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An automated computerized scheme has been developed for the detection and characterization of
diffuse lung diseases on high-resolution computed tomogrdptRCT) images. Our database
consisted of 315 HRCT images selected from 105 patients, which included normal and abnormal
slices related to six different patterns, i.e., ground-glass opacities, reticular and linear opacities,
nodular opacities, honeycombing, emphysematous change, and consolidation. The areas that in-
cluded specific diffuse patterns in 315 HRCT images were marked by three radiologists indepen-
dently on the CRT monitor in the same manner as they commonly describe in their radiologic
reports. The areas with a specific pattern, which three radiologists marked independently and
consistently as the same patterns, were used as “gold standard” for specific abnormal opacities in
this study. The lungs were first segmented from the background in each slice by use of a morpho-
logical filter and a thresholding technique, and then divided into many contiguous regions of
interest(ROIs) with a 32< 32 matrix. Six physical measures which were determined in each ROI
included the mean and the standard deviation of the CT value, air density components, nodular
components, line components, and multilocular components. Atrtificial neural netviAkKss)

were employed for distinguishing between seven different patterns which included normals and six
patterns associated with diffuse lung disease. The sensitivity of this computerized method for a
detection of the six abnormal patterns in each ROl was 991222/123 for ground-glass opacities,
100% (15/15 for reticular and linear opacities, 88.0%432/150 for nodular opacities, 100%
(98/98 for honeycombing, 95.8%369/385 for emphysematous change, and 10048/43 for
consolidation. The specificity in detecting a normal ROl was 88(940/1067. This computerized
method may be useful in assisting radiologists in their assessment of diffuse lung disease in HRCT
images. ©2003 American Association of Physicists in Medicin®Ol: 10.1118/1.1597431
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[. INTRODUCTION possible diseases. We have also developed an ANN scheme
for the determination of the likelihood of each of 11 intersti-
The differential diagnosis of diffuse lung disease is @ majokig| diseases by using 10 clinical parameters and 16 radio-
subject in high-resolution computed tomograpyRCT).  |ogic findings’ Experimental results obtained with receiver
However, it is considered a difficult task for radiologists, operating characteristiROC) analysis indicated that the ra-

partly because of the complexity and variation in diffuse dis'diologists’ performance in differential diagnosis was im-

case patterns on HRCT IMages, _and a_lso because ‘?f the s oved significantly when they used the computer oufput.
jective terms used for describing diffuse lung diseases.

Therefore, our goal is to develop a computer-aided diagnos- In previous studies for the detection of diffuse lung dis-

: ; 9
tic (CAD) scheme for diffuse lung diseases on HRCT ineﬁiz dofcr)]r t;'eRgrtomaatgezsdetHe i'tt.g]nagt a:lc.) ndde_vfizzeod aac't'es
order to assist the radiologists’ image interpretation as o u : ground-g pacit

ssecond opinion.” on 120 HRCT images from 20 pati.ents by using a hybr.id
For the computerized detection of interstitial lung dis-"eWork of three single networks with an expert rule. This
eases on chest radiographs, we have developed three diffdfyPrid network correctly classified 975.8%9 of 120 images
ent CAD schemes which were based on the Fourieffom 20 patients. Uppaluret al’® developed an adaptive
transform' ™3 a geometric-pattern feature analybiand an  Multiple-feature method in assessing 22 independent texture
artificial neural networKANN) analysi$ of image data. The features in order to classify six tissue patterns: honeycomb-
results of an observer performance stuihdicated that ra- ing, ground glass, bronchovascular, nodular, emphysema-
diologists’ performance in distinguishing between normallike, and normals. Delormet al** developed a texture-based
lungs and abnormal lungs with interstitial infiltrates was im-pattern recognition method to classify normals, emphysema-
proved when the computer results were available. tous changes, ground-glass lesion, intralobular fibrosis, and
The task subsequent to detection is the differential diagvessels by use of a multivariable discrimination analysis.
nosis for the identification of interstitial disease among manyThey reported that 1,33@0.7%9 of 1,889 regions of interest

