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SUMMARY Computer-aided detection (CADe) and diagnosis (CAD)
has been a rapidly growing, active area of research in medical imaging. Ma-
chine leaning (ML) plays an essential role in CAD, because objects such as
lesions and organs may not be represented accurately by a simple equation;
thus, medical pattern recognition essentially require “learning from exam-
ples.” One of the most popular uses of ML is the classification of objects
such as lesion candidates into certain classes (e.g., abnormal or normal, and
lesions or non-lesions) based on input features (e.g., contrast and area) ob-
tained from segmented lesion candidates. The task of ML is to determine
“optimal” boundaries for separating classes in the multi-dimensional fea-
ture space which is formed by the input features. ML algorithms for clas-
sification include linear discriminant analysis (LDA), quadratic discrimi-
nant analysis (QDA), multilayer perceptrons, and support vector machines
(SVM). Recently, pixel/voxel-based ML (PML) emerged in medical image
processing/analysis, which uses pixel/voxel values in images directly, in-
stead of features calculated from segmented lesions, as input information;
thus, feature calculation or segmentation is not required. In this paper, ML
techniques used in CAD schemes for detection and diagnosis of lung nod-
ules in thoracic CT and for detection of polyps in CT colonography (CTC)
are surveyed and reviewed.
key words: machine learning in medical imaging, computer-aided diag-
nosis, classification, pixel-based machine learning, lung nodule, colorectal
polyp, CT colonography

1. Introduction

CAD [1], [2] has been a rapidly growing, active area of
research in medical imaging. CAD is defined as detec-
tion and/or diagnosis made by a radiologist/physician who
takes into account the computer output as a “second opin-
ion” [2]. Evidence suggests that CAD can help improve
the diagnostic performance of radiologists/physicians in
their image interpretations [3]–[6]. Consequently, many in-
vestigators have participated and developed CAD schemes
such as those for detection of lung nodules in chest radio-
graphs (also known as chest x-rays; CXRs) [7]–[10] and
in thoracic CT [11]–[14], those for detection of microcal-
cifications/masses in mammography [15], breast MRI [16],
and breast US [17], and those for detection of polyps in
CTC [18]–[21].

A CADe scheme of lesions in medical images gener-
ally consists of two major components: (1) identification
of lesion candidates and (2) classification of the identified
candidates into lesions or non-lesions. Segmentation of
the organ of interest is the first necessary step before the
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identification of lesion candidates. The development of the
first component, the identification of lesion candidates, gen-
erally aims at obtaining a high sensitivity level, because the
sensitivity lost in this step cannot be recovered in the later
step. The second component, the classification of the iden-
tified candidates, is very important, because it determines
the final performance of a CAD scheme. The development
of the second component aims at removing as many non-
lesions (i.e., false-positive (FP) detections in the first step) as
possible while minimizing the removal of lesions (i.e., true-
positive detections in the first step). Minimizing FPs is very
important, because a large number of FPs could adversely
affect the clinical application of CADe. A large number
of FPs is likely to confound the radiologist’s task of image
interpretation and thus lower radiologist efficiency. In ad-
dition, radiologists may lose their confidence in CADe as
a useful tool. The evaluation of the standalone performance
of a developed CAD scheme is the last step of CAD de-
velopment, and the evaluation of radiologists’ performance
with the use of the developed CAD scheme is the important
last step in CAD research.

ML plays a very important role in a CAD scheme, be-
cause tasks on medical images in a CAD scheme require
“learning from examples (or data).” Objects in medical im-
ages such as lesions and organs may be too complex to be
represented accurately by a simple equation. Modeling of
such complex objects often requires a number of parameters
that have to be determined by examples or data. For exam-
ple, a lung nodule is generally modeled as a solid sphere,
but there are nodules of various shapes and nodules with
internal inhomogeneities, such as spiculated nodules and
ground-glass nodules. A polyp in the colon is modeled as
a bulbous object, but there are also polyps which have a flat
shape [22], [23]. Thus, CAD schemes need “learning from
examples or data” to determine a number of parameters in
a complex model. ML has been used in the second major
step of a CAD scheme, i.e., classification of identified le-
sion candidates into certain classes (e.g., abnormal or nor-
mal, lesions or non-lesions, and malignant or benign) based
on input features (e.g., contrast, area, and circularity) ob-
tained from segmented lesion candidates (This class of ML
is referred to as feature-based ML, or simply as a classifier).
The task of ML here is to determine “optimal” boundaries
for separating classes in the multi-dimensional feature space
which is formed by the input features.

