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Abstract The use of machine learning (ML) has been

increasing rapidly in the medical imaging field, including

computer-aided diagnosis (CAD), radiomics, and medical

image analysis. Recently, an ML area called deep learning

emerged in the computer vision field and became very

popular in many fields. It started from an event in late

2012, when a deep-learning approach based on a convo-

lutional neural network (CNN) won an overwhelming

victory in the best-known worldwide computer vision

competition, ImageNet Classification. Since then,

researchers in virtually all fields, including medical imag-

ing, have started actively participating in the explosively

growing field of deep learning. In this paper, the area of

deep learning in medical imaging is overviewed, including

(1) what was changed in machine learning before and after

the introduction of deep learning, (2) what is the source of

the power of deep learning, (3) two major deep-learning

models: a massive-training artificial neural network

(MTANN) and a convolutional neural network (CNN), (4)

similarities and differences between the two models, and

(5) their applications to medical imaging. This review

shows that ML with feature input (or feature-based ML)

was dominant before the introduction of deep learning, and

that the major and essential difference between ML before

and after deep learning is the learning of image data

directly without object segmentation or feature extraction;

thus, it is the source of the power of deep learning,

although the depth of the model is an important attribute.

The class of ML with image input (or image-based ML)

including deep learning has a long history, but recently

gained popularity due to the use of the new terminology,

deep learning. There are two major models in this class of

ML in medical imaging, MTANN and CNN, which have

similarities as well as several differences. In our experi-

ence, MTANNs were substantially more efficient in their

development, had a higher performance, and required a

lesser number of training cases than did CNNs. ‘‘Deep

learning’’, or ML with image input, in medical imaging is

an explosively growing, promising field. It is expected that

ML with image input will be the mainstream area in the

field of medical imaging in the next few decades.

Keywords Deep learning � Convolutional neural network �
Massive-training artificial neural network � Computer-

aided diagnosis � Medical image analysis � Classification

1 Introduction

The use of machine learning (ML) has been increasing

rapidly in the medical imaging field [1–13], including

computer-aided detection (CADe) and diagnosis (CADx)

[14–17], radiomics, and medical image analysis, because

objects such as lesions and organs in medical images may

be too complex to be represented accurately by a simple

equation or model. For example, a lung nodule is generally

modeled as a solid sphere, but there are nodules of various

shapes and inhomogeneous nodules, such as spiculated

nodules and ground-glass nodules. A polyp in the colon is

modeled as a bulbous object, but there are also colorectal

lesions that have a flat shape [18, 19]. Modeling of such
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complex objects needs a complex model with a large

number of parameters. Determining such a large number of

parameters cannot be accomplished manually, but has to be

determined from data. Thus, detection and diagnostic tasks

in medical imaging essentially require ‘‘learning from

examples (or data)’’ for determination of a large number of

parameters in a complex model. Therefore, ML plays an

essential role in the medical imaging field.

One of the most popular uses of ML in computer-aided

diagnosis (CAD), including CADe and CADx, and medical

image analysis [6, 20] is the classification of objects such as

lesions into certain classes (e.g., lesions or non-lesions, and

malignant or benign) based on input features (e.g., contrast,

area, and circularity) obtained from segmented objects. This

class ofML is referred to asMLwith feature input or feature-

based ML. The task of ML is to determine ‘‘optimal’’

boundaries for separating classes in the multi-dimensional

feature space that is formed by the input features [21].

A class of ML that is different from the class of the ML

with feature input (feature-based ML) was proposed and

developed in the field of CAD. The name of the ML

technique in the new class is a ‘‘massive-training artificial

neural network’’ (MTANN) [22]. This class of ML uses

images as input, as opposed to features extracted from a

segmented object. The ML class is referred to as ML with

image input (or image-based ML) [23]. Thus, ML with

image input (image-based ML) does not require feature

calculation or object segmentation. This class of ML can be

classified as end-to-end ML that goes through the entire

process from input images to the final classification.

MTANNs were applied to the reduction of false positives

(FPs) in CADe for detection of lung nodules in CT

[22, 24–27] and in chest radiographs [chest X-ray (CXR)]

[28, 29], the separation of bones from soft tissue in CXR

[29–34], the distinction between benign and malignant lung

nodules in CT [35], and the FP reduction in CADe for

detection of polyps in CT colonography [36–40].

Recently, an ML area called deep learning emerged in

the computer vision field and became very popular in vir-

tually all fields. It started from an event in late 2012. A

deep-learning approach based on a CNN [41] won an

overwhelming victory in the best-known worldwide com-

puter vision competition, ImageNet Classification, with the

error rate smaller by 11% than that in the 2nd place of 26%

[42]. Consequently, the MIT Technology Review named it

one of the top 10 breakthrough technologies in 2013. Since

then, researchers in virtually all fields have started actively

participating in the explosively growing field of deep

learning [43]. Because deep learning directly uses images

as input, it belongs to the class of ML with image input

(image-based ML).

This paper presents an overview of the area of deep

learning in medical imaging, including (1) what has

changed in machine learning before and after the intro-

duction of deep learning, (2) where the source of the power

of deep learning comes from, (3) two major deep-learning

models: a massive-training artificial neural network

(MTANN) and a convolutional neural network (CNN), (4)

similarities and differences between the two models, and

(5) their applications to medical imaging.

