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Abstract—A major challenge in the current computer-aided
detection (CAD) of polyps in CT colonography (CTC) is to reduce
the number of false-positive (FP) detections while maintaining a
high sensitivity level. A pattern-recognition technique based on the
use of an artificial neural network (ANN) as a filter, which is called
a massive-training ANN (MTANN), has been developed recently
for this purpose. The MTANN is trained with a massive number
of subvolumes extracted from input volumes together with the
teaching volumes containing the distribution for the “likelihood
of being a polyp;” hence the term “massive training.” Because
of the large number of subvolumes and the high dimensionality
of voxels in each input subvolume, the training of an MTANN
is time-consuming. In order to solve this time issue and make
an MTANN work more efficiently, we propose here a dimension
reduction method for an MTANN by using Laplacian eigenfunc-
tions (LAPs), denoted as LAP-MTANN. Instead of input voxels,
the LAP-MTANN uses the dependence structures of input voxels
to compute the selected LAPs of the input voxels from each input
subvolume and thus reduces the dimensions of the input vector
to the MTANN. Our database consisted of 246 CTC datasets
obtained from 123 patients, each of whom was scanned in both
supine and prone positions. Seventeen patients had 29 polyps, 15
of which were 5–9 mm and 14 were 10–25 mm in size. We divided
our database into a training set and a test set. The training set
included 10 polyps in 10 patients and 20 negative patients. The
test set had 93 patients including 19 polyps in seven patients
and 86 negative patients. To investigate the basic properties of a
LAP-MTANN, we trained the LAP-MTANN with actual polyps
and a single source of FPs, which were rectal tubes. We applied
the trained LAP-MTANN to simulated polyps and rectal tubes.
The results showed that the performance of LAP-MTANNs with
20 LAPs was advantageous over that of the original MTANN
with 171 inputs. To test the feasibility of the LAP-MTANN, we
compared the LAP-MTANN with the original MTANN in the
distinction between actual polyps and various types of FPs. The
original MTANN yielded a 95% (18/19) by-polyp sensitivity at
an FP rate of 3.6 (338/93) per patient, whereas the LAP-MTANN
achieved a comparable performance, i.e., an FP rate of 3.9 (367/93)
per patient at the same sensitivity level. With the use of the dimen-
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sion reduction architecture, the time required for training was
reduced from 38 h to 4 h. The classification performance in terms
of the area under the receiver-operating-characteristic curve
of the LAP-MTANN (0.84) was slightly higher than that of the
original MTANN (0.82) with no statistically significant difference
(p-value� � ��).

Index Terms—Computer-aided diagnosis (CAD), nonlinear
dimension reduction, pixel-based machine learning, virtual
colonoscopy.

I. INTRODUCTION

C OLORECTAL cancer is the second leading cause of
cancer deaths in the United States. Early detection and

removal of polyps (the precursors of colorectal cancers) is a
promising strategy for enhancing patients’ chance of survival.
CT colonography (CTC) is an emerging technique for mass
screening of colorectal carcinoma. The diagnostic performance
of CTC in detecting polyps, however, remains uncertain be-
cause of a propensity for perceptual errors and substantial
variations among readers in different studies. Computer-aided
detection (CAD) of polyps has the potential to overcome these
difficulties with CTC. CAD provides for radiologists the loca-
tions of suspicious polyps for their review, thus improving the
diagnostic performance in the detection of polyps.

Automated detection of polyps with CAD schemes is a very
challenging task, because the polyps have large variations in
shapes and sizes and there are numerous colon folds and residual
leftover colonic materials on the colon wall that mimic polyps.
A number of researchers have recently developed automated or
semi-automated CAD schemes in CTC. Although the perfor-
mance of current CAD schemes has demonstrated a great poten-
tial, some limitations remain. One of the major limitations is a
relatively large number of false-positive (FP) detections, which
is likely to confound the radiologists’ image interpretation task
and thus lower their efficiency. A large of number of FPs could
adversely affect the clinical application of CAD for colorectal
cancer screening. Therefore, methods for removal of computer
FPs are in strong demand.