ML algorithms for classification include LDA, QDA,
multilayer perceptron (one of the most popular artificial
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neural network (ANN) models) [24], and support vector
machines [25]. Such ML algorithms have been applied to
lung nodule detection in CXR [26] and thoracic CT [12],
[27], classification of lung nodules into benign or malig-
nant in CXR [28] and thoracic CT [29], and polyp detec-
tion in CTC [18], [30]. Recently, as available computational
power has increased dramatically, PML emerged in medi-
cal image processing/analysis which uses pixel/voxel values
in images directly, instead of features calculated from seg-
mented regions, as input information; thus, feature calcu-
lation or segmentation is not required. PML has also been
used in the classification of the identified lesion candidates
in CAD schemes.

In this paper, ML techniques used in CAD schemes for
detection and diagnosis of lung nodules in CT and for de-
tection of polyps in CTC are surveyed and reviewed. Sur-
vey papers for CAD in thoracic CT have been published,
including one for lung image analysis in CT with empha-
sis on a comprehensive survey for computer analysis of the
lungs [31], one for CAD in thin-section CT [32], one for
CAD in CT with emphasis on CAD performance [33], one
for CAD in CT with emphasis on performance comparisons
with clinical aspects [34], and one for CAD in both thoracic
CT and CTC with emphasis on a methodological overview
of major steps in CAD schemes [35]. This present paper
focuses on surveys and comparisons of ML techniques in
CADe and CADx schemes in thoracic CT and CTC.

2. Classes of Classification Techniques in CAD

There are three classes of classification techniques that have
been developed and used in CAD schemes: feature-based
classifiers (or feature-based ML), PML, and non-ML-based
methods that are defined as methods that do not use ML
techniques, such as a procedure that uses a geometrical re-
lationship in a non-learning way. Non-ML methods are not
surveyed in this paper.

2.1 Feature-based Classifiers

When an ML algorithm is used for classification, it is gen-
erally called a classifier. A standard classification approach
based on a classifier such as a multilayer perceptron is illus-
trated in Fig. 1. First, target lesions are segmented by using
a segmentation method. Next, features are extracted from
the segmented lesions. Features may include morphologic
(or shape-based), gray-level-based (including histogram-
based), and texture features. Then, extracted features are
entered as input to an ML model such as a multilayer per-
ceptron [24]. The ML model is trained with sets of input fea-
tures and correct class labels. A class label of 1 is assigned
to the corresponding output unit when a training sample be-
longs to a certain class (e.g., class A), and 0 is assigned to
the other output units (e.g., classes B, C, etc.). In the case of
two-class classification, one output unit instead of two out-
put units is often used with the output value 0 being class A,
and 1 being class B. After training, the class of the unit with

Fig. 1 Feature-based ML (feature-based classifier) for classification of
a detected and segmented lesion.

the maximum value is determined to be the corresponding
class to which an unknown sample belongs. For details of
feature-based classifiers, refer to one of many textbooks in
pattern recognition such as [24], [25], [36], [37].

There are several important issues to be considered in
the design of ML techniques: generalization, over-fitting,
curse of dimensionality, training data annotation, and fea-
ture selection.

Generalization in ML is the ability of a trained ML
model to perform on unseen cases. The generalization per-
formance of the ML model is estimated by using cases in
a test database, which is often lower than the performance
for training cases. How to design an ML model with a high
generalization performance is an important topic, which is
closely related to the over-fitting issue. If an ML model is
trained with only a small number of cases, the generaliza-
tion ability will be lower, because the ML model may fit
only the training cases. This is known as “over-training”
(or “over-fitting”) [38]. Over-fitting occurs when the num-
ber of training cases is too small to determine parameters
in the ML model sufficiently. For achieving a high general-
ization performance, a large number of training cases, e.g.,
400–800 cases, is generally required for an ANN in a CADs
scheme [39]. For detailed information, please refer to the
literature such as [37], [40].