2 Overview of machine learning in medical
imaging

2.1 ‘‘Standard’’ ML: ML with feature input

One of the most popular uses of the ML algorithms is

probably classification. In this use, an ML algorithm is

often called a classifier. A standard ML approach in the

computer vision field is illustrated in Fig. 1a. First, objects

(e.g., lesions) in an image are segmented by use of a seg-

mentation technique such as thresholding, edge-based

segmentation, and an active contour model. Next, features

such as contrast, circularity, and size are extracted from the

segmented lesions by use of a feature extractor. Then, the

extracted features are entered as input to an ML model such

as linear or quadratic discriminant analysis (LDA or QDA)

[44], a multilayer perceptron (MLP) [45], and a support

vector machine (SVM) [46]. The ML model is trained with

sets of input features and known class labels. The training

is performed for determination of ‘‘optimal’’ boundaries for

separating classes such as cancer or non-cancer in the

multi-dimensional feature space that is formed by the input

features. After training, the trained ML model determines

to which class a new unknown lesion belongs. Thus, this

class of ML can be referred to as ML with feature input,

feature-based ML, object/feature-based ML, or a classifier.

2.2 ‘‘New’’ ML class: ML with image input

A class of ML that is different from the class of ML with

feature input (feature-based ML or a classifier) was pro-

posed and developed in the field of CAD. Suzuki et al.

invented and developed massive-training artificial neural

networks (MTANNs) for classification between lesions and

non-lesions in medical images [22]. MTANNs use images

as input, as opposed to features extracted from a segmented

lesion. Thus, this class of ML with image input (or image-

based ML) does not require feature calculation or lesion

segmentation, and it can be classified as end-to-end ML

that does the entire process from input images to the final

classification.

A term, deep learning, was proposed for ML models for

a high-level representation of objects by Hinton in 2007,

but it was not recognized widely until late 2012. Deep
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learning became very popular in the computer vision field

after late 2012, when a deep-learning approach based on a

CNN [41] won an overwhelming victory in the best-known

computer vision competition, ImageNet [42]. Deep learn-

ing such as deep belief nets (DBNs) [47] and deep CNNs

uses pixel values in images directly instead of features

calculated from segmented objects as input information;

thus, feature calculation or object segmentation is not

required, as shown in Fig. 1b. Although the development

of segmentation techniques has been studied for a long

time, segmentation of objects is still challenging, especially

for complicated objects, subtle objects, and objects in a

complex background. In addition, defining and extracting

relevant features for a given task is a challenging task, as

calculated features may not have the discrimination power

that is sufficient for classifying objects of interest. Because

deep learning can avoid errors caused by the inaccurate

feature calculation and segmentation that often occur for

subtle or complex objects, the performance of deep learn-

ing is generally higher for such objects than that of com-

mon classifiers (i.e., ML with feature input or object/

feature-based MLs). Deep learning has multiple layers ([4)

of nonlinear or quasi-nonlinear processing to acquire a

high-level representation of objects or features in images.

Compared to ML with feature input (object/feature-based

ML, or a common classifier), deep learning skips steps of

segmentation of objects, feature extraction from the seg-

mented objects, and feature selection for determining

‘‘effective features’’, as shown in Fig. 2. Deep learning is

also called end-to-end ML, because it enables the entire

process to map from raw input images to the final classi-

fication, eliminating the need for hand-crafted features. It is

interesting to note that people do not refer to the use of

MLP with deep layers in the object/feature-based approach

as deep learning, and they still call a shallow CNN with

only a few layers of deep learning, which is the evidence

that people are confused by the terminology, deep learning.

As shown in Fig. 1a, b, the major and essential differ-

ence between ML with feature input (feature-based ML)

and ML with image input (image-based ML) is the use of

pixels in images directly as input to ML models, as

opposed to features extracted from segmented objects. This

is true for ML approaches before and after the introduction

of deep learning. Therefore, the terminology ‘‘deep learn-

ing’’ may mislead people to think that the power of deep

learning comes from its depth. A proper terminology for

Fig. 1 Machine learning in the field of computer vision before and

after the introduction of deep learning. a ML before deep learn-

ing: Standard ML for classifying lesions (i.e., ML with feature input

or feature-based ML) in the field of computer vision. Features (e.g.,

contrast, circularity, and effective diameter) are extracted from a

segmented lesion in an image. Those features are entered as input to

an ML model with feature input (classifier) such as a multilayer

perceptron (MLP) and a support vector machine (SVM). The output

of the classifier consists of class categories such as cancer or non-

cancer. b ML after deep learning: ‘‘New’’ ML class, ML with image

input (image-based ML). Pixel values from an image are directly

entered as input to an ML model with image input model such as a

massive-training artificial neural network (MTANN), a convolutional

neural network (CNN), and a deep belief net (DBN). This class of ML

with image input (image-based ML) includes deep learning. Thus, the

major and essential difference between ML approaches before and

after the introduction of deep learning is direct training of pixels in

images
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the ‘‘deep learning’’ that people use right now would be

ML with image input or image-based ML [23]. The depth

of MLs is still an important attribute that determines the

characteristics or properties of ML models or applications.

