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Purpose: A massive-training artificial neural network �MTANN� has been developed for the reduc-
tion of false positives �FPs� in computer-aided detection �CADe� of polyps in CT colonography
�CTC�. A major limitation of the MTANN is the long training time. To address this issue, the
authors investigated the feasibility of two state-of-the-art regression models, namely, support vector
regression �SVR� and Gaussian process regression �GPR� models, in the massive-training frame-
work and developed massive-training SVR �MTSVR� and massive-training GPR �MTGPR� for the
reduction of FPs in CADe of polyps.
Methods: The authors applied SVR and GPR as volume-processing techniques in the distinction of
polyps from FP detections in a CTC CADe scheme. Unlike artificial neural networks �ANNs�, both
SVR and GPR are memory-based methods that store a part of or the entire training data for testing.
Therefore, their training is generally fast and they are able to improve the efficiency of the massive-
training methodology. Rooted in a maximum margin property, SVR offers excellent generalization
ability and robustness to outliers. On the other hand, GPR approaches nonlinear regression from a
Bayesian perspective, which produces both the optimal estimated function and the covariance
associated with the estimation. Therefore, both SVR and GPR, as the state-of-the-art nonlinear
regression models, are able to offer a performance comparable or potentially superior to that of
ANN, with highly efficient training. Both MTSVR and MTGPR were trained directly with voxel
values from CTC images. A 3D scoring method based on a 3D Gaussian weighting function was
applied to the outputs of MTSVR and MTGPR for distinction between polyps and nonpolyps. To
test the performance of the proposed models, the authors compared them to the original MTANN in
the distinction between actual polyps and various types of FPs in terms of training time reduction
and FP reduction performance. The authors’ CTC database consisted of 240 CTC data sets obtained
from 120 patients in the supine and prone positions. The training set consisted of 27 patients, 10 of
which had 10 polyps. The authors selected 10 nonpolyps �i.e., FP sources� from the training set.
These ten polyps and ten nonpolyps were used for training the proposed models. The testing set
consisted of 93 patients, including 19 polyps in 7 patients and 86 negative patients with 474 FPs
produced by an original CADe scheme.
Results: With the MTSVR, the training time was reduced by a factor of 190, while a FP reduction
performance �by-polyp sensitivity of 94.7% �18/19� with 2.5 �230/93� FPs/patient� comparable to
that of the original MTANN �the same sensitivity with 2.6 �244/93� FPs/patient� was achieved. The
classification performance in terms of the area under the receiver-operating-characteristic curve
value of the MTGPR �0.82� was statistically significantly higher than that of the original MTANN
�0.77�, with a two-sided p-value of 0.03. The MTGPR yielded a 94.7% �18/19� by-polyp sensitivity
at a FP rate of 2.5 �235/93� per patient and reduced the training time by a factor of 1.3.
Conclusions: Both MTSVR and MTGPR improve the efficiency of the training in the massive-
training framework while maintaining a comparable performance. © 2011 American Association
of Physicists in Medicine. �DOI: 10.1118/1.3562898�
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I. INTRODUCTION

Colorectal cancer is the second leading cause of mortality
due to cancer in the United States.1 Evidence has shown that
the risk of colon cancer death could be reduced with early

2
detection and removal of the colonic polyps. Fiber optic �or
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optical� colonoscopy is considered the gold standard diag-
nostic test as it offers direct biopsy or removal of suspicious
colonic polyps.2 However, optical colonoscopy is invasive,
i.e., it has risks of complications such as perforation, it is
expensive, and it has a long examination time and high pa-

tient discomfort. Therefore, medical centers are seeking al-
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ternative techniques as population screening tools. CT
colonography �CTC�, also known as virtual colonoscopy, has
been proposed as an alternative, less invasive technique for
detecting colorectal neoplasms,3–6 which has less examina-
tion time and less patient discomfort. However, the sensitiv-
ity of CTC can be lower for inexperienced readers because
there is a long learning curve with CTC reading. This limi-
tation begs for a computer-aided detection �CADe� approach
as “a second reader” to assist radiologists in detecting polyps
from CTC images.7

