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A B S T R A C T

End-to-end learning machines enable a direct mapping from the raw input data to the desired outputs,
eliminating the need for hand-crafted features. Despite less engineering effort than the hand-crafted counter-
parts, these learning machines achieve extremely good results for many computer vision and medical image
analysis tasks. Two dominant classes of end-to-end learning machines are massive-training artificial neural
networks (MTANNs) and convolutional neural networks (CNNs). Although MTANNs have been actively used
for a number of medical image analysis tasks over the past two decades, CNNs have recently gained popularity
in the field of medical imaging. In this study, we have compared these two successful learning machines both
experimentally and theoretically. For that purpose, we considered two well-studied topics in the field of medical
image analysis: detection of lung nodules and distinction between benign and malignant lung nodules in
computed tomography (CT). For a thorough analysis, we used 2 optimized MTANN architectures and 4 distinct
CNN architectures that have different depths. Our experiments demonstrated that the performance of MTANNs
was substantially higher than that of CNN when using only limited training data. With a larger training dataset,
the performance gap became less evident even though the margin was still significant. Specifically, for nodule
detection, MTANNs generated 2.7 false positives per patient at 100% sensitivity, which was significantly
p( < 0.05) lower than the best performing CNN model with 22.7 false positives per patient at the same level of
sensitivity. For nodule classification, MTANNs yielded an area under the receiver-operating-characteristic curve
(AUC) of 0.8806 (95% CI: 0.8389–0.9223), which was significantly p( < 0.05) greater than the best performing
CNN model with an AUC of 0.7755 (95% CI: 0.7120–0.8270). Thus, with limited training data, MTANNs would
be a suitable end-to-end machine-learning model for detection and classification of focal lesions that do not
require high-level semantic features.

1. Introduction

End-to-end learning machines are particular machine learning
models that seek a direct mapping from the raw input image data to
the target output, eliminating the need for the design of an inter-
mediate feature space. As a result, such learning machines require less
engineering effort and fewer user interventions to produce the desired
outputs. Yet, they have achieved extremely good results for many
computer vision tasks, breaking state-of-the-art performance records
previously held by the heavily engineered and hand-crafted approaches
such as part-based models [1] and bag of visual words [2]. Although
originally developed in the computer vision community, end-to-end
machine-learning models have now found their ways to a variety of
disciplines including natural language processing [3–5], drug discovery
[6–8], and medical image analysis [9–13].

In this paper, we consider two classes of end-to-end learning

machines, namely, massive-training artificial neural networks
(MTANNs) and convolutional neural networks (CNNs). Although
MTANNs have been actively used for a number of medical image
analysis tasks over the past two decades, CNNs have recently emerged
in the field of medical imaging, as a promising technique. It would be
interesting to study how these two successful learning machines, which
both stem from artificial neural networks (ANNs), compare to each
other theoretically and experimentally. To that end, we investigated the
performance of MTANNs and CNNs in lung nodule detection and
classification, two well-studied topics in the field of medical image
analysis. To our knowledge, no prior research has compared the
effectiveness of MTANNs and CNNs in neither computer vision nor
medical image analysis fields.
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2. Material and methods

2.1. Massive-Training Artificial Neural Networks (MTANNs)

As the extension of neural filters [14,15], MTANNs can accommo-
date various pattern-recognition tasks [16–18] such as detection of
focal lesions and classification of lesion types. MTANNs come at 2
major models: (1) 2D MTANNs, which are designed for processing 2D
images, and (2) 3D MTANNs, which are the generalized form of 2D
MTANNs and are designed for processing volumetric data. The first
appearance of 2D MTANNs dates back in 2002 when they were
developed for the reduction of false positives in computerized detection
of lung nodules in low-dose computed tomography (CT) in a slice-by-
slice fashion. The use of 2D MTANNs was further extended to a
number of applications including the separation of bones from soft
tissue in chest x-ray (CXR) [16] and the distinction between benign and
malignant lung nodules on 2D CT slices [17]. The 3D MTANNs were
first developed in 2006 for removing a particular source of false
positives (i.e., rectal tubes) in computer-aided detection of polyps in
CT colonography [18]. The success of 3D MTANNs in removing rectal
tubes set the foundation for the subsequent 3D MTANN-based systems
[19–22] for computer-aided detection of polyps.

An MTANN employs an ANN regression model that is capable of
operating on pixel data directly. In the applications to focal lesion
detection and classification, an MTANN adopted a shallow network
[18–21] because low-level and mid-level representations of patterns
were sufficient for those tasks, though it is capable of having a deeper
network. A mixture of expert MTANNs utilizes an ensemble of multiple
MTANNs with a combiner. This is because one single ANN regression
model has a limited learning capacity and thus may not learn all the
essential features needed to distinguish a lesion with a large appear-
ance variability from non-lesion structures. Hence, the first step in the
design of multiple MTANNs is to divide the non-lesion class into a
number of sub-classes and then train each of the MTANNs to
distinguish between the lesion class and each of the non-lesion sub-
classes. During the testing stage, each case receives a score from each of
the MTANNs in the ensemble. To produce the final score, the outputs
of individual MTANNs for each case are combined by the combiner
such as averaging, a logical AND operator, or an additional ANN called
an integration ANN. The architecture of each ANN in the MTANNs
consists of hidden layers (typically one layer for focal lesion applica-
tions) with sigmoid activation functions and 1 output layer with a
linear activation function. In the following, we explain how an ANN
regression model is trained in the 2D MTANN framework.