The common sources of FPs are haustral folds, residual stool,
rectal tubes, and extra-colonic structures such as the small bowel
and stomach, as reported in [1], [2]. Various methods have been
proposed for the reduction of FPs, with variable success. Sum-
mers et al. [3], [4] employed the geometric features on the inner
surface of the colon wall, such as the mean, Gaussian, and prin-
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cipal curvatures, to find polyp candidates. Yoshida et al. [5] and
Näppi et al. [6] further characterized the curvature measures by
using a shape index and curvedness to distinguish polyp candi-
dates from the normal tissues of the colon wall. Paik et al. [7]
and Kiss et al. [8] presented another solution for polyp detec-
tion in which they utilized the normal vector (rather than the
curvature) and sphere fitting as references to extract some geo-
metric features on the polyp surfaces. Because these traditional
surface shape-based descriptions are sensitive to the irregularity
of the colon wall, these CAD methods share a relatively high
FP rate. Gokturk et al. [9] developed a scheme based on sta-
tistical pattern recognition, and they applied a 3-D pattern-pro-
cessing method to the reduction of FPs. Acar et al. [10] used
edge-displacement fields to model the changes in consecutive
cross-sectional views of CTC data, as well as quadratic discrim-
inant analysis. Jerebko et al. [11], [12] used a standard ANN to
classify polyp candidates and improved the performance by in-
corporating a committee of ANNs and a committee of support
vector machines. Yao et al. [13] explored image segmentation
methods to reduce FPs. Iordanescu and Summers [14] devel-
oped an image-segmentation-based approach for the reduction
of FPs due to rectal tubes.

The performance of a CAD scheme usually involves a
trade-off between sensitivity and specificity. It is important to
remove as many types of FPs as possible, while the sensitivity
of a CAD scheme is maintained. For addressing this issue,
a 3-D massive-training artificial neural network (MTANN)
and a mixture of expert 3-D MTANNs were developed for
elimination of a single type of FP [1] and multiple types of FPs
[2], respectively. The mixture of expert 3-D MTANNs consists
of several expert 3-D MTANNs in parallel, each of which is
trained independently by use of a specific type of non-polyp and
a common set of various types of polyps. Each expert MTANN
acts as an expert for distinguishing polyps from a specific type
of non-polyp. It was demonstrated in [15] that this mixture of
expert MTANNs was able to eliminate various types of FPs at
a high sensitivity level.

The training of an MTANN is, however, very time-con-
suming, [1], [2], [15]–[19]. For example, the training of a
3-D MTANN with ten polyps and ten FPs may take 38 h on a
workstation [1], [2]. The training time will increase when the
number of training cases increases. To address this time issue
and make an MTANN work more efficiently, we propose here
an MTANN coupled with a Laplacian-eigenfunction-based
dimension reduction. In the MTANN framework, the input
features are the large number of neighboring voxel values in
each subvolume extracted from a CTC volume, and thus they
have some underlying geometric structures and are highly
dependent each other. Motivated by this fact, we employ a
manifold-based dimension-reduction technique, a Laplacian
eigenfunction [20], to improve the efficiency of the original
MTANN. This will be demonstrated by use of both simulation
and actual clinical data. Other nonlinear dimension reduction
techniques such as the diffusion map [21] and Isomap [22]
would have comparable results because they can take the local
geometry information fairly well, whereas the classical prin-
cipal-component analysis (PCA) is known for being sensitive
to outliers and cannot incorporate the local intrinsic structure.

The paper is organized as follows. In Section II, we first de-
scribe our CTC database and review the basics of an MTANN,
and we then explain the technical details for improvement by
using Laplacian eigenfunctions. In Section III, we compare the
results of the application of MTANNs with and without LAPs
in experiments with both simulated and actual polyps. Finally,
we further discuss the statistical issues of employment of LAPs
in Section IV and give a conclusion in Section V.

II. MATERIALS AND METHODS

A. Database

The database used in this study consisted of 246 CTC
datasets obtained from 123 patients acquired at the University
of Chicago Medical Center. Each patient was scanned in both
supine and prone positions with a multi-detector-row CT
scanner (LightSpeed QX/i, GE Medical Systems, Milwaukee,
WI) with collimations between 2.5 and 5.0 mm, reconstruction
intervals of 1.25–5.0 mm, and tube currents of 60–120 mA
with 120 kVp. Each reconstructed CT section had a matrix size
of 512 512 pixels, with an in-plane pixel size of 0.5–0.7
mm. In this study, we used 5 mm as the lower limit on the
clinically significant size of polyps. Seventeen patients had 29
colonoscopy-confirmed polyps, 15 of which were 5–9 mm and
14 were 10–25 mm in size. We divided our database into a
training set and a test set. The training set contained 10 polyps
in 10 patients and 20 negative patients. The test set included
93 patients containing 19 polyps in 7 patients and 86 negative
patients. We applied an initial CAD scheme for detection of
polyps in CTC to our CTC database. The initial polyp-detec-
tion scheme is a standard CAD approach which consists of
1) colon segmentation based on CT value-based analysis and
colon tracing [23], 2) detection of polyp candidates based on
morphologic analysis of the segmented colon [5] followed
by connected-component analysis [24]–[26], 3) calculation of
3-D pattern features of the polyp candidates [6], [27], [28],
and 4) quadratic discriminant analysis [29] for classification
of the polyp candidates as polyps or non-polyps based on the
pattern features. The initial CAD scheme yielded a 95% (18/19)
by-polyp sensitivity with 5.1 (474/93) FPs per patient for the
test set. The major sources of FPs included rectal tubes, stool,
haustral folds, colonic walls, and the ileocecal valve. These
CAD detections were used for experiments for evaluating the
performance of 3-D MTANNs.