How to estimate the generalization performance with
a finite number of testing cases is an important topic as well.
To estimate the generalization performance better, resam-
pling schemes such as leave-one-out cross validation, N-fold
cross validation, and bootstrapping are often employed [40].
The curse of dimensionality [41] is referred to as the follow-
ing phenomenon: As the dimensionality of the input feature
space for a ML model increases subject to the number of
input features, the number of training samples required for
the ML model increases exponentially. For detailed infor-
mation, please refer to the literature such as [40]. To avoid
the curse of dimensionality, feature selection and/or dimen-
sionality reduction techniques are often utilized.

Annotating training cases is also an important topic,
because the annotation is expensive or time-consuming
when the number of training cases is large. There are meth-
ods for reducing the annotation labor or annotation itself in
the general ML field, but the quality of annotation (or de-
termining “gold standard”) is more important in the CAD
research area. In order for the study to be clinically mean-
ingful, “gold standard” annotations (or labels) have to be
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determined by using more reliable/accurate examinations,
e.g., the “gold standard” for lung nodule presence in screen-
ing CT should be established by using their confirmation in
upper-level follow-up examinations such as diagnostic CT
or high-resolution CT (HRCT).

Feature selection has long been an active research topic
in ML, because it is one of the main factors that determine
the performance of a classifier. It avoids the curse of di-
mensionality by reducing the input dimension to the clas-
sifier. In general, many features are extracted from seg-
mented lesions as the classifier input. Not all of the fea-
tures, however, would be useful for a classifier to distin-
guish between lesions and non-lesions, because some of
them might be highly correlated with each other or redun-
dant; some of them may not be strongly associated with
the given classification task. For designing a classifier with
high performance, it is crucial to select “effective” features.
In the field of CADe research, one of the most popular
feature selection methods is a stepwise feature selection
based on Wilks’ lambda. The method has been applied in
various CADe schemes because of its simplicity [12], [29],
[42]. The Wilks’ lambda criterion is good for LDA, but
not necessarily for nonlinear classifiers. One of the most
widely used deterministic feature selection methods is se-
quential forward or backward floating selection (SFFS or
SBFS) [43]. SBFS was used for selection of input fea-
tures for ANNs [44], [45]. SFFS was used for feature selec-
tion combined with various classifiers such as Naı̈ve Bayes,
SVMs, and AdaBoost [46] in different CADe schemes. Re-
cently, Xu and Suzuki proposed SFFS coupled with an SVM
for selection of the most relevant features that maximize
the area under the receiver-operating-characteristic (ROC)
curve (AUC) [47].

2.2 Pixel/voxel/patch-Based Machine Learning (PML)

Recently, as available computational power has increased
dramatically, pixel/voxel/patch-based ML (PML) [35] emerged
in medical image processing/analysis, which uses pixel/voxel
values in images directly instead of features calculated from
segmented regions as input information; thus, feature cal-
culation or segmentation is not required. Because PML
can avoid errors caused by inaccurate feature calculation
and segmentation, the performance of PML can potentially
be better for subtle/complex lesions than that of common
feature-based classifiers.

There are three classes of PMLs: neural fil-
ters [48]–[50] (including neural edge enhancers [51], [52]),
convolution neural networks (NNs) [53]–[57] (including
shift-invariant NNs [58], [59]), and massive-training artifi-
cial neural networks (MTANNs) [19], [60]–[63] (including
multiple MTANNs [12], [49], [50], [60], [64], [65], a mix-
ture of expert MTANNs [20], [66], a multi-resolution
MTANN [61], a Laplacian eigenfunction MTANN (LAP-
MTANN) [67], a massive-training support vector regression
(MTSVR), and a massive-training Gaussian process regres-
sion [68]). For details of the architectures and applications

Fig. 2 Architecture of an MTANN (a class of PML) consisting of an ML
regression model (e.g., linear-output ANN regression and support-vector
regression) with sub-region (local window or patch) input and single-pixel
output.

of PMLs in medical imaging, refer to a survey paper on
PMLs [35].