When the architecture is deep, the ML model should be

called deep ML with image input (image-based ML) or

deep ML with feature input (feature-based ML).

2.3 History of ML in computer vision and medical

imaging fields

Figure 3 summarizes the history of ML in the fields of

computer vision and medical imaging. Before the

popularity of ‘‘deep learning’’ starting in 2013, ML with

feature input (feature-based ML) as dominant in their

fields. Before 1980, even when the term ‘‘machine learn-

ing’’ did not exist, classical classifiers such as LDA, QDA,

and a k-nearest neighbor classifier (k-NN) were used for

classification. In 1986, MLP was proposed by Rumelhart

and Hinton [45]. The MLP created the 2nd neural network

(NN) research boom (the 1st one was in 1960s). In 1995,

Vapnik proposed an SVM [46] and became the most

popular classifier for a while, partially because of publicly

available code on the Internet. Various ML methods were

proposed, including random forests by Ho et al. in 1995

[48], and dictionary learning by Mairal et al. in 2009 [49].

On the other hand, various ML with image input (image-

based ML) techniques were proposed before the introduc-

tion of the term ‘‘deep learning’’. It started from the

Neocognitron by Fukushima in 1980 [50]. In 1989, LeCun

et al. simplified the Neocognitron and proposed a CNN

[51], but he did not study CNNs very much until recently.

In 1994, Suzuki et al. applied an MLP to cardiac images in

a convolutional way [52]. Two years later, Suzuki et al.

proposed neural filters based on a modified MLP to reduce

noise in images [53], and in 2000, they proposed neural

edge enhancers [54]. Suzuki et al. proposed MTANN for

classification of patterns in 2003 [22], detection of objects

in 2009 [26], separation of specific patters from other

patterns in X-ray images in 2006 [31], and reduction of

noise and artifacts on CT images in 2013 [55]. Hinton et al.

proposed a deep brief network (DBN) in 2006 [47], and

they created the term ‘‘deep learning’’ a year later. Deep

learning was not recognized much until late 2012. In late

2012, a CNN won in the ImageNet competition [42].

Among them, Neocognitron, MLP, CNN, neural filters,

MTANN, and DBN are capable of deep architecture. Thus,

Fig. 2 Changes in ML approaches before and after the introduction

of ML with image input (image-based ML) including ‘‘deep

learning’’. Compared to ML with feature input (feature-based ML,

or a classifier with features), ML with image input including deep

learning skips steps of segmentation of objects, feature extraction

from the segmented objects, and feature selection for determining

‘‘effective features’’, which offers an end-to-end ML paradigm

Fig. 3 The history of ML in the

fields of computer vision and

medical imaging. There are two

distinct ML approaches in these

fields. Before the popularity of

‘‘deep learning’’ starting in

2013, ML with feature input

(feature-based ML) was

dominant in the fields. After

that, ML with image input

(image-based ML) including

deep learning gained

enthusiastic popularity, but it

has a long history
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at present the term ‘‘deep learning’’, which is ML with

image input (image-based ML) with deep architecture, to

be accurate, does not offer new ML models, but rather it is

essentially a collection of earlier work on ML (namely, ML

with image input) that was recently recognized again with a

different terminology.

3 Two major models in the class of ML with image
input

3.1 Massive-training artificial neural network

(MTANN)

In the field of signal and image processing, supervised

nonlinear filters based on an MLP model (or a multilayer

NN), called neural filters, have been proposed [56, 57]. The

neural filter employs a linear-output-layer NN model as a

convolution kernel of a filter. The inputs to the neural filter

are an object pixel and spatially/spatiotemporally adjacent

pixels in a subregion (or local window, image patch, ker-

nel). The output of the neural filter is a single pixel. The

neural filter is trained with input images and corresponding

‘‘teaching’’ (desired or ideal) images. The class of neural

filters is used for image processing tasks such as edge-

preserving noise reduction in radiographs and other digital

pictures [56, 57], edge enhancement from noisy images

[58], and enhancement of subjective edges traced by a

physician (‘‘semantic segmentation’’) in left ventriculo-

grams [59].

AnMTANNwas developed by extending of neural filters

to accommodate various pattern-recognition tasks [22],

including classification [22, 28, 31, 35–40], pattern

enhancement and suppression [31], and object detection

[26]. In other words, neural filters are a subclass or a special

case of MTANNs. A two-dimensional (2D) MTANN was

first developed for distinguishing a specific pattern from

other patterns in 2D images [22]. The 2D MTANN was

applied to reduction of FPs in CAD for detection of lung

nodules on 2D CT slices in a slice-by-slice way [22, 24, 25],

and in chest radiographs (CXR) [28], the separation of bones

from soft tissue in CXR [30–32], and the distinction between

benign andmalignant lung nodules on 2DCT slices [35]. For

processing of three-dimensional (3D) volume data, a 3D

MTANNwas developed by extending of the structure of the

2DMTANN, and it was applied to 3DCT colonography data

[36–40]. Various MTANN architectures were developed,

including multiple MTANNs [22, 24, 28, 35, 56, 57], a

mixture of expert MTANNs [36, 37], a multi-resolution

MTANN [31], a Laplacian eigenfunction MTANN [40], as

well as a massive-training support vector regression

(MTSVR) and a massive-training nonlinear Gaussian pro-

cess regression [39].