B. Basics of an MTANN Framework

Supervised nonlinear image-processing techniques based on
artificial neural networks (ANNs), called “neural filters” [30]
and “neural edge enhancers” [31] were developed for reduction
of the quantum mottle in X-ray images and for supervised de-
tection of subjective edges traced by cardiologists [32], respec-
tively. The neural filters and neural edge enhancers were ex-
tended to accommodate various pattern-classification tasks, and
a 2-D MTANN was developed [15]. A 2-D MTANN was origi-
nally developed for distinguishing a specific opacity from other
opacities in thoracic CT [15]. The 2-D MTANN was applied to
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Fig. 1. Architecture of a LAP-MTANN consisting of a massive-subvolume training scheme, dimension reduction by Laplacian eigenfunctions, and a linear-output
ANN model. The input CTC volumes including a polyp or a non-polyp are divided voxel by voxel into a large number of overlapping 3-D subvolumes. Instead of
all voxel values in each subvolume, only the top n Laplacian eigenfunctions of them are entered as an input vector to the linear-output ANN.

the reduction of FPs in the computerized detection of lung nod-
ules in chest radiography [17], low-dose CT [15], [18], and the
suppression of ribs in chest radiographs [16]. A 3-D MTANN
was recently developed for processing 3-D volume data in CTC
[1], [2]. The architecture of a 3-D MTANN is shown in Fig. 1. A
3-D MTANN consists of a linear-output multilayer ANN model
for regression, which is capable of operating on voxel data di-
rectly [31], [32]. The linear-output multilayer ANN model em-
ploys a linear function instead of a sigmoid function as the acti-
vation function of the unit in the output layer because the char-
acteristics of an ANN were improved significantly with a linear
function when applied to the continuous mapping of values in
image processing [31]. Note that the activation functions of the
units in the hidden layer are a sigmoid function for nonlinear
processing, and those of the unit in the input layer are an identity
function, as usual. The 3-D MTANN is trained with input CTC
volumes and the corresponding teaching volumes for enhance-
ment of polyps and suppression of non-polyps. The input to the
expert 3-D MTANN consists of a collection of voxel values in
a subvolume, , extracted from an input volume, denoted as
a vector , where each denotes one
input voxel in . Here, is the number of voxels in a sub-
volume of a fixed size. The pixel values of the original CTC
images are normalized first such that 1000 HU (Hounsfield
units) is zero and 1000 HU is one. The output of an MTANN
is a continuous scalar value, which corresponds to the center
voxel in the subvolume, . The output
at is denoted by

(1)
The entire output volume is obtained by scanning of the input
subvolume of the MTANN on the entire input CTC volume. The
input subvolume and the scanning of the MTANN can be anal-
ogous to the kernel of a convolution filter and the convolutional
operation of the filter, respectively. Note that only one unit is
employed in the output layer.

The teaching volume for polyps contains a 3-D Gaussian
distribution with standard deviation , which approximates

the average shape of polyps, and that for non-polyps contains
only zeros. This distribution represents the likelihood of being
a polyp

.
(2)

For enrichment of the training samples, a massive number of
overlapping subvolumes are extracted from a training volume

, and the same number of single voxels are extracted from the
corresponding teaching volume as teaching values. The centers
of consecutive subvolumes differ by just one pixel. All pixel
values in each of the subvolumes may be entered as input to
the 3-D MTANN, whereas one pixel from the teaching image is
entered into the output unit in the 3-D MTANN as the teaching
value. The error to be minimized in training is given by

(3)

where is a training case number, is the output of the
MTANN for the th case, is the teaching value for the
th case, and is the total number of training voxels in the

training volume. The MTANN is trained by a linear-output
back-propagation algorithm [31], [32] which was derived for
the linear-output ANN model by use of the generalized delta
rule [33].

After training, the MTANN is expected to output the highest
value when a polyp is located at the center of the subvolume, a
lower value as the distance from the subvolume center increases,
and approximately zero when the input subvolume contains a
non-polyp. The entire output volume is obtained by scanning of
the whole input CTC volume to the MTANN. For the distinction
between polyps and non-polyps, a 3-D scoring method based on
the output volume of the trained MTANN is applied. A score for
a polyp candidate is defined as

(4)



1910 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 11, NOVEMBER 2010

Fig. 2. Dimensionality reduction of the scanning spherical input subvolume to the linear-output ANN via Laplacian eigenfunctions. Each square matrix represents
a cross section at a certain � position in the input subvolume, where � represents the central slice of the subvolume. A gray square in each section indicates the
input voxel to the linear-output ANN, and a white square indicates an unused voxel. The 171-dimensional original input vector is converted to the Laplacian
eigenfunction (LAP) vector. The top � LAPs are extracted and entered to the linear-output ANN.