There has been great interest in the development of auto-
mated or semiautomated CADe schemes for the detection of
polyps in CTC in the past decade.8–12 A CADe scheme for
polyp detection is typically composed of candidate detection
followed by supervised classification. The task of candidate
detection is to achieve high sensitivity in detecting polyps by
including as many suspicious lesions as possible. After the
polyp candidate detection stage, feature extraction and analy-
sis are performed on the objects detected in CTC. Based on
these features, various classifiers have been applied that clas-
sify the candidates into polyps and nonpolyps so that FP
detections can be reduced while a high level of sensitivity is
maintained. Linear and quadratic discriminant analysis were
used by Yoshida et al.,9 as well as by Jerebko et al.,13 as
simple and effective classifiers. Acar et al.14 also applied a
linear classifier based on edge-displacement field features.
Gokturk et al.10 employed a support vector machine �SVM�
to distinguish between polyps and normal tissue. To improve
the discriminant ability of SVMs, a committee of SVMs has
been proposed to take advantage of combining multiple
classifiers.15 Another popular classifier is the artificial neural
network �ANN�.16 Logistic regression has also been em-
ployed for reducing false positive �FP� detections where fea-
tures were ordered according to their relevance.17 Yao et al.18

employed a topologic height map for FP reduction. Zhu et
al.19 developed two-dimensional projection features for dis-
tinction between FP and true positive �TP� detections. In
summary, all these proposed classifiers operated on extracted
geometric, texture, morphologic, and other features from
segmented polyp candidates in CTC images. However, the
extracted features might be noisy �with errors� due to CTC
image reconstruction error, segmentation errors, and other
factors. Moreover, it requires not only domain knowledge to
design the set of features to be extracted, but also advanced
feature selection methods for choosing the most discriminant
ones.

Recently, Suzuki et al.20 presented a different approach to
the reduction of FP detections of polyps, in which an ANN
was used as a regression technique instead of a classifier. The
inputs to the ANN regression model were voxel values of
CTC images rather than computed features from segmented
polyp candidates. The ANN was trained with a massive num-
ber of subvolumes extracted from 3D CTC volumes together
with “teaching” volumes containing the distribution for the
“likelihood of being a polyp,” therefore termed massive-
training ANN �MTANN�.21,22 As a nonlinear regression tech-
nique, MTANN is able to learn to differentiate between the

underlying structures of polyps and nonpolyp regions. There-
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fore, the trained MTANN is able to enhance polyps and sup-
press nonpolyps so that the score for a polyp is higher than
that of a nonpolyp. The promising performance of the
MTANN has been demonstrated in the reduction of FP de-
tections in CTC CADe,20,23 computerized detection of lung
nodules in low-dose CT,21,24–26 and CADe for detecting nod-
ules in chest radiographs.27 However, the computational cost
of the training of an MTANN is very high, given the large
number of training samples extracted from 3D CTC images.
For example, the training of a 3D MTANN with ten polyps
and ten FPs took 38 h on a personal computer �Intel, Xeon,
2.7GHz�.20 The training time increases much more when a
mixture of expert MTANNs is used to reduce a large variety
of FPs. It took 244 h to train a mixture of six MTANNs.20,23

This drawback hinders the development of a CADe scheme.
Recently, a dimension reduction technique based on a La-
placian eigenmap has been used in the MTANN framework
to reduce the training time by a factor of 9.5 while maintain-
ing a comparable performance.28