Fig. 1 illustrates the training process. The inputs to the MTANN in
the training process are a set of regions of interest (ROIs) and the
corresponding “teaching” (desired) images that have the same size as
the ROIs. Each pixel in the teaching image indicates the likelihood of
the corresponding pixel in the input ROI to be the pattern of interest
(e.g., a lesion). A negative ROI is extracted away from a lesion, and thus
the corresponding teaching image is black. A positive ROI is centered
on a lesion's location; and thus, the corresponding teaching image
contains a certain distribution such as a 2D Gaussian function in its
center. Mathematically, a teaching image is defined as follows:

⎧⎨⎩T v v μ Σ v μ( ) = exp{( − ) ( − )}, for a lesion
0, otherwise,

T −1

where v x y= ( , ) indicates the location of a pixel with respect to the
origin, μ denotes the center of the ROI, and Σ denotes the covariance
matrix. Because lesions can generally appear in arbitrary shapes in
medical images, it is common to use a diagonal covariance matrix with
equal variance in each direction Σ diag σ= ( ), where σ determines the
pace of decay in the lesion likelihood as we deviate from the center of
the ROI.

Once the training ROIs and the corresponding teaching images are
constructed, the actual pairs of training samples and outputs are
extracted. Training samples are overlapping or non-overlapping sub-
regions (patches) that are extracted from the input ROI. If subregions
are extracted at all locations in the input ROI, the centers of
consecutive (overlapping) subregions differ by just one pixel. Because
the input and output of the MTANN are an image patch and a single
pixel, respectively, training patches from the image boarder (edge)
areas cannot be extracted without zero padding. To avoid the use of
image boarder zero padding, the training samples are extracted from
the locations that are away from the image boarders by at least half of
the image patch size. All pixel values in each of the subregions are
entered as input to the ANN, whereas one pixel from the teacher image
is entered into the output unit in the ANN as the teaching value. This
single pixel is chosen at the location in the teacher image that
corresponds to the center of the input subregion. Therefore, the
training set from the ith input ROI, Ri, is represented by:
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where R and R denote the set of training image patches and the

corresponding teaching outputs, respectively. Also, I
→

1 denotes the first
image patch extracted from the top left corner of the ROI that has been
reshaped in the form of a vector, and T1 denotes the corresponding

Fig. 1. Schematic overview of MTANN training. To avoid clutter in the figure, non-overlapping patches are depicted in the region of interest (ROI). In practice, the image patches are
densely extracted from each ROI, resulting in a massive set of training patches.
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teaching value for I
→

1 . An ROI of size N N× allows for the extraction of
k N n= ( − + 1)2 subimages where n is the size of each subimage along
x and y directions. The final massive training set is formed as the union
of the training samples and the corresponding teaching values collected
from each training ROI. Mathematically,

= ⋃ , = ⋃
i

R
i

Ri i

During the testing stage, each MTANN in the ensemble is applied to
an ROI in a convolutional fashion, producing a confidence map with
the same size as the input ROI, if appropriate image boarder padding is
applied; otherwise; smaller by at half of the image patch size on each
side. To convert the confidence map into a single score for each ROI,
the confidence map is multiplied with the same 2D Gaussian function
used during the training stage, and then the resulting confidence values
are summed. The choice of a 2D Gaussian function is motivated by the
fact that a lesion is a focal object; and thus, pixels that are located
farther away from the center pixel should contribute less to the lesion
likelihood than do the nearer pixels. Next, the scores generated by
different MTANNs for an ROI are combined by using averaging, the
logical AND, or the integration ANN in order to produce the final score
for the given ROI.

2.2. Convolutional Neural Networks (CNNs)

A CNN can be viewed as a simplified version of the Neocognitron
model [23–25], which was proposed to simulate the human visual
system in 1980 [23]. CNNs initially appeared in the early 1990s
[26,27], but they did not enjoy much popularity at the time due to
limited computational resources. However, with the advent of powerful
graphics processing unit (GPU) computing and abundance of labeled
training data, CNNs have once again emerged as a powerful feature
extraction and classification tool, yielding record-breaking results in
major computer vision challenges. The success of CNNs in computer
vision has widely inspired investigators in the medical imaging com-
munity, resulting in a number of publications in a short period of time
[28–32,10,13], which collectively demonstrates the effectiveness of
CNNs for a variety of medical imaging tasks.