By extending the neural filter and the neural edge en-
hancer, two-dimensional (2D) MTANNs [11], which are
a class of a PML based on an ANN regression model,
have been developed for accommodating the task of dis-
tinguishing a specific opacity from other opacities in med-
ical images. The MTANN learns the relationship between
input images and corresponding “teaching” images (i.e.,
ideal or desired images) to distinguish lesions from non-
lesions (i.e., FPs). The MTANN is trained with a massive
number of subregions/subvolumes extracted from input im-
ages together with teaching pixels; hence the term “mas-
sive training”. The architecture of an MTANN is shown
in Fig. 2. A 2D MTANN consists of a linear-output mul-
tilayer ANN regression model, which is capable of operat-
ing on voxel data directly [51], [52]. The MTANN is trained
with input images/volumes and the corresponding “teach-
ing” images/volumes for enhancement of a specific pattern
and suppression of other patterns. The input to the MTANN
consists of voxel values in a sub-region/volume (local win-
dow or patch) extracted from an input image/volume. The
class of MTANNs has been used for classification, such as
FP reduction in CAD schemes for detection of lung nod-
ules in CXR [7] and CT [5], [11], [12], distinction between
benign and malignant lung nodules in CT [65], and FP re-
duction in a CAD scheme for polyp detection in CTC [19],
[20], [66]–[68]. The MTANNs have also been applied to
pattern enhancement and suppression such as separation of
bones from soft tissue in CXR [61], [62], and enhancement
of lung nodules in CT [63].

3. Classification in CAD of the Thorax

Lung cancer continues to rank as the leading cause of cancer
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deaths in America and other nations such as Japan. The
number of lung cancer deaths in each year is greater than
the combined number of breast, colon, and prostate can-
cer deaths in the United States [69]. Because CT is more
sensitive than CXR in the detection of small nodules and
of lung carcinoma at an early stage [70]–[72], lung can-
cer screening programs are being investigated in the United
States [73], Japan [70], [71], and other countries with low-
dose (LD) helical CT as the screening modality. Evi-
dence suggests that early detection of lung cancer may allow
more timely therapeutic intervention and thus a more fa-
vorable prognosis for the patient [71], [74]. Helical CT,
however, generates a large number of images that must
be read by radiologists/physicians. This may lead to “in-
formation overload” for the radiologists/physicians. Fur-
thermore, radiologists/physicians may miss some cancers
during interpretation of CT images. Therefore, a CAD
scheme for detection of lung nodules in LDCT images has
been investigated as a useful tool for lung cancer screening.

Classification is a major component in CAD schemes
for detection and diagnosis of lung nodules in CT. CAD
schemes for detection of lung nodules in thoracic CT (i.e.,
CADe) generally consists of two major steps: (1) identifica-
tion of nodule candidates, followed by (2) classification of
the identified nodule candidates into nodules or non-nodules
(i.e., normal anatomic structures). The second major step in
a CADe scheme aims at classification of the nodule candi-
dates identified in the first step into nodules or non-nodules,
whereas a CAD scheme for diagnosis (often abbreviated as
CADx) aims at classification of the detected nodules (either
by a computer or by a radiologist) into benign or malignant
nodules.

3.1 Detection of Lung Nodules

Technical developments of the classification step in CADe
schemes for detection of lung nodules in CT are summarized
in Table 1. In 1994, Giger et al. [75] developed a CADe
scheme for detection of lung nodules in CT. In 1999,
Armato et al. [13], [27] extended the method to include 3D
feature analysis, a rule-based scheme, and LDA for clas-
sification. They evaluated the performance of their scheme
with a leave-one-out cross-validation (LOO) test. Kanazawa
et al. [76] employed a rule-based scheme with features for
classification in their CADe scheme. Gurcan et al. [77] em-
ployed a rule-based scheme based on 2D and 3D features,
followed by LDA for classification. Lee et al. [78] employed
a simpler approach which is a rule-based scheme based on
13 features for classification. Suzuki et al. [60] developed
a PML technique called an MTANN for reduction of a sin-
gle source of FPs and a multiple MTANN scheme for reduc-
tion of multiple sources of FPs that had not been removed by
LDA. This MTANN approach did not require a large num-
ber of training cases: the MTANN was able to be trained
with 10 positive and 10 negative cases [79]–[81], whereas
feature-based classifiers generally require 400–800 train-
ing cases [79]–[81]. Arimura et al. [12] employed a rule-