In this study, we investigated the feasibility of two state-
of-the-art nonlinear regression techniques, namely, support
vector regression �SVR� and Gaussian process regression
�GPR�, as alternatives to improve the efficiency of training
of the massive-training framework for reducing FPs in the
computerized detection of polyps in CTC. Unlike ANNs,
both SVR and GPR are memory-based methods that store a
part of or the entire training data for testing. Therefore, they
are generally fast to train and are able to improve the effi-
ciency of the massive-training methodology. Moreover, both
SVR and GPR are kernel-based nonlinear regression tech-
niques, where either a kernel or a covariance function is used
for implicitly transforming the original image data into a
high-dimensional reproducing kernel Hilbert space �RKHS�.
The transformation is able to capture the inherent nonlinear-
ity underlying the CTC images by enhancing polyps and
suppressing nonpolyp objects. Rooted in a maximum margin
property, SVR offers excellent generalization ability and ro-
bustness to outliers. On the other hand, GPR approaches
nonlinear regression from a Bayesian perspective. The Baye-
sian paradigm provides probabilistic modeling of nonlinear
regression. The Bayesian approach to regression specifies a
priori probability of the parameters to be estimated and it
computes the maximum a posteriori probability given the
observed data samples. Contrary to non-Bayesian schemes
where a single parameter is typically chosen by some crite-
rion, the Bayesian probabilistic model produces both the op-
timal estimated function and the covariance associated with
the estimation. Therefore, the Bayesian paradigm offers more
information on the estimated parameters than does the non-
Bayesian methodology. These two methods have been suc-
cessfully applied to various regression problems.29–32 In this
study, we applied SVR and GPR as volume-processing tech-
niques in the distinction of polyps from FP detections in a
CTC CADe scheme. Both methods were trained directly
with voxel values from CTC images. A 3D scoring method
based on a 3D Gaussian weighting function was applied to
the outputs of massive-training SVR �MTSVR� and massive-

training GPR �MTGPR� for distinction between polyps and
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nonpolyps. We tested MTSVR and MTGPR in terms of the
training time reduction and FP reduction performance. The
novelty of the paper is to provide two alternatives to the core
of the massive-training framework, namely, SVR and GPR,
other than dimension reduction techniques, to improve the
efficiency of the training while maintaining a comparable
performance in reducing FPs in the computerized detection
of polyps in CTC.

II. MATERIALS AND METHODS

In this section, we depict the database used in this study
and the performance of a previously reported CADe
scheme.9 We also present the general massive-training
framework of a nonlinear regression technique as a classifier
system to differentiate polyps from FP detections. We pro-
vide the technical background of SVR and GPR. As nonlin-
ear regression models, both SVR and GPR fit well into the
massive-training framework. One main contribution in this
paper is to provide SVR and GPR as alternatives to ANN
regression in the massive-training framework to improve the
computational efficiency in the developmental stage.

II.A. CTC database

We retrospectively collected CTC cases used in this study.
The database was acquired at the University of Chicago
Medical Center. It consisted of 240 CTC data sets obtained
from 120 patients. Each patient followed the standard CTC
procedure with precolonoscopy cleansing and colon insuffla-
tions with room air or carbon dioxide. Oral contrast was not
administered. Both supine and prone positions were scanned
with a multidetector-row CT scanner �LightSpeed QX/i, GE
Medical Systems, Milwaukee, WI� with collimations be-
tween 2.5 and 5.0 mm, reconstruction intervals of 1.0–3.0
mm, and tube currents of 60–120 mA with 120 kVp. The
detailed reconstruction intervals were as follows: 1 mm �2
patients�, 1.25 mm �2 patients, 7 polyps�, 1.5 mm �64 pa-
tients, 12 polyps�, 2.5 mm �51 patients, 10 polyps�, and 3
mm �1 patient�. Each reconstructed CT section had a matrix
size of 512�512 pixels, with an in-plane pixel size of 0.5–
0.7 mm. Optical colonoscopy was also performed for all pa-
tients. In this study, we used 5 mm as the lower limit on the
clinically important size of polyps. The locations of polyps
were confirmed by an expert radiologist based on CTC im-
ages and on pathology and colonoscopy reports. A total of 17
patients had 29 colonoscopy-confirmed polyps, 15 of which