CNNs are so-named due to the convolutional layers in their
architectures. Convolutional layers are responsible for detecting certain
local features in all locations of their input images. To detect local
structures, each node in a convolutional layer is connected to only a
small subset of spatially connected neurons in the input image
channels. To enable the search for the same local feature all over the
input channels, the connection weights are shared between the nodes
in the convolutional layers. Each set of shared weights is called a kernel
or a convolution kernel. Thus, a convolutional layer with n kernels
learns to detect n local features whose strength across the input images
is visible in the resulting n feature maps. To reduce computational
complexity and achieve a hierarchical set of image features, each
sequence of convolution layers is followed by a pooling layer. The
max pooling layer reduces the size of feature maps by selecting the
maximum feature response in overlapping or non-overlapping local
neighborhoods, discarding the exact location of such maximum
responses. As a result, max pooling can further improve translation
invariance. CNNs typically consist of several pairs of convolutional and
pooling layers, followed by a number of consecutive 1×1 convolutional
layers (a.k.a., fully connected), and finally a softmax layer, or aregres-
sion layer, to generate the desired outputs. In more modern CNN
architectures, to achieve more computational efficiency, the pooling
layer is replaced with a convolution layer with a stride larger than 1. A
CNN typically has a large number of convolutional and fully connected
layers; therefore, it is not uncommon for a CNN to contain millions or
billions of weights in its architecture.

The inputs for training a CNN are a set of images and the
corresponding labels. As with ANNs, weights in a CNN are first

randomly initialized using a Gaussian distribution or initialized using
smarter techniques [33,34] and are then updated using the back-
propagation algorithm. However, because CNNs are parameter-rich
models, they may over-fit to the training data. This can be a critical
issue for the applications where only labeled training data are available.
Common techniques to tackle the over-fitting problem are data
augmentation [35], dropout regularization [36], and fine-tuning [37].
In data augmentation, a set of label-preserving image transformations
is applied to each ROI, generating a large number of new yet correlated
training samples. The common transformations are image scaling,
translation, and rotation. Although the samples resulted from data
augmentation are correlated, they have proved effective in reducing
over-fitting. Dropout is a regularization technique, which, in each
iteration, excludes a random subset of parameters from the weight
update process. This simple technique can hinder over-fitting to the
training data. Fine-tuning is also a very effective technique where the
weights in a CNN are not trained from randomly initialized values, but
rather from the weights of a CNN that is pre-trained on a large set of
labeled training dataset from a different application. The above
techniques have made it possible to obtain a high-performance CNN
even for the vision applications where only limited training data are
available.

2.3. Databases

2.3.1. Lung nodule detection
We used a database of low-dose thoracic helical CT (LDCT) [38,39]

acquired from 31 patients, who participated voluntarily in a lung
cancer screening program between 1996 and 1999 in Nagano, Japan.
This database consists of 38 scans with a total of 1057 sections (slices)
of size 512×512. The scans were acquired under a low-dose protocol of
120 kVp with 25 mA or 50 mA. Each section has 10 mm thickness and
the pixel sizes within the sections vary between 0.586 and 0.684 mm.
An experienced chest radiologist annotated 50 lung nodules in the
scans, of which 38 nodules were confirmed lung cancers that had been
“missed” by reporting expert radiologists during the initial clinical
interpretation. Thus, this database contained very “difficult” nodules.
The remaining 12 nodules in the scans were classified as “confirmed
benign” (n=8), “suspected benign” (n=3), or “suspected malignant”
(n=1). The above nodule classification was made through biopsy or by
follow-up over a period of at least 2 years. Fig. 2 shows examples of
nodules from this database. We used this database in this study,
because it is a database with histopathological confirmations of the
lesions, and because it has very challenging nodules that had been
missed by expert radiologists.

Fig. 2. Examples of nodules in our database. Non-solid (ground-glass) nodules and part-
solid nodules that are major sources of false negatives are seen.
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2.3.2. Lung nodule classification
We used a nodule database [38] consisting of 76 histopathologically

confirmed lung cancers in 73 patients and 413 benign nodules in 342
patients. The nodule size ranged from 3 mm to 29 mm. Of the 76
primary lung cancers, 22 (28.9%) nodules were identifiable in a single
section, 37 (48.7%) nodules in two sections, and 17 (22.3%) nodules in
three sections. The 413 benign nodules consisted of 265 (64.2%)
nodules in a single section, 133 (32.2%) in two sections, and 15
(3.6%) nodules in three sections. An experienced chest radiologist
determined the center of each nodule in the section wherein the nodule
appeared the largest (if the nodule appeared in more than 1 section).
Fig. 3 shows examples of benign and malignant nodules from this
database. We used this database in this study, because it is a database
with histopathological confirmations of all lesions, and because classi-
fication of nodules in LDCT is a very challenging task even for expert
radiologists.