The general architecture of an MTANN is illustrated in

Fig. 4. An MTANN consists of an ML model such as

linear-output-layer artificial NN (ANN) regression, support

vector regression [46, 60], and nonlinear Gaussian process

regression, which is capable of operating on pixel data

directly [58]. The core part of the MTANN consists of an

input layer, multiple hidden layers, and an output layer, as

illustrated in Fig. 4a. The linear-output-layer ANN

regression model employs a linear function instead of a

sigmoid function as the activation function of the unit in

the output layer because the characteristics of an ANN

were improved significantly with a linear function when it

was applied to the continuous mapping of values in image

processing [58]. Note that the activation functions of the

units in the hidden layers are a sigmoid function for non-

linear processing. The input to the MTANN consists of

pixel values in a subregion (image patch), R, extracted

from an input image. The output of the MTANN is a

continuous scalar value, which is associated with the center

pixel in the subregion, represented by

Oðx; y; zÞ ¼ MLfIðx� i; y� j; z� kÞjði; j; kÞ 2 Rg; ð1Þ

where x, y, and z are the coordinate indices, ML(.) is the

output of the ML model, and I(x,y,z) is a pixel value of the

input image. The structure of input units and the number of

hidden units in the ANN may be designed by use of sen-

sitivity-based unit-pruning methods [61, 62]. ML regression

models rather than ML classification models would be

suited for the MTANN framework, because the output of

the MTANN consists of continuous scalar values (as

opposed to nominal categories or classes). The entire output

image is obtained by scanning with the input subregion of

the MTANN in a convolutional manner on the entire input

image, as illustrated in Fig. 4b. This convolutional opera-

tion offers a shift-invariant property that is desirable for

image classification. The input subregion and the scanning

with the MTANN are analogous to the kernel of a convo-

lution filter and the convolutional operation of the filter,

respectively. The output of the MTANN is an image that

may represent a likelihood map, unlike the class of CNNs.

For use of the MTANN as a classifier, a scoring layer is

placed at the end to convert the output probability map into

a single score that represents a likelihood of being a certain

class for a given image, as shown in Fig. 4c. A score for a

given image is defined as

S ¼
X

ðx;y;zÞ2RE

fwðx; y; zÞ � Oðx; y; zÞ; ð2Þ

where fw is a weighting function for combining pixel-based

output responses from the trained MTANN into a single

score, which may often be the same distribution function

used in the teaching images, and with its center corre-

sponding to the center of the region for evaluation, RE. This
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score represents the weighted sum of the estimates for the

likelihood that the image (e.g., a lesion candidate) contains

an object of interest (e.g., a lesion) near the center, i.e., a

higher score would indicate an object (e.g., a lesion) of

interest, and a lower score would indicate other patterns.

Thresholding is then performed on the scores for distinc-

tion between classes.

The MTANN is trained with input images and the cor-

responding ‘‘teaching’’ (desired or ideal) images for

enhancement of a specific pattern and suppression of other

patterns in images. For enhancement of objects of interest

(e.g., lesions), L, and suppression of other patterns (e.g.,

non-lesions), the teaching image contains a probability map

for objects of interest, represented by

Tðx; y; zÞ ¼ a certain distribution L

0 otherwise.

�
ð3Þ

For enrichment of training samples, a training region,

RT, extracted from the input images is divided pixel by

pixel into a large number of overlapping subregions. Single

pixels are extracted from the corresponding teaching ima-

ges as teaching values. The MTANN is massively trained

by use of each of a large number of input subregions

together with each of the corresponding teaching single

pixels; hence, the term ‘‘massive-training ANN.’’ The error

to be minimized by training of the MTANN is defined as:

E ¼ 1

P

X

ðx;y;zÞ2RT

fTðx; y; zÞ � Oðx; y; zÞg2; ð4Þ

where P is the number of total training pixels in the

training region, RT. The MTANN is trained by a linear-

output-layer back propagation (BP) algorithm [58] which

was derived for the linear-output-layer ANN model by use

of the generalized delta rule [45]. After training, the

MTANN is expected to output the highest value when an

object of interest is located at the center of the subregion of

the MTANN, a lower value as the distance from the sub-

region center increases, and zero when the input subregion

contains other patterns.

3.2 Convolutional neural networks (CNNs)

A CNN can be considered as a simplified version of the

Neocognitron model that was proposed to simulate the

human visual system in 1980 by Fukushima [50]. LeCun

et al. developed a CNN called LeNet for handwritten ZIP-

code recognition [51]. The LeNet has 5 layers: 1 input

layer, 3 hidden layers, and 1 output layer. The input layer

has a small 16 9 16 pixel image. The 3 hidden layers

consist of 2 convolutional layers and 1 fully connected

layer. The architecture of a general CNN is illustrated in

Fig. 5. The input to the CNN is an image, and the outputs

Fig. 4 Architecture of an

MTANN consisting of an ML

model (e.g., linear-output-layer

ANN regression) with subregion

(or image patch, local kernel)

input and single-pixel output.

a Architecture of the core part

of the MTANN. b Entire

architecture of the MTANN for

predicting a likelihood map.