FIG. 1. General framework of massive-training nonline
were 5–9 mm and 14 were 10–25 mm in size. The shapes of
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the polyps were pedunculated and sessile �i.e., there were no
flat lesions; refer to Ref. 33 for the definition�. The whole
database was divided into a training set and a testing set. The
training set consisted of 27 patients, 10 of which had 10
polyps. We selected ten nonpolyps �i.e., FP sources� from the
training set. These ten polyps and ten nonpolyps were used
to train the proposed models. The testing set contained 93
patients, including 19 polyps in 7 patients and 86 negative
patients. The formulation of CTC images into data patterns
as input to the nonlinear regression models is illustrated in
Section II B.

An initial CADe scheme for detection of polyps in CTC
was applied to the database. The CADe scheme is composed
of �1� colon segmentation based on centerline tracing,34 �2�
detection of polyp candidates based on shape index and
curvedness of the segmented colon,9 �3� calculation of 3D
pattern features of the polyp candidates,7,34,35 and �4� classi-
fication of the polyp candidates as polyps or nonpolyps based
on quadratic discriminant analysis. The initial CADe scheme
yielded a 94.7% �18/19� by-polyp sensitivity with 5.1 �474/
93� FPs per patient for the testing set. The major sources of
FPs included rectal tubes, stool, haustral folds, colonic walls,
and the ileocecal valve.

II.B. General framework of massive-training nonlinear
regression

The basic idea of using nonlinear regression techniques to
distinguish polyps from nonpolyp objects is to learn the dis-
tinctive underlying image structures of different classes. Un-
like a classifier that is based on features extracted from seg-
mented objects, a regression model uses individual voxel
values as input. It is thus able to differentiate subtle charac-
teristics of different classes in a local scale. For example, the
shape index has been proposed as a feature to detect polyps
and also retained for classification.9 However, the shape in-
dex values for a polyp and part of a rectal tube would be very
close because both have caplike shapes. Therefore, a classi-
fier failed to separate rectal tubes from polyps based on the
shape index.20 However, the underlying image structures are
very different. Rectal tubes are hollow in the center, whereas
polyps are solid.

The general framework of massive-training nonlinear re-
gression is illustrated in Fig. 1. The input volumes are 3D
CTC images. Usually, the pixel size within a CT image is
different from the reconstruction interval across CT sections.

ression for distinction between polyps and nonpolyps.
Moreover, the reconstruction intervals might vary across dif-
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ferent institutions under different protocols. In order to miti-
gate such variations, we converted the original CTC images
into isotropic volume data. The voxel values were normal-
ized to a range between 0 and 1, where 1 corresponded to
1000 Hounsfield unit �HU� and 0 was matched to �1000
HU. Each input volume contained 64 CT slices and each
image slice is of 64�64 pixel size. The center of input vol-
ume is the detected location of suspicious polyps from the
original CADe scheme. If we input each volume directly to
the nonlinear regression models, the dimension is prohibi-
tively large �64�64�64=262 144�. Hence, it requires huge
data samples to train a large number of parameters in the
regression model, which is not feasible. Therefore, we divide
the input volumes into multiple subvolumes. Each subvol-
ume is a cube of 7�7�7 dimension. We scan the entire
input volume with the subvolume voxel by voxel. The other
purpose for using the subvolumes as input is to learn differ-
ent local structures of polyps and nonpolyps so that the re-
gression model is able to differentiate between the two. Be-
cause the average shape of polyps is close to a sphere, we
can further reduce the number of input voxels for the non-
linear regression model. Figure 2 demonstrates the scheme
for extracting a quasisphere from a subvolume cube. The
number of voxels in the digital quasisphere is 171, compared
to 343 in the original subvolume cube. The gray square in
each matrix is the input voxel to the nonlinear regression
model. Therefore, the computational cost is reduced dramati-
cally while still preserving the essential image information of
polyps.