2440 Med. Phys. 30 (9), September 2003 0094-2405 /2003/30(9)/2440/15/$20.00 © 2003 Am. Assoc. Phys. Med. 2440



2441 Uchiyama et al.: Quantitative computerized analysis of diffuse lung disease 2441

(ROI9) with 5X5 matrix size obtained from five patients were the following:(1) ground-glass opacitie$2) reticular
were classified correctly. These studies indicated that somand linear opacities,3) nodular opacities(4) honeycomb-
diffuse lung diseases on HRCT can be detected by use of thag, (5) emphysematous changé) consolidation,(7) non-
computerized scheme. However, the number of cases usepecific diffuse opacities or indeterminate for classification,
was relatively small, and the level of performance was ratheand(8) other abnormalities such as atelectasis, pleural thick-
low for clinical applications. ening, bronchectasis, pleural effusion, bulla, focal lung le-
In this study, we attempted to determine physical measion, and artifacts.

sures on HRCT images in order to detect and characterize Each abnormal pattern was marked independently, and ar-
diffuse lung diseases, which will be a basis for application toeas that included two or more different patterns were also
the differential diagnosis of diffuse lung disease in the futuremarked with different colors. The areas with a specific pat-
We compared the physical measures of normal slices witlern, which three radiologists marked independently and con-
those of abnormal slices which included six typical patternssistently as the same pattern, were used as “gold standard”
of diffuse lung diseases. In addition, we investigated thdor the specific abnormal opacities in this study. Since the
classification performance for distinction between normalsize and the shape of abnormal areas marked by radiologists

and abnormal slices. tended to be different each other, the area with a specific
abnormal pattern as “gold standard” was determined by a

Il. MATERIALS Io_g|cal AND operatlor} .for areas marked k_)y th.ree radiolo-
gists. The areas identified by the three radiologists as abnor-

A. Clinical cases mal, even if they were considered as different abnormal pat-

derns involved in the same area, were determined as

Department of Radiology at the University of Chicago Hos- aPnormal areas,” which were used for testing. A slice was
pitals based on normal cases and abnormal cases reporteddftermined as an “abnormal slice” when there was at least
clinical examinations from 1998 to 2002. Our image data-O"€ ‘@bnormal area,” whereas a slice was determined as a
base included 315 HRCT images, which consisted of three"0rmal slice” when there was no area identified by any of

images selected from each of 105 patients. Three imagége three radiologists as abnormal. The areas obtained from

were selected by an expert radiologist based on the followind'€_“normal slice” were determined as *normal areas.”
criteria; an upper image at the aortic arch level or above, a Fi9ure 1 shows portions of enlarged HRCT images of one

middle image at the level of main bronchi, and a lower im-normal slice and six abnormal slices with ground-glass
age at the level of lower lobar bronchi or below. These im-opacities, reticular and linear opacities, nodular opacities,
ages were obtained with three CT syste@msHiSpeed CTI/i, honeycombing, emphysematous change, and consolidation.
a LightSpeed QX/i, and a GENESIS HISPEED/RP: GE The white lines indicate the abnormal area of the “gold stan-

Medical Systems, Milwaukee, WIThe image matrix size dard_” for each of the_specific opacities. In the following
was 51512 pixels. The original CT value ranged from sections, these HRCT images were employed to demonstrate

—1000 HU to 1000 HU. The slice thickness ranged from 1.othe effects of a number of physical measures on the detection

mm to 3.0 mm. The x-ray tube voltages were 120 kVp ang@nd classification of abnormal areas due to diffuse lung dis-

140 kVp. The field of view was optimized for each patient ®35€:
during the examination, so that the pixel size in the database
ranged from 0.494 mm to 0.781 mm.