Fig. 3. Illustration of highly overlapping training subvolumes. For simplicity, a
5�5 2-D subregion is used in this illustration. A subregion overlaps 80% of the
next subregion. The subregion at the top left corner (enclosed by dashed lines)
overlaps 4% of the subregion four pixels to the right and four pixels down from
the top left corner one (enclosed by dashed lines).

where

(5)

is a 3-D Gaussian weighting function with standard deviation
with its center corresponding to the center of the volume for

evaluation, ; is the volume for evaluation, which is suffi-
ciently large to cover a polyp or a non-polyp; and is
the output of the trained MTANN. The use of the 3-D scoring
method allows us to combine the individual voxel-based re-
sponses (outputs) of a trained 3-D MTANN as a single score
for each candidate. The score is the weighted sum of the esti-
mates of the likelihood that a polyp candidate volume contains
an actual polyp near the center, that is, a high score would in-
dicate a polyp and a low score would indicate a non-polyp. The
same 3-D Gaussian weighting function is used as in the teaching
volumes. Thresholding is then performed on the scores for the
distinction purpose.

C. LAP-MTANN: A 3-D MTANN Based on Manifold
Embedding by Use of Laplacian Eigenfunctions

One drawback of the original MTANN described above is that
the selected patterns are regarded as independent inputs to the
ANN and the correlation among close sampled patterns is ig-
nored. The training patterns sampled from common candidate
volumes are highly overlapped, as illustrated in Fig. 3, and thus

the corresponding voxel values are strongly dependent on each
other. This intrinsic dependence structure of the selected pat-
terns should be incorporated in the MTANN scheme.

Another drawback of the original MTANN is that the training
is very time-consuming. This is caused by the high dimension-
ality of the input vector to the linear-output ANN and the large
number of training subvolumes extracted from the training vol-
umes. The use of a smaller subvolume can reduce the dimen-
sionality of the input layer. However, the input subvolume to
an MTANN has to be large enough to cover a sufficient part
of a polyp candidate. A practical choice of a sphere-shaped
subvolume gives (see Fig. 2). This also limits the
application of an MTANN to polyp candidates of large size.
For reducing the training time, one possibility is to reduce the
number of training subvolumes. The reduction of the number
of training patterns, however, will obviously lead to an insuf-
ficiently trained MTANN and directly make the MTANN lose
the power to distinguish polyps from non-polyps. To address the
issue of dimensionality, we employed an unsupervised dimen-
sionality reduction technique for reducing the dimensionality of
the input layer.

Dimensionality reduction techniques have long been an ac-
tive research topic in pattern recognition and many other fields.
The generic formulation of dimensionality reduction is stated
as follows: Given a set of points in , find a set
of points in such that “repre-
sents” well. PCA is perhaps one of the most popular linear
dimension reduction methods because of its relative simplicity
and effectiveness [34]. With the increasing research interests
in reproducing kernel Hilbert space, a nonlinear extension of
PCA based on kernel methods has been proposed in [35]. Other
nonlinear dimension reduction approaches have also been pro-
posed, such as Isomap [22] and locally linear embedding [36].
Recently, Belkin et al. have presented a dimension reduction
method based on manifold embedding with Laplacian eigen-
functions [20]. They assumed that the original data resided in
a low-dimensional manifold, and they constructed an adjacency
map to approximate the geometric structure. Motivated by the
above observation, we propose using Laplacian eigenfunctions
to embed the underlying geometric patterns in the input sub-
volume, without abuse of the notation denoted as , into
a lower-dimensional manifold and then applying ANN to the
embedded patterns , where . The method not only
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incorporates the correlation among inputs, but also achieves the
dimension reduction of inputs. This implementation procedure
is stated below.
Step 1) Normalization of Data. We first normalize the in-

puts by sub-
tracting the sample mean , where

, for , and then
dividing by the estimated standard deviation

. We will use to denote
the normalized data.

Step 2) Construction of an adjacency graph. Following
the above, we let denote
the correlation coefficient between and ,

. Now let denote a graph with
nodes. The th node corresponds to the th input

. We connect nodes to with
an edge if for some specified constant .
That is, an edge is put only for close -neighbors.
This implementation reflects the general phenom-
enon that faraway nodes are usually less important
than close neighbors.