based scheme followed by LDA or by the MTANN [60]
for classification. Farag et al. [82] developed a template-
modeling approach that uses level sets for classification. Ge
et al. [83] incorporated 3D gradient field descriptors and
ellipsoid features in LDA for classification. Matsumoto
et al. [84] employed LDA with 8 features for classification.
Yuan et al. [85] tested a commercially available CADe sys-
tem (ImageChecker CT, R2 Technology, CA). Bi et al. [86]
developed an asymmetric cascade of classifiers for classifi-
cation. Pu et al. [87] developed a scoring method based on
the similarity distance of medial axis-like shapes for clas-
sification. Retico et al. [88] used the MTANN approach
(i.e., a PML technique) for classification. Ye et al. [89] used
a rule-based scheme followed by a weighted SVM for clas-
sification. Golosio et al. [90] used a fixed-topology ANN for
classification, and they evaluated their CADe scheme with
a publicly available database from the Lung Image Database
Consortium (LIDC) [91]. Murphy et al. [92] used a k-
nearest-neighbor classifier for classification. Tan et al. [93]
developed a feature-selective classifier based on a genetic al-
gorithm and ANNs for classification. Messay et al. [94] de-
veloped a sequential forward selection process for selecting
the optimum features for LDA and QDA. Riccard et al. [95]
used a heuristic approach based on geometric features, fol-
lowed by an SVM for classification. Other than the de-
velopment of CADe schemes, Rao et al. [96] performed an
observer performance study with a CADe scheme. Thus,
various approaches have been proposed for the classifica-
tion component in CADe schemes. There are large vari-
ations in the performance of CADe schemes: sensitivities
ranged from 70–94% with 0.7–64.1 FPs per case. It is diffi-
cult to say which CADe scheme performs better because of
different databases and testing methods used, without a di-
rect comparison. Some studies used thick-slice CT, and oth-
ers used thin-slice CT. Some studies used nodules missed
by radiologists, and some used nodules detected by radi-
ologists. Evaluation of a CAD scheme with missed cases
would be desirable, because the CAD scheme is likely to
help radiologists more with such cases. Some studies used
screening CT, some used diagnostic CT, and some used
HRCT. Testing with screening CT cases would be more
appropriate, given the purpose of CADe schemes. Some
studies used an LOO test, some used an independent test,
and some used N-fold cross-validation. Each testing method
has its own advantages and limitations. For detailed infor-
mation, please refer to the literature [39], [40], [97]. Since
the current sensitivity and FP rate of CADe schemes are not
high enough compared to radiologists’ performance, further
developments of techniques to improve the performance
would be necessary. In addition, more studies on the proof
of the usefulness of CADe such as observer performance
studies and clinical trials would be beneficial in the field.

3.2 Diagnosis of Lung Nodules

Although CT has been shown to be sensitive to the de-
tection lung nodules, it may be difficult for radiologists
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Table 1 Classification components in CADe schemes for detection of lung nodules in CT.

to distinguish between benign and malignant nodules on
LDCT images. In a screening program with LDCT in New
York, 88% (206/233) of suspicious lesions were found to be
benign on follow-up examinations [72]. In a screening pro-
gram in Japan, only 83 (10%) among 819 scans with sus-
picious lesions were diagnosed to be cancer cases [98]. Ac-
cording to recent findings at the Mayo Clinic, 2,792 (98.6%)
of 2,832 nodules detected by a multidetetor CT were benign,
and 40 (1.4%) nodules were malignant [99]. Thus, a large
number of benign nodules were found with CT; follow-up
examinations such as HRCT and/or biopsy were performed
on these patients. Therefore, CADx schemes for distinction
between benign and malignant nodules in LDCT would be
useful for reducing the number of “unnecessary” follow-up
examinations.

A number of researchers developed CADx schemes

for this task, which distinguish malignant nodules from be-
nign nodules automatically and/or determine the likelihood
of malignancy for the detected nodules. The performance
of the schemes was generally evaluated by means of ROC
analysis [100], because this task is a two-class classifica-
tion. The AUC [101] was often used as a performance index.
Studies on the development of CADx schemes for distinc-
tion between malignant and benign lung nodules in CT are
summarized in Table 2. In 1998, Kawata et al. [102] de-
scribed the calculation of nodule features for the purpose of
distinction between malignant and benign nodules. In 1999,
McNitt-Gray et al. [103] developed a classification scheme
based on LDA for distinction between malignant and be-
nign nodules in HRCT. They achieved a correct classifi-
cation rate of 90.3% for a database of 17 malignant and
14 benign nodules. Matsuki et al. [104] used an ANN with
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Table 2 Classification between malignant and benign nodules (CADx)
for thoracic CT.