Clinical cases were selected from HRCT images in th

I1l. METHODS
B. “Gold Standard” for normal and abnormal A. Overall scheme for classification of diffuse lung
opacities in HRCT images opacities

In this study, it is important to establish reliable cases with  Figure 2 shows the schematic diagram of our method. The
typical normal and abnormal patterns, which will be used adungs in HRCT images were first segmented from the back-
“gold standard,” because the subjective terms and judgmentground in each slice by using a gray-level morphological
by radiologists have generally been used to describe diffusepening and a thresholding technique. The gray-level mor-
lung diseases. Therefore, we have carried out an observphological openintf'**was applied to removal of small light
test carefully to select areas with specific abnormal patternstructures such as vessels, while maintaining the overall gray
as the “gold standard.” Three chest radiologists independievels and larger light structures. A gray-level histogram in-
dently marked areas by drawing boundaries that includedlicating the distribution of pixel values was constructed from
specific diffuse patterns and other abnormalities in 315ixels within the smoothed thorax, and the gray level that
HRCT images on a CRT monitor by use of a mouse. Theynaximize the separation between the two main peaks of the
were asked to mark abnormal areas in the same manner hstogram was used as a threshold to segment the lungs. The
they commonly describe in their radiologic reports. There-majority of the lungs in HRCT images were segmented by
fore, the areas with very subtle and suspicious abnormalse of this automated method. However, because eleven
opacities, which might be considered unimportant clinicallylungs with consolidation were not segmented correctly, we
by the three radiologists, were not included as a “gold stanemployed a manual method for segmentation of the lung
dard” in this study. The diffuse abnormal patterns markedregions in these cases.
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(b) Ground-glass opacities

(e) Honeycombing (£) Emphysematous change

(c) Reticular & linear opacities (d) Nodular opacities

(g2) Consolidation

Fic. 1. Anillustration of HRCT images witte) normal slice and abnormal slices with) ground-glass opacitie;) reticular and linear opacitie&) nodular
opacities,(e) honeycombing(f) emphysematous change, aigl consolidation. The white lines indicate abnormal areas of the “gold standard,” which were
identified by three radiologists independently and consistently as the same type of abnormal patterns.

Many contiguous ROls with a 3232 matrix size were 96X96 matrix size was also used in this study, which was
selected automatically over the segmented lung region. Thelaced centered over the sméi2x32) ROI, i.e., one large
matrix size of the small ROI was chosen empirically. ForROI included nine contiguous small ROIs, and thus two ad-
abnormal ROIs used as a “gold standard,” at least 50% ofacent large ROIs overlapped considerably. When some areas
the area in a 3232 ROI included specific abnormal opaci- outside the lung regions were included in a ROI, the corre-
ties identified by the three radiologists. A large ROI with sponding outside area was ignored for evaluating the diffuse

‘ HRCT images

l

‘ Lung segmentation

l

‘ Selection of ROI

l

‘ Determination of six features

|

| ANN

|

‘ Classification

lung disease. The physical measures determined in each ROI
were used as the input data to an ANN. The ANN was em-
ployed for distinguishing between seven different patterns,
which included normals and six patterns associated with dif-
fuse lung disease, i.e., ground-glass opacities, reticular and
linear opacities, nodular opacities, honeycombing, emphyse-
matous change, and consolidation. In addition, we examined
the usefulness of the Bayesian classifier as an alternative to
the ANN.

B. Determination of six physical measures

In order to detect and characterize the diffuse lung dis-
eases on HRCT, we determined six different physical mea-
sures in this study. These included three measures related to
the gray-level distribution and three measures for geometric
patterns. The gray-level distribution measures were the mean

Fic. 2. Schematic diagram of the computerized classification method by us@nd the standard deviation of CT values in a ROI, and also

of ANN.
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Fic. 3. An illustration of image$96x96) selected from the seven slices in Fig. 1, histograms of ROI images, and output images for air density components,
line components, nodular components, and multilocular components.