The entire output image

representing a likelihood map is

obtained by scanning with the

input subregion of the MTANN

in a convolutional manner on

the entire input image. c The

MTANN for classification. A

scoring layer is placed in the

end to convert the output

likelihood map into a single

score that represents the

likelihood of being a certain

class for a given input image
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are class categories such as cancer or non-cancer. The

layers are connected with local shift-invariant inter-con-

nections (or convolution with a local kernel). Unlike the

Neocognitron, the CNN has no lateral inter-connections or

feedback loops, and the BP algorithm [45] is used for

training. Each unit (neuron) in a subsequent layer is con-

nected with the units of a local region in the preceding

layer, which offers the shift-invariant property; in other

words, forward data propagation is similar to a shift-in-

variant convolution operation. The data from the units in a

certain layer are convolved with the weight kernel, and the

resulting value of the convolution is collected into the

corresponding unit in the subsequent layer. This value is

processed further by the unit through an activation function

and produces an output datum. The activation function

between two layers is a nonlinear or quasi-nonlinear

function such as a rectified linear function and a sigmoid

function. As layers go deeper (close to the output layer),

the size of the local region in a layer is reduced in a pooling

layer. In the pooling layer, the pixels in the local region are

sub-sampled with a maximum operation. For deriving the

training algorithm for the CNN, the generalized delta rule

[45] is applied to the architecture of the CNN. For distin-

guishing an image containing an object of interest from an

image without it, a class label for the object, the number 1,

is assigned to the corresponding output unit, and zeros to

other units. A softmax function is often used in the output

layer, called a softmax layer.

3.3 Comparisons between the two ‘‘deep learning’’

models

3.3.1 Architecture

CNNs and MTANNs are in the class of ML with image

input (image-based ML) or ‘‘deep learning’’. Both models

use pixel values in images directly as input information,

instead of features calculated from segmented objects; thus,

they can be classified as end-to-end ML models that do the

entire process from input images to the final classification.

Both models can have deep layers ([4 layers). There are

major differences between CNNs and MTANNs in (1)

architecture, (2) output, and (3) the required number of

training samples. (1) In CNNs, convolutional operations

are performed within the network, whereas the convolu-

tional operation is performed outside the network in

MTANNs, as shown in Figs. 4 and 5. (2) The output of

CNNs consists, in principle, of class categories, whereas

that of MTANNs consists of images (continuous values in a

map). (3) Another major difference is the required number

of training samples. CNNs require a huge number of

training images (e.g., 1,000,000 images) because of a large

number of parameters in the model, whereas MTANNs

require a very small number of training images (e.g., 12

images for classification between lung nodules and non-

nodules in CAD for detection of lung nodules in CT [22],

and 4 images for separation of bone components from soft

tissue components in CXR [30, 31]).

3.3.2 Performance

The performance of well-known CNNs (including the

AlexNet, the LeNet, a relatively deep CNN (rd-CNN), a

shallow CNN (sh-CNN), and a fine-tuned AlexNet (Fine-

Tuned AlexNet) which used transfer learning from a

computer-vision-trained AlexNet) and MTANNs was

compared extensively in focal lesion detection and classi-

fication problems in medical imaging [63]. Comparison

experiments were done for detection of lung nodules and

classification of detected lung nodules into benign and

malignant in CT with the same databases. The experiments

demonstrated that the performance of MTANNs was sub-

stantially higher than that of the best-performing CNN

under the same condition, as demonstrated in Fig. 6. With a

Fig. 5 Architecture of a CNN.

The layers in the CNN are

connected with local shift-

invariant inter-connections (or

convolution with a local kernel).

The input and output of the

CNN are images and class

labels (e.g., Class A and Class

B), respectively
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larger training dataset used only for CNNs, the perfor-

mance gap became less evident, even though the margin

was still significant. Specifically, for nodule detection,

MTANNs generated 2.7 FPs per patient at 100% sensitiv-

ity, which was significantly (p\ 0.05) lower than that for

the best-performing CNN model (FineTuned AlexNet),

with 22.7 FPs per patient at the same level of sensitivity.

For nodule classification, MTANNs yielded an area under

the receiver-operating-characteristic curve (AUC) of 0.881,

which was significantly (p\ 0.05) greater than that for the

best-performing CNN model, with an AUC of 0.776.

4 Applications of ML to medical imaging

4.1 Applications of ML with feature input

There has been a large number of papers that reported

applications of ML with feature input (feature-based ML,

common classifiers) in medical imaging, such as applica-

tions to lung nodule detection in CXR [64–67] and thoracic

CT [24, 68–70], classification of lung nodules into benign

or malignant in CXR [71] and thoracic CT [72, 73],

detection of microcalcifications in mammography [74–77],

detection of masses [78] and classification of masses into

benign or malignant [79–81] in mammography, polyp

detection in CT colonography [82–84], and detection of

aneurysms in brain MRI [85]. There are applications of ML

for regression problems such as determining subjective

similarity measure of mammographic images [86–88]. A

survey of studies on ML in computer-aided diagnosis has

been reported [8], and a collection of studies on ML in

computer-aided diagnosis and medical image analysis can

be found in books [6, 20].