3. Experiments

The architectures of MTANNs were chosen according to the
corresponding publications [16,17]. For lung nodule detection, we
used the architecture suggested in [16], which consisted of 9 MTANNs:
5 MTANNs were trained to distinguish nodules from various-sized
vessels; and 4 MTANNs were applied to eliminate some other opacities.
Each MTANN in the ensemble consisted of 1 hidden layer with 25
neurons, and it was trained with subimages of size 9×9 extracted from
10 nodule ROIs and 10 non-nodule ROIs of size 50×50. In the testing
stage, the output of each MTANN was binarized by a pre-specified
threshold; and then, the resulting binary outputs were combined using
a logical AND operator. For lung nodule classification, we used the
architecture suggested in [17], which consisted of 6 MTANNs with 20
neurons in their single hidden layers. Each MTANN was trained with
subimages of size 9×9 extracted from 10 malignant nodule ROIs and
10 benign ROIs of size 50×50. In the testing stage, the output of each
MTANN was fed to an integration ANN to produce the final confidence
score. The integration ANN had 1 hidden layer with 4 neurons in it.

We used 4 distinct CNN architectures in our experiments: a shallow
CNN (sh-CNN), a LeNet architecture, a relatively deep CNN (rd-CNN)
whose deviations are commonly used in medical imaging applications,
and a deep CNN called AlexNet that is popular in the computer vision
community. These 4 architectures are shown in Fig. 5 and are further
detailed in Table 1. We trained the above CNN architectures from
scratch by minimizing the logistic cost function

p λW= − ∑ log( ) +n n
2 where W denotes the network weights, pn is the probability that the nth training sample belongs to the true class,

Fig. 3. Examples of (a) malignant nodules and (b) benign nodules in our database. Large variations of nodule patterns and size are seen, including non-solid, part-solid, and solid
nodules of different sizes.

Fig. 4. Training and evaluation protocols used in our experiments. (a) Division protocol
where the database is split into disjoint training and testing sets; (b) 5-fold protocol
wherein the training set is the union of the training set of division protocol and 4/5 of the
testing set of the division protocol. The testing set consists of the remaining 1/5 of the
testing set of the division protocol.
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and λ is the regularization parameter that helps prevent over-fitting
when the number of weights is larger than the number of training
samples. For this purpose, we used the Caffe library [40], which is
arguably one of the most reliable and popular open source implemen-
tations of CNNs. For the AlexNet, in addition to training from scratch,
we considered fine-tuning of the pre-trained AlexNet model that was
available in Caffe. This pre-trained model had been trained using 1.2
million images labeled with 1000 semantic classes.

We conducted our experiments in 2 scenarios to rigorously evaluate
the two machine learning models. We refer to the first scenario as
“division” wherein the object proposal or lesion candidates were split
into disjoint training and testing sets. In the division scenario,
candidates were split according to the schemes suggested in [16,17],
which reserved the majority of samples for testing. This evaluation
scenario allows for a stringent evaluation of the two machine-learning
models given limited training data. We refer to the second scenario as
“5-fold” wherein the testing set of the division scenario was first
divided into 5 disjoint subsets in the lesion-level; and then, the
resulting subsets were added to the training set of the division scenario
in a 5-fold cross validation manner. That is, 4 subsets were added to the
training set; and the remaining subset was used for testing. This
process was repeated 5 times, resulting in 5 classification models, each
of which generating predictions for the corresponding testing subset.
By collecting the predictions generated for each of the 5 test subsets, a
performance curve was generated for the whole test set. Through this
evaluation scenario, we can study how the increase in the size of
training set impacts the performance of the classification models (both
scenarios have the same testing set). Fig. 4 illustrates how the image
data were divided into training and testing sets for the division and 5-
fold scenarios.

For lung nodule detection, we first applied a base computer-aided
detection (CADe) scheme [16], consisting of gray-level-based lung
segmentation, feature extraction and analysis, and linear-discriminant-
analysis-based classification, to the entire database. The CADe scheme
generated 1128 candidates with 50 true positives and 1078 false
positives. We collected patches from each candidate with data aug-
mentation. Specifically, we extracted square patches at 6 scales, 40

translations from the candidate locations, and 8 orientations, resulting
in a total of 1920 variations for each nodule candidate. Note that, due
to relatively large thickness of slices, we chose to use gray-scale 2D
patches for our experiments. The collected patches were then divided
according to the division and 5-fold validation schemes for training and
testing CNNs. The training set in the division scenario consisted of 10
true positives and 90 false positives (because of the 9 MTANNs in the
ensemble), and the testing set consisted of 40 true positives and 988
false positives (non-nodules). For training a CNN in each scenario, we
formed a stratified set of training patches by down-sampling the
majority class (non-nodule). During the testing stage, the probability
of each candidate being a nodule was computed as the average of
probabilities assigned to the data-augmented patches. For performance
comparison, we used free-response ROC (FROC) analysis.