Step 3) Assigning of a weight matrix. For each connected
edge between nodes and , we assign the Gaussian
weight

(6)

where is a suitable constant and in our
computation. Otherwise, we assign . Thus,

is a symmetric matrix. The weight matrix ap-
proximates the manifold structure of the inputs

in an intrinsic way. In other words,
it models the geometry of inputs by preserving the
local structure. The justification for our choice of the
Gaussian weight relating to the heat kernel can be
found in [20].

Step 4) Laplacian eigenfunctions and embedding map. Let
be a diagonal matrix whose entries are the row

or column sums of , , and let
be the associated Laplacian matrix.

Next, compute the eigenvectors and eigenvalues for
the generalized eigendecomposition problem

(7)

Let be the eigenvectors, ordered according to
their eigenvalues, . Let the size
transformation matrix be

(8)

The transformed data are given by the linear projection
of the original data onto the transformation matrix, i.e.,

, where is a -di-
mensional vector. The overall embedding map is given as

. Laplacian eigenmap embedding is

Fig. 4. Polyp phantom (a sphere) and a rectal tube phantom (a hollow cylinder).
These simple phantom models are employed for understanding the essential role
of a LAP-MTANN.

optimal in preserving local information. The generalized eigen-
decomposition in (7) is derived from the following optimization
problem:

(9)

where is a constraint to avoid a trivial solution. The op-
timal manifold embedding aims at minimizing the distance
between transformed data in the low-dimensional manifold
weighted by the adjacency matrix. The Laplacian matrix of
a graph is analogous to the Laplace Beltrami operator on
manifolds [20].

In the context of dimension reduction, the optimal embedding
projection matrix is trained with all the training data via
the generalized eigendecomposition equation, (7). In the testing
phase, we apply the projection matrix to each test sample inde-
pendently and transform it to the low-dimensional space.

D. Simulation Experiments

To understand the basic properties of a LAP-MTANN for FP
reduction, we carried out an experiment with simulated polyps
and rectal tubes, which are one of the major sources of FPs.
A polyp is modeled as a sphere with diameter , and a rectal
tube is modeled as a hollow cylinder with diameter , length

, and wall thickness , as shown in Fig. 4. We employed
these simple models with the aim of understanding the essential
role of a LAP-MTANN. We trained a LAP-MTANN with ten
actual polyps and ten rectal tubes (see the top part of Fig. 3).
We did this because this simplified simulated phantom could
reveal the fundamental mechanism of the proposed approaches.
The simulated CTC volumes with polyps and rectal tubes of five
different sizes ( : 6, 8, 10, 12, 15, and 25 mm; : 10, 12, 14,
15, and 16 mm) are illustrated in the top part of Fig. 4.

According to the measurements of actual polyps and rectal
tubes in clinical CTC volumes, the CT values for the simulated
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Fig. 5. Illustrations of training polyps and the corresponding output volumes
of the trained original 3-D MTANN and 3-D LAP-MTANNs with top 20 eigen-
functions and rectal tubes and the corresponding output volumes of the orig-
inal 3-D MTANN and 3-D LAP-MTANNs in a resubstitution test. Shown are
the central axial slices of 3-D volumes. Teaching volumes for polyps contain
3-D Gaussian distributions at the center, whereas those for non-polyps are com-
pletely dark, i.e., the voxel values for non-polyps are zero. In the output volumes
of the original 3-D MTANN and the 3-D LAP-MTANNs, polyps are represented
by bright voxels, whereas non-polyps are dark.

polyps and rectal tubes were set to 60 and 180, respectively. The
length was 70 mm and the wall thickness was 2 mm.

E. Experiments With Actual CTC Data

To evaluate and compare our proposed 3-D LAP-MTANNs
with the original 3-D MTANNs, we carried out experiments
with actual polyps and non-polyps in our CTC database.

Ten representative polyp volumes (the same actual polyps as
used above for simulation) from 46 true-positive volumes in our
CTC database and ten non-polyp volumes from the training set
were selected manually as the training cases for a 3-D MTANN
(see the top part of Fig. 5). The selection was based on the visual
appearance of polyps and non-polyps in terms of size, shape,
and contrast to represent the database. A three-layer structure
was employed for the 3-D MTANN, because it has been shown
theoretically that any continuous mapping can be approximated
by a three-layer ANN. Based on our previous studies [1], [2], the
size of the training volume and the standard deviation of the 3-D
Gaussian distribution were selected to be voxels
and 4.5 voxels, respectively. A quasisphere cubic subvolume of
kernel size containing voxels
was employed as the input subvolume for a 3-D MTANN, as
shown in Fig. 2 above. Thus, the input layer of the original

Fig. 6. Illustrations of simulated polyps and rectal tubes and the corresponding
output volumes of the original 3-D MTANN and the LAP-MTANN with 20
eigenfunctions.