4.2 Applications of ML with image input (‘‘deep

learning’’)

4.2.1 Classification between lesions and non-lesions

The class of ‘‘deep’’ MTANNs with 4–7 layers has been

used for classification, such as FP reduction in CAD

schemes for detection of lung nodules in CXR [28] and CT

[22, 24, 25], and FP reduction in a CAD scheme for polyp

detection in CT colonography [36–40]. Figure 7a shows a

schematic diagram of an MTANN for classification

between lesions and non-lesions in medical images. For

enhancement of lesions and suppression of non-lesions, the

teaching image contains a distribution of values that rep-

resent a map for the probability of being a lesion. For

example, the teaching volume contains a 3D Gaussian

distribution with standard deviation for a lesion and zero

(i.e., completely dark) for non-lesions, as illustrated in

Fig. 7a. After training, a scoring method is used for com-

bining of output voxels from the trained MTANNs, as

illustrated in Fig. 7b. Thresholding is then performed on

the scores for distinction between lesions and non-lesions.

Figure 8 shows the output images of the MTANN trained

to enhance lung nodules and suppress various types of non-

nodules in CAD for CT. Various lung nodules are

enhanced in the MTANN output images, whereas various

types of non-nodules are suppressed. Nodules such as a

solid nodule, a part-solid (mixed-ground-glass) nodule, and

a non-solid (ground-glass) nodule are enhanced, whereas

non-nodules such as different-sized lung vessels and soft

tissue opacity are suppressed around the centers of ROIs.

With those nodule-enhanced images, distinction between

nodules and non-nodules is made by use of the scoring

method described above. In other words, classification

between a particular pattern and other patterns is made by

enhancement of the particular pattern, which may be

referred to as ‘‘classification by enhancement’’.

Before the introduction of the term deep learning,

‘‘deep’’ CNNs had been used for FP reduction in CAD for

lung nodule detection in CXRs [89–91]. A convolution NN

was trained with 28 CXRs for distinguishing lung nodules

from non-nodules (i.e., FPs produced by an initial CAD

scheme). The trained CNN reduced 79% of FPs (which is

equivalent to 2–3 FPs per patient), whereas 80% of true-

positive detections were preserved. CNNs have been

applied to FP reduction in CAD for detection of micro-

calcifications [92] and masses [93] in mammography.

A CNN was trained with 34 mammograms for distin-

guishing microcalcifications from FPs. The trained CNN

reduced 90% of FPs, which resulted in 0.5 FPs per image,

whereas a true-positive detection rate of 87% was pre-

served [92]. Shift-invariant NNs which are almost identical

to CNNs, have been used for FP reduction in CAD for

Fig. 6 Comparative evaluation of the performance of MTANNs and

major CNN models in the classification between lung nodules and

non-nodules in CADe in CT under the same conditions with the same

database
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detection of microcalcifications [94, 95]. A shift-invariant

NN was trained to detect microcalcifications in ROIs.

Microcalcifications were detected by thresholding of the

output images of the trained shift-invariant NN. When the

number of detected microcalcifications was greater than a

predetermined number, the ROI was considered as a

microcalcification ROI. With the trained shift-invariant

NN, 55% of FPs was removed without any loss of true

positives.

After the introduction of the term ‘‘deep learning’’, a

CNN was used for classification of masses and non-masses

in digital breast tomosynthesis images [96]. The CNN for

digital breast tomosynthesis was trained by use of transfer

learning from the CNN for mammography. The CNN

achieved an AUC of 0.90 in the classification of mass ROIs

and non-mass ROIs in digital breast tomosynthesis images.

A CNN was used for FP reduction in lung nodule detection

in PET/CT [97]. The CNN was used for feature extraction,

and classification was done by SVM with the CNN-ex-

tracted and hand-crafted features. With the FP reduction

method, the performance was improved from a sensitivity

of 97.2% with 72.8 FPs/case to a sensitivity of 90.1% with

4.9 FPs/case. Because there are a growing number of

papers for applications of CNNs in this area, those papers

are not reviewed in this paper.

4.2.2 Classification of lesion types

Before the introduction of the term ‘‘deep learning’’,

‘‘deep’’ MTANNs with seven layers were applied to the

distinction between benign and malignant lung nodules in

low-dose screening CT [35]. The MTANNs achieved an

AUC value of 0.882 in the classification between 76

malignant and 413 benign lung nodules, whereas an AUC

Fig. 7 a Training of an

MTANN for distinction

between lesions and non-lesions

in a CAD scheme for detection

of lesions in medical images.

The teaching image for a lesion

contains a Gaussian distribution

that for a non-lesion contains

zero (completely dark). After

the training, the MTANN

expects to enhance lesions and

suppress non-lesions. b Scoring

method for combining pixel-

based output responses from the

trained MTANN into a single

score for each ROI
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value for chest radiologists for the same task with a subset

of the database was 0.56.