Fig. 6 shows FROC curves for nodule detection. The confidence
intervals for the FROC plots were computed according to the method
suggested in [42]. Fig. 6(a) compares the performance of the MTANNs
and CNNs in the division scenario. As can be seen, the performance of
the MTANNs are higher than that of CNNs in most of the operating
points with a significant margin p( < 0.05). As indicated by the over-
lapping error bars, the difference between the three CNN architectures
was not significant at any of the operating points, which suggests that
deep architectures become ineffective given limited training data.
However, as shown in Fig. 6(b), the performance gap between
MTANNs and CNNs becomes less evident when CNNs were trained
and evaluated in the 5-fold cross validation scenario. The improved
performance is attributed to the use of larger training sets available in
the 5-fold cross validation scenario. Noteworthy, at 100% sensitivity,
MTANNs generate 2.7 false positives per patient, which is significantly
lower than the best performing CNN with 22.7 false positives per
patient p( < 0.05). Fig. 6(c) compares the performance of each CNN
architecture in the division and 5-fold scenarios. Clearly, the perfor-
mance improvement is more substantial for deeper architectures,
which suggests that deeper architectures can more effectively leverage
the additional training instances than the shallower architectures.

Fig. 7 compares the top 30 “difficult” false positives generated by
the MTANNs and the best performing CNN (fine-tuned AlexNet) for

Fig. 5. Schematic overview of the CNN architectures used in our experiments. (a) A deep CNN (AlexNet), (b) a relatively deep (rd-CNN), (c) the LeNet architecture, and (d) a shallow
CNN (sh-CNN).
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lung nodule detection. The ROIs are shown in an increasing level of
difficulty, namely, from the top left to bottom right ROI, the level of
difficulty changes from easier to the most difficult to distinguish from
nodules. The false positives of the MTANNs were collected at an
operating point where 100% sensitivity was achieved. At this operating
point, the MTANNs generated 85 false positives or equivalently 2.7
false positives per patient. Similarly, the operating point of the CNN
was chosen as the point at which the CNN achieved 100% sensitivity
with 713 false positives (22.7 false positives per patient). As seen from
Fig. 7, the majority of the top false positives generated by the MTANNs
and CNN include the chest wall, indicating that false positive sources
tend to be near the chest wall. Some of the false positives look like lung
nodules to our eyes, although they were not confirmed as lung nodules
by radiologists in their reviews.

For lung nodule classification, we extracted square patches with
data augmentation from the ROIs selected by an experienced chest
radiologist. Specifically, we extracted patches at 3 scales, at 40
translations from the center of the ROI, and at 8 orientations, resulting
in a total of 960 patches for each ROI. We divided the collected patches
at the ROI-level according to the division and 5-fold cross validation
schemes. That is, samples collected from a particular ROI were not
distributed between the training and testing sets, rather, they were all
assigned to either the training set or the testing set. The training set in
the division scenario consisted of patches from 10 malignant nodules

and 60 benign nodules (because of the 6 MTANNs in the ensemble),
and the testing set consisted of the patches from 66 malignant nodules
and 353 benign nodules. To avoid a bias towards the majority class
(benign nodules), we formed a stratified set of training patches by
down-sampling the majority class (benign). During the testing stage,
the probability of each ROI being a malignant nodule was computed as
the average of probabilities assigned to the patches that were extracted
from the ROI with data augmentation. For performance comparison,
we used ROC analysis.

Fig. 8 shows ROC curves for nodule classification. The confidence
intervals for the ROC plots were computed according to the method
suggested in [42]. Fig. 8(a) shows the ROC curves for the MTANNs and
each of the CNN architectures. As can be seen, CNNs with varying
depths performed comparably, yielding no significant performance
improvement compared to each other. However, the MTANNs achieved
a substantial improvement over the CNN-based systems, particularly at
the optimal operating points located around the elbow of the ROC
plots. Fig. 8(b) shows the ROC curves for the 5-fold scenario. As with
the division scenario, CNN-based systems perform closely yet inferior
to that of the MTANNs. For a quantitative comparison, we tabulate the
area under the curve (AUC) with 95% confidence intervals for each
model in Table 2. As can be seen, the MTANNs yield a significantly
higher AUC than do the listed CNN-based models p( < 0.5), but as
indicated by overlapping intervals, different variants of CNNs perform
comparably. Fig. 8(c) compares the performance of each CNN archi-
tecture in the division and 5-fold scenarios. The increased number of
training samples in the 5-fold scenario did not improve nodule
classification performance significantly.

Fig. 9 shows the top 20 “easy-to-classify” and “hard-to-classify”
malignant and benign nodules according to the malignancy scores
produced by the MTANNs and the fine-tuned AlexNet in the 5-fold
cross validation scenario. Fig. 9(a) and (b) shows easy-to-classify
malignant nodules. As shown, both models, and to a larger degree
the MTANNs, tend to assign a larger malignancy score to a larger
malignant nodule. Fig. 9(c) and (d) shows easy-to-classify benign
nodules. In this case, both models assign lower malignancy scores to
smaller nodules. These observations suggest that the size of nodules
has been considered by both models as a distinguishing feature for
distinction between malignant and benign nodules. That makes sense,
because malignant nodules tend to be larger than benign nodules in
nature. However, as shown in Fig. 9(e) and (f), heavy reliance on the
size of nodules has led to the misclassification of small malignant
nodules as benign. Similarly, as shown in Fig. 9(e) and (f), large benign
nodules were misclassified as malignant by both machine-learning
models.

