1457 cc with a standard deviation of 357 cc �range:
984–2439 cc�, with a mean absolute difference of 105 cc
�7.2%�, as shown in Table I. The relationship between the

computer-estimated volumes and the gold-standard manual
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volumes is shown in Fig. 4. The two volumetrics reached
excellent agreement �the intraclass correlation coefficient
was 0.95�, with no statistically significant difference for vari-
ance �F=0.77; p�F� f�=0.32�. Pearson’s product-moment
correlation coefficient was 0.96 at a nonstatistically signifi-
cant level �p=11.8�. The average accuracy, sensitivity, speci-
ficity, and percent volume error were 98.4%, 91.1%, 99.1%,
and 7.2%, respectively, as shown in Table II. Figure 5 shows
the results of the robustness study for our scheme in terms of
seed point changes. When the distance between the new seed
points and the original seed points was less than or equal to
9 mm, the ICC between computer-estimated volumes with
new seed points and the gold-standard manual volumes was
comparable to the original ICC. Any combinations of ICCs
did not achieve a statistical significance difference �p
=0.15–0.49�. Figure 6 illustrates computerized liver extrac-
tion and gold-standard manual liver extraction for a case
with a high accuracy �99.2%�. The computerized liver ex-

FIG. 3. Illustration of the resulting images at each step in our scheme. �a�
Original CT image. �b� Anisotropic diffusion noise reduction. �c� Scale-
specific gradient magnitude calculation. �d� Nonlinear grayscale conversion.
�e� Geodesic active contour segmentation.

TABLE I. Comparison between computer-estimated volume and gold-
standard manual volume.

Average Standard deviation

Computer volume �cc� 1504 407
Manual volume �cc� 1457 357
Medical Physics, Vol. 37, No. 5, May 2010
traction agrees almost perfectly with the gold-standard
manual liver extraction for a slice through the superior por-
tion of the liver, as Fig. 6�b� shows. There is a small FN
segmentation �a tip of the liver� and a small FP segmentation
�a portion of the vena cava� in a slice of the inferior liver of
the same case, as Fig. 6�d� shows.

Figure 7 illustrates two cases with more typical results
�i.e., accuracies close to the average value�. Overall, the
computerized scheme extracted the liver accurately, although
there were FP and FN extractions. There is an FP extraction
due to the vena cava abutting the liver and FN extractions
due to the portal veins in the case shown in Fig. 7�b�. Al-
though the exclusion of the portal veins was considered as
FN extractions, this consideration is controversial. We dis-
cuss this point in Sec. IV. In Fig. 7�d�, a FN extraction rep-
resenting a small tip of the liver is shown. This error oc-
curred because the level-set segmentation stopped before it
reached the liver boundary, which is likely due to the high
noise level in this particular case. Figure 8 illustrates ex-
amples of FP and FN extractions. Major FP sources included
the vena cava, heart, and kidney—all which abut the liver.
Major FN sources included a low-contrast liver boundary, a

FIG. 4. Relationship between computer-estimated volumes and “gold-
standard” manual volumes. The two volumetrics reached an excellent agree-
ment �the intraclass correlation coefficient was 0.95�, with no statistically
significant difference for variance �F=0.77; p�F� f�=0.32�.

FIG. 5. Robustness of our scheme against seed point changes. All of the
original seed points were randomly moved by a distance d. The error bar
indicates the standard deviation of ICCs between computer-estimated vol-

umes with new seed points and gold-standard manual volumes in 5 runs.



2164 Suzuki et al.: Computer-aided measurement of CT liver volumes 2164
high-intensity-value artifact, an artifact due to the partial vol-
ume effect, and density inhomogeneity secondary to focal fat
deposition. Note that the same window/level display setting
was applied to all cases in Figs. 6–8.

The processing time by the computerized scheme was 2–5
min per case on a PC �Intel, Xeon, 2.7 GHz�, whereas that by
manual extraction was 28–48 min per case with an average
of 38.8 min per case �standard deviation=5.4 min�.

IV. DISCUSSION

Although we achieved an excellent agreement between
computer-estimated liver volumes and gold-standard manual
liver volumes �the intraclass correlation coefficient was
0.95�, there are still occasional FPs and FNs because the liver
often abuts other organs of similar density. In addition, inac-
curate extraction was often the result of the variable liver
density across different studies/patients, as density depends
on acquisition timing and contrast material characteristics.

TABLE II. Summary of quantitative evaluation of computerized liver extrac-
tion compared to gold-standard manual liver extraction.