MTANN has 171 units. The training subvolumes were sampled
by every other voxel in each dimension; thus, the total number of
training subvolumes for both true positives (TPs) and FPs were

. This sampling scheme also explains
the strong dependence structure among the closely sampled pat-
terns which are measured by the correlation coefficient for
the and th patterns; see Section II-C for details. The number
of hidden units was determined to be 25 by an algorithm for de-
signing the structure of an ANN [37].

We used receiver-operating-characteristic (ROC) analysis
[38] to assess the performance of the original MTANN and
the LAP-MTANN in the task of distinguishing polyps from
non-polyps. The area under the maximum-likelihood-estimated
binormal ROC curve (AUC) was used as an index of per-
formance. We used ROCKIT software [46] to determine the

-value of the difference between two AUC values [39]. For the
evaluation of the overall performance of a CAD scheme with
3-D LAP-MTANNs, free-response ROC (FROC) analysis was
used [40].

III. RESULTS

A. Simulation Experiments

The actual training rectal tubes and their output volumes of
the trained 3-D LAP-MTANN with 20 LAPs and the trained
original 3-D MTANN were comparable and are illustrated in
the lower part of Fig. 5. Both output volumes were well sup-
pressed around the rectal-tube locations. The simulated polyps
and rectal tubes and their output are illustrated in Fig. 6. Polyps
are represented by bright voxels, whereas rectal tubes appear
mostly dark with some bright segments around them. Overall,
the LAP-MTANN performed comparably to the MTANN; see
Figs. 7 and 8 for the illustration on polyps and non-polyps. The
LAP-MTANN performed better than the original MTANN for
some polyps and non-polyps, whereas the original MTANN
did better for several cases, as seen in Fig. 9 for selected
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Fig. 7. Illustrations of training non-polyps and the corresponding output vol-
umes. The true polyps used for training are the same as for the simulation. The
central axial slices of the 3-D volumes are shown.

Fig. 8. Illustrations of the performance of the trained 3-D original and LAP-
MTANNs with the top 20 eigenfunctions on polyps and non-polyps, and the
corresponding output volumes. The central axial slices of the 3-D volumes are
shown. The performance of the LAP-MTANN is comparable to that of the orig-
inal MTANN.

ROIs for illustration. The scores [defined in (4)] of the 3-D
LAP-MTANN and the original 3-D MTANN for various-sized
simulated polyps and rectal tubes are shown in Fig. 10. The
original 3-D MTANN scores for polyps smaller than 4.5 mm
overlapped with those of rectal tubes, indicating that simulated
polyps larger than 4.5 mm could be distinguished from rectal
tubes. On the other hand, although the difference between the
3-D LAP-MTANN scores for polyps larger than 11 mm and for
rectal tubes becomes smaller, there was no overlap between the
curves for polyps and rectal tubes. This result indicates that the
performance of the 3-D LAP-MTANN can be superior to that

Fig. 9. Illustrations of selected non-polyps, where the LAP-MTANN performs
better than the original MTANN on the first three and the original MTANN
performs better than the LAP-MTANN on the last two. The central axial slices
of the 3-D volumes are shown.

Fig. 10. Effect of the size of simulated polyps on the distinction between sim-
ulated polyps and rectal tubes based on LAP-MTANN and MTANN scores.
Based on the scores, polyps larger than 4.5 mm can be distinguished from rectal
tubes by the original 3-D MTANN, whereas polyps of all sizes can be distin-
guished from rectal tubes by the 3-D LAP-MTANN with 20 eigenfunctions.

of the original 3-D MTANN in the distinction of polyps from
rectal tubes.

To investigate the effect of different numbers of LAPs used,
we plotted the scores of the LAP-MTANNs with various num-
bers of LAPs for simulated polyps and rectal tubes in Fig. 11.
When the number of LAPs increased from 20 to 100, the scores
varied slightly, but had the same trend. The maximum scores for
rectal tubes were well separated from the minimum scores for
polyps. This adds evidence that the classification performance
of the LAP-MTANNs with different numbers of LAPs is ap-
proximately at the same level. To investigate the effect of dif-
ferent scanning kernel sizes of subvolumes on the performance
of a LAP-MTANN, we trained the LAP-MTANN with a larger
kernel size of voxels (437 voxels in each spherical
subvolume). We used the top 20 LAPs for this larger-kernel
LAP-MTANN. The training time for this LAP-MTANN was
about 4 h, which was the same as that with a kernel size of

voxels, because the numbers of LAPs and training
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TABLE I
COMPARISONS OF THE PERFORMANCE (AUC VALUES) OF LAP-MTANNS WITH VARIOUS NUMBERS OF TOP LAPS IN THE DISTINCTION BETWEEN ACTUAL

POLYPS AND NON-POLYPS. AUC VALUES, STANDARD ERRORS (SE) OF AUC VALUES, AND THE � VALUES FOR THE AUC DIFFERENCE BETWEEN EACH

LAP-MTANN AND THE ORIGINAL MTANN ARE SHOWN

Fig. 11. LAP-MTANN scores with various numbers of selected top Laplacian
eigenfunctions in the distinction between simulated polyps and rectal tubes.

subvolumes were the same. It turns out that the scores for simu-
lated polyps and rectal tubes dropped almost uniformly from a
kernel size of 7 to that of 9, and there is no obvious advantage
to employing large kernels in this case.