4. Discussion

In this study, we based the comparison between CNNs and
MTANNs on the applications for which MTANNs had previously shown
promising performance. This is because our study was to investigate
whether the state-of-the-art deep learning machines such as the CNNs,
which are well-established in the computer-vision field, could outper-
form the MTANNs as a well-established machine-learning model for
medical vision tasks. This is an interesting research question because
the CNNs are currently considered as a panacea that can outperform
the previously suggested solutions for a variety of medical imaging
applications. However, in this study, we demonstrated that the use of
the CNNs was not as effective as the MTANNs for lung nodule detection
and classification. Given the relatively similar characteristics of focal
lesions, our conclusion may also generalize to similar tasks such as
polyp detection, breast mass detection, and liver tumor detection,
where the low-level and mid-level features captured by MTANNs are
adequate for accurate detection. However, we would also like to
emphasize that the conclusions reached in this paper may not general-
ize to more complex medical vision tasks such as image plane

Table 1
The CNN architectures used in our experiments. (a) A deep CNN (AlexNet), (b) a
relatively deep CNN (rd-CNN), (c) the LeNet architecture, and (d) a shallow CNN (sh-
CNN).

Layer Type Input Kernel Stride Pad Output

(a) AlexNet
0 Input 227 ×227 ×3 N/A N/A N/A 227 ×227 ×3
1 Convolution 227 ×227 ×3 11 ×11 4 0 96 ×55 ×55
2 Max pooling 96 ×55 ×55 3 ×3 2 0 96 ×27 ×27
3 Convolution 96 ×27 ×27 3 ×3 1 2 256 ×27 ×27
4 Max pooling 256 ×27 ×27 3 ×3 2 0 256 ×13 ×13
5 Convolution 256 ×13 ×13 3 ×3 1 2 384 ×13 ×13
6 Convolution 384 ×13 ×13 3 ×3 1 2 384 ×13 ×13
7 Convolution 384 ×13 ×13 3 ×3 1 2 256 ×13 ×13
8 Max pooling 256 ×13 ×13 3 ×3 2 0 256 ×6 ×6
9 Fully connected 256 ×6 ×6 6 ×6 1 0 4096 ×1
10 Fully connected 4096 ×1 1 ×1 1 0 4096 ×1
11 Fully connected 4096 ×1 1 ×1 1 0 2 ×1

(b) rd-CNN
0 Input 64 ×64 N/A N/A N/A 64 ×64
1 Convolution 64 ×64 11 ×11 1 5 32 ×64 ×64
2 Max pooling 32 ×64 ×64 2 ×2 2 0 32 ×32 ×32
3 Convolution 32 ×32 ×32 5 ×5 1 2 32 ×32 ×32
4 Max pooling 32 ×32 ×32 2 ×2 2 0 32 ×16 ×16
5 Convolution 32 ×16 ×16 3 ×3 1 2 32 ×16 ×16
6 Max pooling 32 ×16 ×16 2 ×2 2 0 32 ×8 ×8
7 Convolution 32 ×8 ×8 3 ×3 1 2 32 ×8 ×8
8 Max pooling 32 ×8 ×8 2 ×2 2 0 32 ×4 ×4
9 Fully connected 32 ×4 ×4 4 ×4 1 0 32 ×1
10 Fully connected 32 ×1 1 ×1 1 0 2 ×1

(c) LeNet
0 Input 32 ×32 N/A N/A N/A 32 ×32
1 Convolution 32 ×32 5 ×5 1 5 100 ×28 ×28
2 Max pooling 100 ×28 ×28 2 ×2 2 0 100 ×14 ×14
3 Convolution 100 ×14 ×14 5 ×5 1 2 100×10 ×10
4 Max pooling 100 ×10 ×10 2 ×2 2 0 100 ×5 ×5
5 Fully connected 100 ×5 ×5 5 ×5 1 2 50 ×1
6 Fully connected 50 ×1 1 ×1 1 0 2 ×1

(d) sh-CNN
0 Input 64 ×64 N/A N/A N/A 64 ×64
1 Convolution 64 ×64 11 ×11 1 5 32 ×64 ×64
2 Max pooling 32 ×64 ×64 2 ×2 2 0 32 ×32 ×32
3 Fully connected 32 ×1 32 ×32 1 0 2 ×1
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recognition [43] or pathology identification [44], where high-level
semantic features extracted by deep CNNs are indispensable.

We conducted our evaluations in the division scenario where
limited training data were used for training the CNNs and MTANNs,

Fig. 6. Evaluation of lung nodule detection. Comparison between MTANNs and 3 CNN architectures in (a) the division protocol and (b) 5-fold protocol. (c) Performance comparison for
each CNN architecture using the division and 5-fold protocols.