Average Standard deviation

Accuracy �%� 98.4 0.8
Sensitivity �%� 91.1 5.0
Specificity �%� 99.1 0.5
Percent volume error �%� 7.2 4.9

FIG. 6. Illustrations of computerized liver extraction and “gold-standard”
manual liver extraction for a case with a high accuracy �99.2%�. �a� Original
CT image from the case. �b� Computerized liver extraction �thick solid
contour� and “gold-standard” manual liver extraction �thin dashed contour�.
�c� Original CT image �different slice� from the same case. �d� Computer-
ized liver extraction �thick solid contour� and “gold-standard” manual liver
extraction �thin dashed contour�. Note that the contrast of the images in �b�
and �d� is reduced so that the contours can be seen well. Note also that a
manual contour �thin dashed contour� cannot be seen when it overlaps a
computer contour �thick solid contour�.
Medical Physics, Vol. 37, No. 5, May 2010
Therefore, accurate computerized liver extraction is very
challenging. In the future, we will need to eliminate such FP
and FN sources to improve the accuracy further. One way to
eliminate FP sources such as the vena cava, kidney, heart,
and intercostal muscles would be to develop and incorporate
a separate method of segmenting each specific FP source.
For example, ribs have relatively consistent CT values and
are easy to identify. If we were to use ribs as landmarks, the
intercostal muscles located between the ribs could be ex-
cluded.

Although our scheme achieved an excellent correlation
with gold-standard manual liver volumes �Pearson’s product-
moment correlation coefficient was 0.96�, this does not reach
the level of the variation between expert radiologists �the
interobserver correlation between two radiologists’ manual
volumes was 0.997 �Ref. 24��. There are FP and FN extrac-
tions that require manual correction. This can, however, be
accomplished rapidly with routine manipulations. The sub-
stantial amount of time saved by using the computerized
volumetric methodology may justify the small error rate �av-
erage volume error E=7.2%� compared to the manual pro-
cess, which averages approximately 39 min per case.

We considered the exclusion of hepatic vessels to be FN
extractions in this study because manual CT liver volumetry
includes hepatic vessels. Studies4,7 have shown, however,
that CT liver volumetry overestimates the liver volumes
when compared to actual liver volumes measured after resec-

FIG. 7. Illustrations of computerized liver extraction and “gold-standard”
manual liver extraction for two cases with accuracies �98.5% for the upper
case; 98.6% for the lower case� close to the average accuracy �98.4%�. �a�
Original CT image from one of the cases. �b� Computerized liver extraction
�thick solid contour� and “gold-standard” manual liver extraction �thin
dashed contour�. �c� Original CT image from the other case. �d� Computer-
ized liver extraction �thick solid contour� and “gold-standard” manual liver
extraction �thin dashed contour�. Note that the contrast of the images in �b�
and �d� is reduced so that the contours can be seen well. Note also that a
manual contour �thin dashed contour� cannot be seen when it overlaps a
computer contour �thick solid contour�.
tion. One possible explanation for this phenomenon is that
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actual liver volumes are measured with less blood in the
hepatic vessels. Therefore, the exclusion of major hepatic
vessels may be “desirable” FN extractions.

In order to examine the seed point dependence on the
performance of our scheme, we performed an experiment
with seed points selected by a different person. An imaging
scientist selected an independent set of seed points for our
scheme because a radiologist may not always select seed
points, but a radiologic technologist or imaging scientist may
do this in an actual clinic. This should be a more severe test
for evaluating the robustness of our scheme, compared to a
study with a different radiologist, because variation between
a radiologist and a radiologic technologist �or imaging scien-
tist� is expected to be larger than that between radiologists.
We employed our scheme with the independent set of seed
points and evaluated the performance. The ICC between the
computer-estimated volumes with the independent seed point
set and the gold-standard manual volumes was 0.95. The
interobserver agreement was an ICC of 0.95.