subjective features determined by radiologists for classifica-
tion between 99 malignant and 56 benign nodules in HRCT
and achieved an AUC value of 0.951. Aoyama et al. [42]
used LDA for distinction between malignant and benign
nodules in thick-slice screening LDCT. They achieved an
AUC value of 0.846 for a database of 73 patients with 76 pri-
mary cancers and 342 patients with 413 benign nodules.
Mori et al. [105] developed a classification scheme for dis-
tinction between malignant and benign nodules in contrast-
enhanced (CE) CT by using LDA with 3 features (i.e., atten-
uation, shape index, and curvedness value). Shah et al. [106]
employed different classifiers such as logistic regression and
QDA with features selected from a group of 31 by using
stepwise feature selection based on the Akaike information
criterion. Their scheme with logistic regression achieved
an AUC value of 0.92 in the distinction between 19 malig-
nant and 16 benign nodules in thin-slice CE-CT. Suzuki
et al. [65] developed a PML technique called a multiple
MTANN scheme for the classification task. They achieved
an AUC value of 0.88 for thick-slice screening LDCT scans
of 73 patients with 76 primary cancers and 342 patients with

413 benign nodules. Iwano et al. [107] achieved a sensitivity
of 76.9% and a specificity of 80% with their scheme based
on LDA with 2 features in their evaluation of HRCT images
of 52 malignant and 55 benign nodules. Way et al. [108]
incorporated nodule surface features into their classification
based on LDA or an SVM, and they achieved an AUC value
of 0.857 in the classification of 124 malignant and 132 be-
nign nodules in 152 patients. Chen et al. [109] employed
an ANN ensemble to classify 19 malignant and 13 be-
nign nodules, and they achieved an AUC value of 0.915.
Lee et al. [110] developed a two-step supervised learning
scheme combining a genetic algorithm with a random sub-
space method, and they achieved an AUC value of 0.889 in
the classification between 62 malignant and 63 benign nod-
ules. Other than CADx approaches, Kawata et al. [111] de-
veloped a content-based image retrieval approach to provide
radiologists with similar images for improving their diag-
nostic performance in distinction between benign and ma-
lignant nodules. Kawata et al. [112] also developed quanti-
tative classification measures that correlate with pathologic
characteristics of lung cancer and patients’ prognosis. Thus,
various approaches to CADx schemes have been proposed.
The database size varied in different studies, from 31–489.
Generally achieving high performance for a large database
is challenging, because it is likely to contain more varia-
tions of nodules. CT scans in the databases included screen-
ing LDCT, standard diagnostic CT, and HRCT. Diagnosis
of lung nodules on LDCT images would be the most chal-
lenging due to a low image quality. Most studies used an
LOO test. There are variations in the performance of CADx
schemes: AUC values ranged from 0.846–0.951. Once
again, it is difficult to say which CADx scheme performs
better without a direct comparison. Since the current perfor-
mance of CADx schemes would be close to or comparable
to radiologists’ performance, more studies on the proof of
the usefulness of CADx such as observer performance stud-
ies and clinical trials would be beneficial in the field.

4. Classification in CADe of the Colon

4.1 CADe for Detection of Polyps in CTC

Colorectal cancer is the second leading cause of cancer
deaths in the United States [114]. Evidence suggests that
early detection and removal of polyps (i.e., precursors of
colorectal cancer) can reduce the incidence of colorectal
cancer [115]. CTC, also known as virtual colonoscopy, is
a technique for detecting colorectal neoplasms by use of
CT scans of the colon. The diagnostic performance of
CTC in detecting polyps, however, remains uncertain due
to a propensity for perceptual errors in detection of polyps.
CADe of polyps has been investigated to address that issue
with CTC [116]. CADe has the potential to improve radiol-
ogists’ diagnostic performance in the detection of polyps.
A number of investigators have developed automated or
semi-automated CADe schemes for the detection of polyps
in CTC [117]–[120].
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Table 3 Classification components in CADe schemes for detection of polyps in CT colonography.