After the introduction of the term ‘‘deep learning’’, a

CNN was used for classification between perifissural nod-

ules and non-perifissural nodules in CT [98]. A pre-trained

2D CNN was used. The CNN achieved a performance in

terms of AUC of 0.868. A pre-trained CNN was used for

classification between cysts from soft tissue lesions in

mammography [99]. The CNN achieved an AUC value of

0.80 in the classification between benign solitary cysts and

malignant masses. A CNN was used for classification of

plaque compositions in carotid ultrasound [100]. CNN’s

classification achieved a correlation value of about 0.90

with the clinical assessment for the estimation of lipid-

core, fibrous-cap, and calcified-tissue areas in carotid

ultrasound. A CNN was used for classifying of tooth types

in cone-beam CT [101]. The CNN achieved a classification

accuracy of 88.8% in classification of 7 tooth types in

ROIs.

4.2.3 Detection of lesions

A ‘‘lesion-enhancement’’ filter-based MTANN was devel-

oped for enhancement of actual lesions in CAD for

detection of lung nodules in CT [26]. For enhancement of

lesions and suppression of non-lesions in CT images, the

teaching image contained a probability map for being a

lesion. For enhancement of a nodule in an input CT image,

a 2D Gaussian distribution was placed at the location of the

nodule in the teaching image, as a model of the lesion

probability map. For testing of the performance, the trained

MTANN was applied to non-training lung CT images. As

shown in Fig. 9, the nodule is enhanced in the output image

of the trained MTANN filter, whereas normal structures

such as lung vessels are suppressed. After large and small

remaining regions were removed by use of area informa-

tion obtained with connected-component labeling

[102–104], accurate nodule detection was achieved with no

Fig. 8 Illustrations of various

types of nodules and non-

nodules and corresponding

output images of the trained

MTANN in CAD for detection

of lung nodules in CT. a Results

for various types of nodules.

b Results for various types of

non-nodules. Nodules are

represented by bright pixels,

whereas non-nodules are almost

dark around the centers of ROIs
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FP, which means that one MTANN functions as a complete

CAD scheme with high accuracy.

After the introduction of the term ‘‘deep learning’’, deep

CNNs were used for detection of lymph nodes in CT [105].

Detection of lymph nodes is a challenging task, as evi-

denced by the fact that ML with feature input (feature-

based ML) achieved approximately 50% sensitivity with 3

FPs/volume. With use of deep CNNs, the performance

reached at 70 and 83% sensitivities with 3 FPs/volume in

the mediastinum and abdomen areas, respectively.

4.2.4 Segmentation of lesions or organs

Neural edge enhancers (NEEs; predecessor of MTANNs)

enhanced subjective edges traced by a physician (‘‘se-

mantic segmentation’’) in left ventriculograms [59], as

illustrated in Fig. 10. As seen, the edge enhancement per-

formance of the NEE was superior to that of the Marr–

Hildreth operator in this challenging segmentation prob-

lem. The segmentation by the NEE agreed excellently with

the ‘‘gold-standard’’ manual segmentation by an experi-

enced cardiologist.

Shift-invariant NNs were used for detection of the

boundaries of the human corneal endothelium in pho-

tomicrographs [106]. In addition, a CNN was used for

segmentation of the bladder in CT urography [107]. The

CNN achieved a Jaccard index of 76.2 ± 11.8% for

bladder segmentation, compared with ‘‘gold-standard’’

manual segmentation. A CNN was used for segmentation

of tissues in MR brain images [108]. The CNN achieved

average Dice coefficients of 0.82–0.91 in five different

datasets.

4.2.5 Separation of bones from soft tissue in CXR

Studies showed that 82–95% of the lung cancers missed by

radiologists in CXRwere partly obscured by overlying bones

such as ribs and/or a clavicle [109, 110]. To prevent such

misses, MTANNs were developed for separation of bones

from soft tissues in CXR [30, 31]. To this end, the MTANNs

were trained with input CXRs with overlapping bones and

the corresponding ‘‘teaching’’ dual-energy bone images

acquired with a dual-energy radiography system [111].

Figure 11 shows a non-training originalCXRand a ‘‘virtual’’

dual-energy soft tissue image obtained by use of the trained

MTANN. The contrast of ribs is suppressed substantially in

the MTANN soft tissue image, whereas the contrast of soft

tissue such as lung vessels is maintained. A filter learning in

the class of ML with image input (image-based ML) was

developed for suppression of ribs in CXR [112].

4.2.6 Analysis of a trained ML model

Some researchers refer to a trained NN as a ‘‘black box’’,

but there are ways to analyze or look inside a trained NN.

With such methods, trained NNs are not ‘‘black boxes’’.

Analysis of a trained ML model is very important for

revealing what was trained in the trained ML model.