B. Training

We trained an original 3-D MTANN with the parameters de-
scribed in the previous section. The training with 500 000 it-
erations took 38 h, and the mean absolute error between the
teaching and output values converged approximately to 0.091.
To compare with the proposed LAP-MTANN, we used all of
the same above data and parameters with 20 top LAPs (i.e.,

). Certainly, different numbers of top LAPs selected
would change the result slightly, but the difference was not sta-
tistically significant in our studies. We will further justify our
choice of below. The training of a LAP-MTANN was per-
formed with 500 000 iterations, and the mean absolute error con-
verged approximately to 0.10. The training time was reduced
substantially to 4 h.

C. Evaluation of the Performance of LAP-MTANNs

Table I shows the effect of various numbers of top LAPs
on the performance of LAP-MTANNs in the distinction be-
tween actual polyps and non-polyps. The AUC values of the 3-D
LAP-MTANNs with various numbers of LAPs were statistically
significantly different from that of the original 3-D MTANN.
The ROC curve of the 3-D LAP-MTANN with 20 LAPs is
plotted in Fig. 12 together with that of the original MTANN.

Fig. 12. Comparison between the performance of the LAP-MTANN with 20
Laplacian eigenfunctions and that of the original MTANN. The difference be-
tween the AUC values for the ROC curves was not statistically significant �� �
�����.

Fig. 13. FROC curves indicating the performance of the LAP-MTANN with
20 Laplacian eigenfunctions and that of the original MTANN.

Fig. 13 shows FROC curves indicating the overall performance
of the original 3-D MTANN and the 3-D LAP-MTANN for
FP reduction. The original MTANN was able to eliminate 31%
(151/489) of FPs without removal of any of the 18 TPs, i.e., a
95% (18/19) overall by-polyp sensitivity was achieved with 3.6
(338/93) FPs per patient. The LAP-MTANN achieved a compa-
rable performance: it eliminated 25% (122/489) of FPs without
removal of any TPs. At a sensitivity of 89% (17/19), the orig-
inal MTANN produced 3.3 (308/92) FPs per patient, whereas
the LAP_MTANN produced 2.9 (271/489) FPs per patient.



SUZUKI et al.: MASSIVE-TRAINING ARTIFICIAL NEURAL NETWORK COUPLED WITH LAPLACIAN-EIGENFUNCTION-BASED DIMENSIONALITY 1915

Fig. 14. Residual variances with different numbers of dimensions after applica-
tion of Laplacian eigenmaps to the entire training data for dimension reduction.

D. Analysis of the Performance of Laplacian Eigenmaps for
Dimension Reduction

In order to gain further insights into Laplacian eigenmaps,
we investigated the performance of Laplacian eigenmaps for di-
mension reduction from the pattern recognition perspective. To
evaluate the fit of Laplacian eigenmaps, we used the residual
variance defined as

(10)

where is the Laplacian matrix of the original data in the high-
dimensional space, is the matrix of the Euclidean distance
in the low-dimensional embedding recovered by the algorithm,
and is the correlation coefficient over all entries of two ma-
trices. The residual variance measures how well the low-dimen-
sional embedding represents the original data in the high-dimen-
sional space. Fig. 14 plots the residual variance as a function of
different numbers of dimensions after applying Laplacian eigen-
maps to the entire training data. The residual variance decreases
as the dimensionality increases. The curve does not show an
“elbow” at which the curve ceases to decrease significantly with
extra dimensionalities, which is an indication of intrinsic dimen-
sionality. This is usually the case for real-world data.

IV. DISCUSSION

In the scheme of MTANN, the input patterns consist of a large
number (171 in this study) of neighboring voxel values. Many
of these voxels are redundant and may contain much noise in
the dataset. On the one hand, large volumes of patterns require
a long time for training; on the other hand, this can make the
classification task more difficult because of the curse of dimen-
sionality. A reduction of the training time is necessary for prac-
tical clinical applications. Dimension reduction can reduce the
training time considerably and improve the performance of an
MTANN significantly. In our proposed procedure, we first apply
the classical PCA to eliminate noise in the data. The PCs of
input voxels are the linear combinations of voxels which pre-
serve the variations in the data. The variations of the PCs of
the voxel values can approximate the variations of the under-
lying features. However, the patterns actually overlap close-by
patterns. The more they overlap, the more they depend on each
other. These close patterns usually have some intrinsic manifold

Fig. 15. The top two PCs (upper graph) and Laplacian eigenfunctions (lower
graph) of a set of 512 training patterns.

structures, and this information can be employed for more ac-
curately embedding the patterns in a lower-dimensional space.