Fig. 7. Top 30 “difficult” false positives generated by the (a) MTANNs and (b) fine-tuned AlexNet for nodule detection in the 5-fold cross validation scenario.
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and also in the 5-fold cross validation scenario where a larger training
set was employed for training. Our experiments demonstrated that the
performance of the MTANNs was higher than that of the CNNs in the
division scenario and to less extent in the 5-fold scenario. We also
observed that the CNNs trained using the 5-fold cross validation
substantially outperformed the CNNs trained in the division scenario
for the nodule detection task. This observation was consistent with the
common knowledge in the field where training deep learning machines

such as CNNs require a large amount of labeled training data. For
nodule classification, however, a change from the division to 5-fold
scenario led to an insignificant performance gain for the CNNs. We
attribute this phenomenon to the challenging nature of nodule
classification. In fact, distinction between malignant and benign
nodules using visual characteristics is a difficult task even for human
experts. This is confirmed by an observer performance study [45] based
on the same nodule database, which reported a low AUC of 0.56 for the
average performance of five radiologists and an AUC of 0.63 when the
radiologists were shown relevant (similar) examples of benign and
malignant nodules provided by a content-based image retrieval system.
Referring to Table 2, we find it interesting that both the CNNs and
MTANNs achieved significantly higher performance than that of the
average human observers.

To ensure that CNNs have been used to their full potentials when
comparing against MTANNs, we explored 4 distinct CNN architectures
and employed the well-established techniques to prevent the CNNs
from over-fitting to the training data. Specifically, a shallow network
was chosen for comparison because it required fewer training samples;
and thus, it could be considered suitable, given the limited training

Fig. 8. Evaluation of lung nodule classification. Comparison between the MTANNs and 3 CNN architectures in (a) the division protocol and (b) 5-fold protocol. (c) Performance
comparison for each CNN architecture using the division and 5-fold protocols.

Table 2
AUCs with 95% confidence intervals for the MTANNs and CNNs trained for nodule
classification using the 5-fold cross validation.

Learning machine AUC

MTANNs 0.8806 (95% CI: 0.8389–0.9223)
sh-CNN 0.7709 (95% CI: 0.7079–0.8272)
LeNet 0.7586 (95% CI: 0.6843–0.8140)
rd-CNN 0.7813 (95% CI: 0.7189–0.8306)
AlexNet 0.7685 (95% CI: 0.7025–0.8311)
FT AlexNet 0.7755 (95% CI: 0.7120–0.8270)
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datasets in medical imaging applications. The relatively deep CNN and
LeNet were chosen for comparison because they are common CNN
architectures in the medical imaging literature. The deep AlexNet
architecture was also explored because it could demonstrate how the
record-breaking AlexNet architecture would perform for focal lesion
detection and classification. To avoid over-fitting, we used weight
regularization in the cost function, extensively performed data aug-
mentation to enrich the datasets, and adopted dropout regularization
to hinder over-fitting in the parameter-rich fully connected layers. As
an alternative to training from scratch, we also explored fine-tuning of
a pre-trained model, which is arguably one of the best if not the best
technique for training a CNN from a limited training set. Therefore, we
conclude that the competitive performance evaluation, which we
presented in this paper, may draw a fair comparison between
MTANNs and CNNs.

Our experiments based on CNN architectures of varying depths
provided insights into the effective depth of a CNN for focal lesion
detection and classification. For nodule detection, we observed that the
shallow CNN with 1 convolutional layer performed on a par with the
deeper CNNs given a limited training set. However, the performance of
the shallow CNN was significantly lower than that of the deeper
architectures when a larger training set was used for training.
Furthermore, comparing the performance of the two deep architectures
(Alexnet and rd-CNN) revealed that the AlexNet offered no significant
performance improvement over the rd-CNN, suggesting that rd-CNN
with 4 convolutional layers may be adequate for nodule detection. For
nodule classification, our experiments showed no significant perfor-
mance improvement when using CNN architectures of varying depths.
This performance trend is probably caused by similar visual character-
istics of the benign and malignant nodules, which leaves little room for
further improvement by means of deeper architectures. In contrast,
nodule detection consists in distinguishing nodules from a large variety
of normal structures, for which deeper architectures have more

capability than do shallow architectures. These findings suggested that
the use of deep architectures, which is fundamental to achieving high
performance in the field of computer vision, might not be as effective
for focal lesion detection and classification in medical images. This may
call for a systematic study on the effective depth of CNNs for medical
imaging applications.

To provide a deeper comparison between CNNs and MTANNs, we
would like to further discuss these two learning machines in terms of
learned feature hierarchies, handling of sample uncertainty, and
reliance on the size of the training set:

• Learned feature hierarchies: Consider an MTANN that has a hidden
layer with k nodes and an output layer with 1 output node. Further
assume that the above MTANN is trained using d d× image patches.
During the training phase, k d d× × weights will be learned between
the input and the hidden layer, which can be viewed as learning k
filters of size d d× ; k weights will be learned between the hidden
layer and the output layer, which can be viewed as learning a fusion
rule for combining the k filter responses in order to produce the
desired output. Therefore, each MTANN in an ensemble learns k
low-level features and the corresponding combination rule. During
the testing phase, the likelihood of being a lesion is computed for
small d d× regions in an ROI; and then, the resulting likelihood
values for lesion parts are aggregated using a Gaussian function.
Therefore, the MTANNs never attempt to detect the entire lesion at
once, rather, they learn to detect lesion parts using low-level
features; and then, aggregate the predictions in a weighted manner
to compute an overall lesion score for the whole ROI. CNNs, on the
other hand, not only learn the low-level features but also extract the
mid-level and high-level features in order to produce a likelihood
value for a given ROI. The distinction between the above-explained
featured hierarchies can contribute to the higher performance of the
MTANNs for focal lesion detection. In Fig. 7, we showed that the