The air density component was defined by the area havinghnent was a X7 square, so that nodular opacities could be
CT values between-910 HU and—1000 HU. The mean of extracted while large vessels were removed. In order to re-
CT values was employed for distinguishing some opacitiesnove small noise components in the background, we then
which included very light areas or very dark areas in HRCTapplied the gray-level thresholding technique to the morpho-
images such as consolidation and emphysematous change,lagical white top-hat-transformed image by use of a thresh-
shown in Fig. 3. We used the standard deviation of CT valuesld level of 175 pixel values which was selected empirically.
to characterize some opacities, which included a large variaFhe degree of circularity was defined by the fraction of the
tion in CT values due to the mixture of light and dark areasoverlap area of the candidate with the circle having the same
such as honeycombing. The air density component waarea as the candidate, and was determined for all of detected
quantified for the detection of some opacities, including aircomponents to distinguish between nodular components and
in the lungs. Although the measures obtained from the grayether linear components. The contrast was defined by the
level distribution are useful for the characterization of somemean value of the five largest pixel values for each candidate
diffuse lung diseases, it is difficult to detect nodular andin the white top-hat-transformed image. All detected compo-
reticular opacities because the gray-level distribution doesents with a degree of circularity greater than 0.70 were
not include information on the shape of opacities. considered to be initial candidates for nodular components.
The geometric measures were then employed for the chaBecause small blood vessels in a direction perpendicular to
acterization of some aspects of the nodular components, linthe slice tend to produce high contrast and circular patterns,
components, and multilocular components. In order to detedhese vessels were removed from candidates of nodular com-
nodular components, we applied the morphological “white” ponents which had contrast greater than 700, as illustrated in
top-hat transforrtf to an original CT image. The morpho- Fig. 4. Finally, the average pixel value of the corresponding
logical white top-hat transform is defined by the subtractionimage was defined as a measure indicating the fraction of
of the opening of an original image from the original image.nodular components in each ROI.
This operation corresponds to extracting “white” patterns The line components were determined for extraction of
smaller than the structure element used. The structure el¢he reticular and linear opacities. The gray-level thresholding
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technique was applied to the morphological white top-hatC. Classification scheme

transformed image of an original image by use of a threshold

level of 175 pixel values which was also determined empiri-1. Artificial neural network

cally. The degree of circularity was determined for all of the 5 three-layered ANN with a back-propagation
detected components for distinguishing between line COMPOg|gorithmi*5was employed as a classifier in this study. This
nents and nodular components. All detected component&NN was applied for classifying all ROIs in the segmented
with a degree of circularity smaller than 0.70 were consid4ung regions into seven different categories, which included
ered to be initial candidates for line components. The connormals and six different abnormal patterns. The numbers of
trast was then calculated for all of the candidates for distininput, hidden, and output units were 12, 10, and 7, respec-
guishing between line components and medium-size vesselvely. The number of hidden units was determined empiri-
All detected components with contrast smaller than 700 wergally. The input data for the ANN consisted of six features
considered to be line components, because medium-siZbtained from a small ROI with a 3232 matrix and another
blood vessels in a direction parallel to the slice tend to prosix features from a large ROl with a 8®6 matrix. The six
vide contrasts larger than 700, as illustrated in Fig. 5. Thdeatures for large ROIs were employed to take into account
average pixel value of the resulting image was used as H'€ information adjacent to the small ROIs with a3

measure for the fraction of line components in each ROI. matrix. The features were normalized by use of the average

A measure for multilocular patterns was defined by thevalue and the standard deviation of each feature obtained

average pixel value of the image derived from the morpho]crom all normal ROIs in our database. In the feature space,
.o Y . therefore, the distribution of all features for normal ROIls was
logical “black” top-hat transform. The morphological black

o . .~ 7" centered around the origin, whereas the distribution of fea-
top-hat transform is given by subtraction of the original im- tures for abnormal ROIs was generally shifted from the ori-
age from the opening of the original image. This operationgin_ The output values for each of seven output units ob-
corresponds to extracting “black” patterns that can fit into zineq with the ANN indicated the likelihood of each of the
the area of the structure element used. The structure elemegt,ma) patterns and six abnormal patterns. The output unit
was a K7 square, so that honeycombing could be detected;ig|ding the largest value was considered to be the result of
Although the standard deviation of the CT value was usefuk|assification.
for detecting honeycombing, it was difficult to distinguish  |n order to investigate the performance of the classifica-
between honeycombing and very large vessels. Therefor@ion between normal ROIls and abnormal ROIs in our data-
we adopted the measure for multilocular patterns as anothéyase, we used the ROIs obtained from the “gold standard”

feature. for the training of the ANN. For each ROI with normals and
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six abnormal patterns, twelve features were entered to each Distinction between normal slice and abnormal
of 12 input units, whereas the teacher data were given to thglice

output units, with 0.9 for the corresponding correct category In order to investigate the performance of the classifica-

and 0.1 for the remaining incorrect categories. For testing o{. . .