A limitation of this study is the use of a small number of
cases. We used 15 cases for evaluating our scheme, whereas
other studies used 4 cases,8 35 cases,7 20 cases,10 10 cases,9

and 9 cases.11 In general, a small number of cases limit the
variations among cases. In computerized liver extraction
studies, however, case variations would be relatively small,

FIG. 8. Illustrations of major FP and FN sources. �a� Original CT image
from one case. �b� Computerized liver extraction �thick solid contour� and
“gold-standard” manual liver extraction �thin dashed contour�. There is an
FP due to the heart �a�, an FN due to a high-intensity region �b�, and an FP
due to the vena cava �c�. �c� Original CT image from another case. �d�
Computerized liver extraction �thick solid contour� and “gold-standard”
manual liver extraction �thin dashed contour�. There are FPs due to the
skeletal muscles �mainly, intercostal muscles� �d�, an FP due to part of the
vena cava �e�, and an FP due to part of the right kidney �f�. Note that the
contrast of the images in �b� and �d� is reduced so that the contours can be
seen well. Note also that a manual contour �thin dashed contour� cannot be
seen when it overlaps a computer contour �thick solid contour�.
compared to studies involving abnormal cases such as
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computer-aided diagnosis25,26 because prospective donors
have normal livers. Nonetheless, we will need to increase the
number of cases for evaluation.

A limitation of the evaluation in this study is that the
gold-standard manual volumes were determined by a single
expert radiologist. Ideally gold-standard manual volumes are
determined by multiple expert radiologists who have suffi-
cient experience in liver diagnosis. This ideal evaluation
would not be feasible at all institutions because not many
institutions have a number of such radiologists who are suf-
ficiently experienced in liver diagnosis. Although researchers
evaluated their automated liver extraction schemes with
gold-standard manual volumes in their studies,7–11 none of
the studies used gold-standard volumes determined by mul-
tiple radiologists, probably for the above reason. We used
manual volumes determined by a single experienced radiolo-
gist �more than 15 years of experience in liver diagnosis� as
gold standard because we thought that volumes determined
manually by a mixture of inexperienced and experienced ra-
diologists or by multiple inexperienced radiologists might
not be reliable, compared to volumes determined very care-
fully manually by a single experienced radiologist. More im-
portantly, because the interobserver variation in CT volum-
etry is considered to be small �the interobserver correlation
between two radiologists’ manual volumes was 0.997 in a
study24�, volumes determined by multiple radiologists and
those by a single radiologist would not differ much. Al-
though this single radiologist’s gold standard may have some
deviation �or bias� in accuracy in liver volumetry, we believe
that such a deviation would be minimal because the interob-
server variation is usually small,24 living liver donor cases
�as opposed to cases with disease� were used in this study,
and the manual volumes were obtained by careful tracing
by a radiologist who has substantial experience in liver
diagnosis.

There are several parameters to adjust in this scheme. We
first used the original parameter values recommended or
used in the original papers; then, we adjusted the parameters
by empirical analysis with several trials. Thus, the param-
eters were not optimized. In the future, we will need to op-
timize the parameters by using a larger number of cases.

We cannot compare our scheme with other schemes in
literature directly because the cases used were different for
each study, but we discuss advantages and limitations of the
schemes. There are thresholding-based schemes,7–9 a
classifier-based scheme,10 and a statistical model-based
scheme11 for extracting the liver in literature. Although the
thresholding-based schemes provide a simple, efficient way
to extract the liver, they may not be robust against variations
in liver CT density across different studies/patients, and they
may include other organs of similar density in the extraction
region. whereas our scheme based on the active-contour
level-set method would be relatively robust against such
variations, but would not be robust against noise because the
active-contour level-set method relies on noise-sensitive
edge information instead of the gray-level information used
in thresholding. To minimize this shortcoming of the edge-

information-based method, we employed an edge-preserving
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noise-reduction technique called anisotropic diffusion. Both
classifier-based schemes and statistical model-based schemes
generally require a relatively large number of training cases
to determine the free parameters of the model �or classifier�
adequately, whereas thresholding-based schemes and the
active-contour level-set-based scheme have a smaller number
of free parameters to be determined.

The liver extraction scheme developed in this study can
be used as a first and necessary step in computer-aided diag-
nosis for the detection of liver tumors in hepatic CT. FN
extractions by the liver extraction scheme may decrease the
overall sensitivity in the detection of liver tumors by a
computer-aided diagnostic scheme, whereas FP extractions
may decrease the overall specificity �or increase the FP rate�.
For such applications, we will need to test our scheme with
abnormal cases including those with liver tumors. Conse-
quently, we may need to adjust the parameters to include
liver tumors within the extracted liver volumes.

V. CONCLUSION

We developed a computer-aided measurement scheme
employing a fast-marching and geodesic active contour seg-
mentation coupled with level-set algorithms for measuring
liver volumes in CT. CT liver volumetrics determined by our
computerized scheme agreed excellently with gold-standard
manual volumetrics, and they required substantially less
completion time. Our computerized scheme provides an ef-
ficient and accurate way of measuring liver volumes in CT;
thus, it would be useful for radiologists in their measurement
of liver volumes.
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