Laplacian eigenfunctions are a well-known manifold learning
technique for dimension reduction. They construct a graph by
regarding each pattern as a node and then compute the graph
Laplacian eigenfunctions. In our proposed scheme, we measure
the dependence of patterns by correlation coefficients and map
the close-by patterns to close-by points in the reduced lower di-
mensional space via the Laplacian eigenfunctions. Fig. 15 is an
illustration of a subset of 512 training patterns selected from
a polyp. One can observe that the top Laplacian functions can
learn the intrinsic dependence structures and map close ones to
their clusters, whereas the classical PCs just spread the patterns
out. Thus, the Laplacian approach fits the MTANN scheme very
well. We note that other closely related manifold-based dimen-
sion reduction techniques have also been employed in CAD, for
example by Summers et al. [41], who have applied a diffusion
map for feature selection purposes, which is different from our
usage.

Various manifold learning techniques for dimension reduc-
tion have been proposed. The kernel PCA [42] is one of the most
widely used methods for dimension reduction. The kernel PCA
projects original data into a high-dimensional feature space via a
positive definite kernel function and performs PCA in that space.
The kernel PCA has been applied successfully to denoising [42]
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and other areas [43]. On the other hand, Laplacian eigenmaps
deal with data in the original input space, and the generalized
eigendecomposition is applied to the adjacency graph weight
matrix directly. Thus, these two methods are two different tech-
niques in nonlinear dimension reduction. Kernel PCA aims at
preserving global properties, whereas Laplacian eigenmaps try
to capture neighborhood information of the data. In our appli-
cation, the neighborhood dependency information is essentially
important, because this is how subvolumes are extracted (please
see Section II-B for details). Therefore, Laplacian eigenmaps
would be more suitable in this particular application.

In practice, one trains each specific LAP-MTANN for each
specific type of FPs beforehand and then applies trained LAP-
MTANNs to process CTC cases. Note that the processing time
of new CTC cases has also been reduced to about one tenth of
the original MTANN processing time of about 11.7 s per patient
based on our database. Nevertheless, the CTC diagnosis is not
necessarily real-time. The accuracy in terms of AUC values has
also improved slightly from 0.82 to 0.84. We expect that further
greater improvement can be obtained in practice, because mul-
tiple LAP-MTANNs would be applied, with each trained for a
specific task.

The training of an original 3-D MTANN took 38 h. By incor-
porating Laplacian-eigenfunction-based dimension reduction,
we reduced the training time substantially to 4 h. Once trained,
the processing time of an original 3-D MTANN and that of a
LAP-MTANN are both short, i.e., 11.7 s and 1.16 s per patient,
respectively. In the development stage of a new CAD scheme,
however, one may want to change the parameters of an MTANN,
training cases for the MTANN, and the parameters of an initial
detection scheme to optimize the entire CAD scheme. In this
case, MTANNs need to be trained a number of times. One can
see the result of a LAP-MTANN after 4 h, whereas the result of
an original MTANN can be seen after 38 h. Moreover, when a
mixture of expert MTANNs is used for reducing a large variety
of FPs, the training time increases as the number of MTANNs
increases. If six MTANNs are used, the training of an orig-
inal mixture of expert MTANNs and that of a mixture of expert
LAP-MTANNs take 244 (more than 10 days) and 24 h, respec-
tively. Therefore, a LAP-MTANN is desirable especially in the
development stage.

One limitation of the study is the use of a limited number of
cases with polyps in our study. Evaluation with use of a larger
database will generally give more reliable results regarding
the performance of a LAP-MTANN. However, it should be
noted that, although the 3-D LAP-MTANN trained with only
10 polyps, the performance for 29 polyps, including the 10
polyps and 19 nontraining polyps, was very similar at a high
sensitivity level. This observation indicates the robustness of
the 3-D LAP-MTANN and is consistent with the observations
in our previous studies [1], [2], [16]–[19], [31], [44], [45].
Thus, we expect that the performance of the 3-D LAP-MTANN
on a larger database would be potentially comparable to that
demonstrated in this study.

V. CONCLUSION

We have developed 3-D LAP-MTANNs with the aim of im-
proving the efficiency of an MTANN. With Laplacian eigen-

functions, we were able to reduce the time required for training
of MTANNs substantially while the classification performance
was maintained in terms of the reduction of FPs in a CAD
scheme for detection of polyps in CTC.
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