the ANN. we used the normal ROIs obtained from the “nor- ion between normal slices and abnormal slices, we used all
mal area” and the abnormal ROIs obtained from the “abnor—norr.nal slices and all abnormgl slices in our database as the
mal area.” The abnormal ROIs consisted of the abnormaf€Sting data set. A normal slice was defined as a slice in

ROIs marked by the three radiologists as the same abnormihich none of the three radlolgglsts identified any abnqrmgl

pattern and also as different abnormal patterns. Note that tfg0!: whereas an abnormal slice corresponded to a slice in
normal ROIs and the abnormal ROIs identified as the sam@hich the three radiologists identified at least one identical

pattern were the same as those used for the training data s&O! as abnormal. Figure 6 shows the distributions of the

In the testing, the ROl was considered abnormal when th@umber of ROIs that were classified as abnormal by our

largest output value of the ANN was given in the output unitROI-based classification scheme for both normal and abnor-
corresponding to one of the six abnormal patterns, wherea®al slices. For normal slices, most slices included a rela-

the ROl was considered normal when the largest outputively small number of incorrectly identified *“abnormal

value was given in the output unit for normals. ROIs,” which correspond to false-positive ROIs. Therefore,
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we employed the first rule that a slice with more than fivelV. RESULTS AND DISCUSSIONS

computer-abnormal ROIs would be considered as an abnor-

mal slice. If the slice which was considered as an abnormaA Effect of ROl size

slice contained seven or fewer computer-abnormal ROIs,"

then the second rule was applied, i.e., a slice with four or In order to investigate the effect of ROI size, we selected
more contiguous ROIs in one lung would be considered aseveral small ROI$32%X32) from seven slices, as illustrated
an abnormal slice and otherwise considered as a normah Fig. 1. The small ROIs were selected from the area of
slice. “gold standard.” The physical measures for small ROl were
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Fic. 8. Physical measures for large ROIs selected from the seven slices illustrated in Fig. 1. Features for the distinctioriebeiwvesals and reticular and
linear opacities(b) normals and nodular opacitie&) normals and emphysematous change, @hdaormals and honeycombings.

Medical Physics, Vol. 30, No. 9, September 2003



2448 Uchiyama et al.: Quantitative computerized analysis of diffuse lung disease

1000 T T T I T
+ Normal ROI
L O Ground-glass opacities |
900 *
- B Reticular & linear opacities
£ 3 Emoh ; b @) O Nodular opacities
800 > ML SEM A0S LhahRe /A Honeycombing I
X @ Emphysematous change
w 700 | < Consolidation |
g ’
g MR
. 600 | ) 4
: R
& s00 | . 4
]
g LI &
g 400 | Normal (+) ‘.¥ A i
g -
= 300 | * L _
- I
t, m a
200 ¢ + -
100 f i
<
0 ) O('ﬂ?oo s [m] ° ne a © ) o P
-1000 -300 -600 -400 -200 0 200
Mean CT value
©
450 . . ' r .
+ Normal ROI
400 L O Ground-glass opacities |
a B Reticular & linear opacities
a a O Nodular opacities
@ .
£ 350 Honevcombing (AA) & £ Honeycombing J
% Honeycombing (2) £ @ Emphysematous change
& 100 ag < Consolidation
:
8 250 4
3
)
% 200 - -
g
g 150 | Normal !+! i
b5 - 'h:- ¢ s @ o
] o
= 100 | + o o B i
= RS o @
8
50 b ‘”} -
1] 1 1 1 1 1
-1000 -800 -600 -400 =200 0 200
Mean CT value
(&

determined in each small ROI. The physical measures foFig. 7(b), the distribution of data points for each of the dif-