Suzuki et al. analyzed an NEE that was trained to enhance

edges from noisy images [58]. Figure 12a shows the

receptive field of the trained NEE [61] that was revealed by

the application of a method for designing the optimal

structure of an NN [62] to the trained NEE. The receptive

field shows which input pixels were used for enhancement

of edges from noisy images. Furthermore, they analyzed

Fig. 9 Enhancement of a lunge nodule by use of a trained lesion-

enhancement MTANN filter for a non-training case. a Original chest

CT image of the segmented lung with a nodule (indicated by an

arrow). b Output image of the trained lesion-enhancement MTANN

filter. c Result after thresholding and removal of large and small

regions by area, which achieves accurate segmentation and detection

of the lung nodule
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the units in the hidden layer of the trained NEE. Figure 12b

shows the analysis results of the internal representation of

the trained NEE, showing the strength of the weights from

each hidden unit to the input units. The black square

indicates a pixel having a negative weight. The pixels

having the same sign correspond to a smoothing operation,

Fig. 10 Segmentation of the left vernicle in a left ventriculogram.

a Input left ventriculogram. This segmentation is a very challenging

problem, because some portions of the boundary of the left ventricle

have of low-contrast, less edge contrast, and fuzzy borders. b Edge

enhancement by the trained NEE. The boundary of the left ventricle is

enhanced well even for challenging very subtle edges. c Edges

enhanced by the Marr–Hildreth operator. Some boundary portions are

missing in the result. d Comparison between segmentation by our

NEE and ‘‘gold-standard’’ manual segmentation by a cardiologist.

The two segmentations agree very well

Fig. 11 Separation of bone components from soft tissue components in CXR by use of an MTANN. a Input CXR with a nodule (indicated by an

arrow). b ‘‘Virtual dual-energy’’ soft-tissue image: Result of application of the trained MTANN
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whereas the pixels having the opposite sign correspond to

an edge enhancement operation. It is interesting to note that

Fig. 12b is reminiscent of the receptive fields of various

simple units in the cat and monkey cerebral cortex dis-

covered by Hubel and Wiesel [113]. The weights in the

figure indicate the operations for diagonal edge enhance-

ment together with smoothing in hidden unit no. 1, vertical

edge enhancement together with horizontal smoothing in

hidden unit no. 2, and edge enhancement with smoothing

for another diagonal orientation in hidden unit no. 3. The

results of the analysis suggest that the trained NEE uses

directional gradient operators with smoothing. These

directional gradient operators with smoothing, followed by

integration with nonlinearity, lead to robust edge

enhancement against noise.

5 Advantages and limitations of ‘‘deep learning’’

As described earlier, the major difference between ML

with image input (image-based ML) including ‘‘deep

learning’’ and ML with feature input (feature-based ML,

common classifiers) is the direct use of pixel values with

the ML model. In other words, unlike ordinary classifiers

(ML with feature input), feature calculation from seg-

mented objects is not necessary. Because the ML with

image input can avoid errors caused by inaccurate feature

calculation and segmentation, the performance of the ML

with image input can be higher than that of ordinary fea-

ture-based classifiers. ML with image input learns pixel

data directly, and thus all information on pixels should not

be lost before the pixel data are entered into the ML with

image input, whereas ordinary feature-based classifiers

learn the features extracted from segmented lesions and

thus important information can be lost with this indirect

extraction; also, inaccurate segmentation often occurs for

complicated patterns. In addition, because feature calcu-

lation is not required for the ML with image input,

development and implementation of segmentation and

feature calculation, and selection of features are unneces-

sary; this offers fast and efficient development.

The characteristics of theMLwith image inputwhich uses

pixel data directly would generally differ from those of

ordinary feature-based classifiers (ML with feature input).

Fig. 12 Analysis of the NEE trained to enhance edge from noisy images. a The receptive field of the trained NEE. b Analysis results of the

internal representation of the trained NEE. The weights from each hidden unit to the input units are shown
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Therefore, combining an ordinary feature-based classifier

withMLwith image input would yield a higher performance

than that of a classifier alone or ML with image input alone.

Indeed, in previous studies, both classifier and ML with

image input were used successfully for classification of

lesion candidates into lesions and non-lesions.

Limitations of ‘‘deep’’ CNNs (in ML with image input)

include (1) a very high computational cost for training

because of the high dimensionality of input data and (2) the

required large number of training images. Because ‘‘deep’’

CNNs use pixel data in images directly, the number of

input dimensions is generally large. A CNN requires a huge

number of training images (e.g., 1,000,000) for determin-

ing a large number of parameters in the CNN. However, an

MTANN requires a small number of training images (e.g.,

20) because of its simpler architecture. With GPU imple-

mentation, an MTANN completes training in a few hours,

whereas a deep CNN takes several days.

6 Conclusion

This paper provides an overview of the area of deep

learning in medical imaging is overviewed, including (1)

what was changed in machine learning before and after the

introduction of deep learning, (2) what is the source of the

power of deep learning, (3) two major deep-learning

models: an MTANN and a CNN, (4) similarities and dif-

ferences between the two models, and (5) their applications

to medical imaging. This review reveals that ML with

feature input (or feature-based ML) was dominant before

the introduction of deep learning, and that the major and

essential difference between ML before and after deep

learning is learning image data directly without object

segmentation or feature extraction; thus, it is the source of

the power of deep learning, although the deepness of the

model is an important attribute. There is a long history of

deep-learning techniques, including the Neocognitron,

CNNs, neural filters, and MTANNs in the class of ML with

image input, except a new term, ‘‘deep learning’’. ML with

image input including deep learning is a very powerful,

versatile technology with higher performance, which can

bring the current state-of-the-art performance level of

medical image analysis to the next level. ML including

deep learning in medical imaging is an explosively grow-

ing, promising field. It is expected that ML with image

input including deep learning will be the mainstream

technology in medical imaging in the next few decades.
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