Fig. 9. Compassion between easy- and hard-to-classify malignant and benign nodules. According to panels (a)–(d), both machine-learning models use the size of nodules as a
characteristic feature to distinguish between malignant and benign nodules. However, heavy reliance on the size of nodules has led to misclassification of small malignant nodules as
benign (see panels (e) and (f)) and misclassification of large benign nodules as malignant (see panels (g) and (h)).
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majority of the top false positives generated by the MTANNs and
CNN appeared around the chest wall. However, examining the
remaining top false positives generated by the two models reveals
that the CNN-based model shows a higher degree of reliance in the
presence of chest walls than does the classification model based on
the MTANNs. This is because a CNN tends to extract semantic
features from ROIs. This together with the presence of the chest wall
in the training ROIs has led to the inclusion of chest walls as a
characteristic feature of the lung nodules. On the other hand, the
MTANNs tend to extract the low-level features and use a Gaussian
function centered in the middle of each ROI for weighted averaging
of the scores, which makes the MTANNs more agnostic to image
information located in the border areas (chest wall).

• Handling of sample uncertainty: In Sections 2.1 and 2.2, we
explained that CNNs take the original ROIs with the corresponding
binary labels for training, but MTANNs receive small image patches
from the ROIs and the corresponding continuous outputs ranged
between 0 and 1. Therefore, the CNNs learn a classification model,
but MTANNs learn a regression model. This seemingly subtle
difference can contribute to the superior performance of the
MTANNs. This is because a CNN treats all the training samples
equally regardless of their levels of uncertainty; as a result, the
decision boundary can be readily affected by the presence of hard-
to-classify training samples [46]. One way to overcome this limita-
tion is to score the ROIs according to their level of difficulty.
However, a manual approach is both subjective and expensive,
and an automatic approach is still an immature area of research
[47]. In the MTANNs, however, the uncertainty associated with
difficult training samples is embedded in the continuous teaching
values. Basically, the positive patches that are selected farther from
the lesion location are considered hard-to-classify samples; and
thus, they receive smaller likelihoods of being a lesion. Therefore,
the proper handling of uncertainty in the MTANNs could contribute
to its higher performance.

• Reliance on the size of the training set: MTANNs differ from CNNs
in that they require only a small number of training ROIs. This is
indeed a major advantage of the MTANNs over CNNs, which makes
them particularly suitable for medical imaging applications where it
is difficult and expensive to obtain a large number of labeled training
data. This advantage stems from the fact that the MTANNs do not
learn directly from the ROIs, rather, from small image patches,
which can be effortlessly collected from a few training ROIs [48].
Furthermore, modeling appearance variability in small image
patches is relatively less challenging than that of large ROIs, further
decreasing the number of samples required for training the
MTANNs. In contrast, the CNNs directly learn from the training
ROIs; and thus, one must obtain a large number of training ROIs
through either acquiring new cases or performing data augmenta-
tion. The former is difficult and expensive because lesions are not
found frequently in medical images, and because they require expert
annotations. The latter is computationally cheap, but the resulting
training samples are highly correlated. Therefore, it can only
partially compensate for insufficient training ROIs. This can be seen
in Fig. 6(b) where the inclusion of additional unique training ROIs
in the 5-fold cross validation scenario substantially improved the
performance of the CNNs trained in the division scenario, even
though sufficient data augmentation had been performed in the
division scenario.

5. Conclusion

In this paper, we have compared 2 classes of end-to-end machine-
learning models, namely MTANNs and CNNs. For this purpose, we
considered 2 well-studied topics in the field of medical imaging:
detection of lung nodules and distinction between benign and malig-
nant nodules in low-dose CT images. We conducted our experiments in

2 scenarios. In the first scenario, we compared the performance of the
CNNs and MTANNs after being trained using limited training data.
Our experiments showed that the performance of the MTANNs was
higher than that of the CNNs for both lung nodule detection and
classification. In the second scenario, we used large training datasets
for training the CNNs. We observed a lower performance gap between
the two models, but the difference was still significant. Specifically, for
nodule detection, the MTANNs generated 2.7 false positives per patient
at 100% sensitivity, which was significantly p( < 0.05) lower than the
best performing CNN model with 22.7 false positives per patient at the
same level of sensitivity. For nodule classification, the MTANNs yielded
an AUC of 0.8806 (95% CI: 0.8389–0.9223), which was significantly
p( < 0.05) higher than the best performing CNN model with an AUC of
0.7755 (95% CI: 0.7120–0.8270). We further theoretically compared
the MTANNs and CNNs and discussed the possible reasons for the
superiority of the MTANNs.
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