FIG. 8 (Continued)

large ROI(96x96) were determined in the 986 area lo-

the ROI size increased from 3382 in Fig. 1a) to 96X96 in
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ferent abnormal patterns was separated slightly. This is prob-
cated in the center of each selected small ROI. Figure ably because large ROIs tended to give a better estimate of
shows the effect of ROI size on the physical measures. Athe statistical properties of physical measures than did a
small ROL.
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Fic. 9. Physical measures for large ROIs selected from the “gold standard” of all images in our database. Features for distinctior(d)etomeals,
ground-glass opacities, and consolidatiti), normals and reticular and linear opacitiés, normals and nodular opacitie&) normals and emphysematous
change, ande) normals and honeycombings.
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B. Usefulness of six features fractions of line components for reticular and linear patterns

Figure 7b) shows the relationship between the mean and'® 9reater than those of normals and other abnormal pat-
the standard deviation of CT values obtained with large ROIES: Figure &) shows the relationship between the fraction
(96x96). Note that all of physical measures in Figs. 8 and gof nodular components and the mean CT value. The fractions
discussed later were obtained with large ROIs. It appears iff nodular components for the nodular pattern are greater
Fig. 7(b) that some of the abnormal patterns have distinctivénan those of normals and other abnormal patterns. Figure
features and thus can be distinguished from other opacitie$(C) shows the relationship between the fraction of air den-
even if only two features are employed. For example, theSity components and the mean CT value. The ROIs with an
mean CT values for consolidation are larger than any othe@Mphysema pattern have more pixels with CT values be-
opacities, whereas the mean CT values for emphysematoiigeen—910 HU and—1000 HU than do the other patterns.
change are smaller than any other opacities. The standafdgure 8d) shows the relationship between the fraction of
deviation of CT values for honeycombing is much largermultilocular components and the mean CT value. The ROIs
than that for all of the other categories. The ground-glasavith a honeycomb pattern contain more multilocular compo-
pattern has relatively large CT values comparable to those dfents than do any other patterns.
honeycombing, but its standard deviation is less than that of We investigated the usefulness of the six features deter-
honeycombing. Figure(8) shows the relationship between mined for all ROIs of normal and abnormal opacities from
the fraction of line components and the mean CT value. Thé¢he “gold standard” of all slices in our database. Figufe)9

|
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Retcular and hnes
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shows the distribution of data points for normals, ground-C. Comparison of classification accuracy using six
glass opacities, and consolidations in terms of the mean arf@atures and twelve features

the s_tapdar_d deviation of CT values. All consolidations can pq physical measures obtained with large ROl were use-
be distinguished from normals and ground-glass opacmeja

h d-al i liahtl | d wit ul to distinguish between some of abnormal patterns and
whereas ground-giass opacities are signtly overiappec Wity , 1. However, small ROIs may also be useful for cap-

normals. Figure @) shows the relationship between the line turing localized distinctive features of diffuse lung disease in

components and the mean CT value for normals and reticular

and linear opacities. Although some of the normals haveSmall areas. In fact, it appears to be very useful to employ the

large line components, the distribution for reticular and "n_comblnatlon of small and large ROl to distinguish between

ear opacities tends to be shifted from that for normals. Figur§®Me ©f the abnormal patterns and normals, as demonstrated
9(c) shows the relationship between the nodular component2€!0W- Figure 10 shows the classification performance of the
and the mean CT value for normals and nodular opacities"NN With six features from small ROIs, and with six fea-
Although the two distributions for nodular opacities and nor-tures from large ROIs, and with twelve features from small
mals are largely overlapped, some of the nodular opacitiednd large ROIs. As shown in Fig. 10, the ANN with twelve
can be distinguished from normals by use of the fraction ofeatures provided a better classification performance for all
nodular components. Figurdd) shows the relationship be- of the abnormal categories than did the ANN with six fea-
tween air density components and the mean CT value fofures. Figure 11 shows the classification performance of the
normals and emphysematous change. Approximately 80% d¥ayesian classifiéf'” with six features from small ROIs,
the emphysematous changes can be distinguished from nosith six features from large ROIs, and with twelve features
mals. Figure €) shows the relationship between the mul-from small and large ROIs. The Bayesian classifier with
tilocular components and the mean CT value for normals antivelve features also provided a better overall classification
honeycombing. Approximately 75% of the honeycombingsperformance than did the Bayesian classifier with six fea-
can be distinguished from normals. tures, although the overall classification performance by the