4.2 Classification Component in CADe Schemes

Major sources of non-polyps (i.e., FPs) remaining after the
first step in CADe schemes include haustral folds, resid-
ual stool, rectal tubes, the ileocecal valve, and extra-colonic
structures such as the small bowel and stomach. Technical
developments of the classification step in CADe schemes
for detection of polyps in CTC are summarized in Ta-
ble 3. Many investigators employed feature-based classi-
fiers in the second component of CADe schemes. Gokturk
et al. [121] employed an SVM with histogram input that is
used as a shape signature for classification. Näppi et al.
developed a classification method based on volumetric fea-
tures [122]. Acar et al. [123] used edge-displacement fields
to model the changes in consecutive cross-sectional views

of CTC data and QDA for classifcation. Jerebko et al. [30]
used a multilayer perceptron to classify polyp candidates
in their CADe scheme and improved the performance by
incorporating a committee of multilayer perceptrons [124]
and a committee of SVMs [125]. Wang et al. [126] devel-
oped a classification method based on LDA with internal
features (geometric, morphologic, and textural) of polyps.
Suzuki et al. [127] developed a PML technique called a 3D
MTANN by extending the structure of a 2D MTANN [11]
to process 3D volume data in CTC. They removed FPs due
to rectal tubes by using a single 3D MTANN [127] and mul-
tiple sources of FPs by developing and using a mixture of
expert 3D MTANNs [20]. Li et al. [128] developed a classi-
fication method based on an SVM classifier with wavelet-
based features. Wang et al. [129] improved the SVM
performance by using nonlinear dimensionality reduction
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(i.e., a diffusion map and locally linear embedding). Yao
at al. [130] employed a topographic height map for calculat-
ing features for an SVM classifier. Suzuki et al. [66] tested
a CADe scheme with MTANNs (i.e., a PML technique)
on polyps that had been “missed” by radiologists [131] in
a multicenter clinical trial [132]. Suzuki et al. [67] also im-
proved the efficiency of the MTANN approach by incor-
porating principal-component analysis-based and Laplacian
eigenmap-based dimension reduction techniques. Xu and
Suzuki [68] showed that other nonlinear regression models
such as support vector and nonlinear Gaussian process re-
gression models instead of the ANN regression model could
be used as the core model in the MTANN framework. Zhou
et al. [133] developed projection features for an SVM classi-
fier. Wang et al. [134] improved the performance of a CAD
scheme by adding statistical curvature features in multiple-
kernel learning. Multiple kernel learning is a recent topic in
SVM research.

5. Conclusion

In this paper, ML techniques used in CAD schemes for the
thorax and colon have been surveyed. These CAD schemes
included CADe and CADx of lung nodules in thoracic CT
and CADe of polyps in CTC. The second of the two major
components of most CAD schemes, i.e., the classification
of lesion candidates, used ML techniques. There are three
classes of classification techniques used in CAD schemes:
feature-based ML, PML, and non-ML methods. Feature-
based ML is the most popular technique in the classifica-
tion step. Various ML models have been used in this class,
including LDA, a multilayer perceptron, an SVM, an ML
ensemble, and multiple-kernel learning. Feature selection
is an important step for maximizing the performance of
a feature-based ML technique, and thus it was often used.
The most popular feature selection method in CAD is step-
wise feature selection with Wilks’ lambda for linear classi-
fiers such as LDA. Recently, feature selection for nonlin-
ear classifiers has been studied. The most recent develop-
ment is SFFS under the maximum AUC criterion coupled
with an SVM. Recently, PML emerged and used for re-
moval of FPs that had not been removed by feature-based
ML. An MTANN is a representative PML model, and there
are variations of the MTANNs, including a mixture of expert
MTANNs, MTSVR, and Lap-MTANNs. Thus, many inves-
tigators have been studying ML in CAD, which indicates
the importance of ML in this field. Most CAD schemes em-
ploy feature-based MLs that had originally been developed
and established in the pattern recognition field. On the other
hand, MTANNs were born in the medical imaging field. Ev-
idence demonstrated that PML including MTANNs was ef-
fective for improving the performance of CAD schemes. It
is hoped that this survey will be useful for researchers in un-
derstanding the past studies and the current status of ML in
CAD, and in advancing the research area of ML in CAD.
It is also hoped to see more original ML techniques/models
created in the CAD field.
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