TasLE |. Computerized classification results of the ROIs obtained from the “gold standard,” based on the use of the ANN and twelve features.

Computer output

“Gold standard” Normal GGO Reticular Nodular Honeycombing Emphysema Consolidation
Normal 940 17 14 72 6 18 0
(1067 (88.1%) (1.6% (1.3% (6.7% (0.6% (1.7% (0.0%
GGO 1 122 0 0 0 0 0
(123 (0.8% (99.2%) (0.0%) (0.0% (0.0% (0.0% (0.0%
Reticular 0 0 15 0 0 0 0
(15 (0.0% (0.0% (100%) (0.0% (0.0% (0.0% (0.0%
Nodular 10 0 1 132 0 7 0
(150 (6.7% (0.0% (0.7% (88.8%) (0.0% (4.7% (0.0%
Honeycombing 0 0 0 0 98 0 0
(98 (0.0% (0.0% (0.0% (0.0% (100%) (0.0% (0.0%
Emphysema 10 2 2 0 1 369 1
(389 (2.6% (0.5% (0.5% (0.0% (0.3% (95.8%) (0.3%
Consolidation 0 0 0 0 0 0 43
(43 (0.0% (0.0% (0.0% (0.0% (0.0% (0.0% (100%)
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TasLE |l. Computerized classification for distinguishing between normal determined when there was no area identified by any of the
ROIs and abnormal ROs. three radiologists as abnormal. The abnormal slices were de-
Computer output termined when there was an area identified by the three ra-
diologists as abnormal even if they considered them as dif-
ferent abnormal patterns. The slices that did not belong to
Normal ROI (1067 940(88.0% 127 (11.9% normal slices and abnormal slices were determined as a
Abnormal ROI due to identical patte(@14) 21(2.6% 793(97.4% “suspicious normal/abnormal slice,” i.e., they were deter-
Abnormal ROI due to different patteri801) 119(14.9% 682(85.1%  mined when there was an area identified by one or two of the
radiologists as abnormal. The sensitivity and specificity for
the detection of abnormal slices were 90.1982/213 and
Bayesian classifier was lower than that by the ANN. This83.7%(41/49), respectively. However, 52.8%28/53 of the
result seems to indicate that it would be useful to take intgSuspicious normal/abnormal slices were classified as normal
account the information for both small and large ROIs. Forslices, whereas 47.2%25/53 of the suspicious normal/
the size of large ROIs, we confirmed that the matrix size oftbnormal slices were classified as abnormal slices.
64x64 did not provide a better performance than did the
96x96 matrix.

Casegnumber of ROI% Normal Abnormal

V. CONCLUSION

D. Performance of classification Six physical measures were determined for the detection

We investigated the performance of the classification be2nd characterization of diffuse lung diseases in HRCT im-
tween normal ROIs and abnormal ROIs. Table | shows th&9€s- The results indicated the usefulness of the six physical

results of a consistency test for the training cases. The sef?€aSures ffor_}re d'ISt'nCt'Qn betweerr:. normals and six d|ﬁ§r-
sitivity of this computerized method for the detection of the €Nt types of diffuse lung diseases. This computerized method

six abnormal patterns in each ROI was 99.2822/123 for may be useful in assisting radiologists in their assessment of

ground-glass opacities, 100085/15 for reticular and linear  diffuse lung disease in HRCT images.
opacities, 88.0%132/150 for nodular opacities, 100%98/

98) for honeycombing, 95.8%369/385 for emphysematous

change, and 100%#3/43 for consolidation. The specificity ACKNOWLEDGMENTS
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