In this study, we investigated the feasibility of two state-
of-the-art nonlinear regression techniques, namely, SVR and
GPR, in the massive-training framework. SVR offers robust
and nonlinear regression. By employing nonlinear kernel
functions, SVR is able to produce a linear combination of
functionals in the reproducing kernel Hilbert space induced
by the non-negative definite kernel functions. While mapping
back to the original image space, the output functional be-
comes a highly nonlinear function that is able to capture the
underlying nonlinear structure of CTC images. On the other
hand, GPR is a different approach to nonlinear regression
based on Bayesian methodology. GPR is a nonparametric
model that places a prior on the nonlinear function directly
without parametrization. The prediction based on the learned
function is obtained by maximum likelihood of the posterior.
We briefly describe SVR and GPR in Secs. II B 1 and II B 2,

respectively.
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Figure 1 illustrates the nonlinear regression process in the
massive-training framework. The inputs to the nonlinear re-
gression model are the voxel values in the quasispherical
subvolume VS. The output of the nonlinear regression model
is a continuous scalar value that corresponds to the center
voxel in the subvolume, which is defined as

O�x,y,z� = NLR�I�x − p,y − q,z − r���p,q,r� � Vs� , �1�

where I�x− p ,y−q ,z−r� is the normalized input voxel to the
nonlinear regression model; x, y, and z are the global coor-
dinates; p, q, and r are local coordinates; and NLR� · � is the
output of the nonlinear regression model, i.e., SVR or GPR.
Therefore, one subvolume Vs corresponds to one output
voxel as shown in the left and right hand sides of the non-
linear regression model in Fig. 1. By scanning the entire
input CTC volume of 64�64�64 voxels in size with the
input kernel of the regression model voxel by voxel, all out-
put voxels can be obtained. The entire output volume is
formed by putting all the output voxels together according to
their global coordinates. The output volume is of size 58
�58�58 voxels. The size of the output volume is off by six
voxels because scanning is started at three voxels inside the
corner of the input volume with the 7�7�7 input kernel.
The output volume is then subject to the scoring method.

The nonlinear regression model enhances polyps and sup-
presses nonpolyp objects in the output 3D images. In order to
distinguish between the two classes, we present a 3D scoring
method that translates the output volume into a single scalar
value. The score is defined as

S = �
�x,y,z��VE

fG�x,y,z;�w� � O�x,y,z� . �2�

VE is a volume for evaluation that is large enough to cover a
polyp or a nonpolyp object. The criterion to choose a suitable
VE is determined by the standard deviation of a Gaussian
weighting function in the scoring method given in Eq. �3�.
We chose a volume of 21�21�21 voxels for VE because it
is large enough to cover the Gaussian weighting function.
O�x ,y ,z� is the output voxel value from the trained nonlinear
regression model and fG�x ,y ,z ;�w� is a 3D Gaussian weight-
ing function with standard deviation �w, which is described

FIG. 2. The spherical-input subvolume and the slice-by-
slice representation of the digital quasisphere in a 7
�7�7 voxel cube. Each 7�7 square stands for a cer-
tain image slice in the subvolume, where z0 is the
middle slide. The input voxels to the nonlinear regres-
sion models are those gray squares in each matrix.
as
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fG�x,y,z;�w� =
1

	2��w

e�x2+y2+z2/2�w
2 �. �3�

The purpose of weighting of the output volume with the 3D
Gaussian function is to combine the individual voxel values
into a single score. The score is a weighted summation of the
output voxel values. Because the 3D Gaussian weighting
function is centered at the origin of the volume, the higher
the score value is, the more likely the candidate is a polyp.
Classification between polyps and nonpolyps is made by
thresholding of the scores.

II.B.1. SVR

SVMs are a machine learning technique that maximizes
the margin of separation between positive and negative
classes. The SVMs achieve this desirable property by imple-
menting the method of structural risk minimization. The
principle of structural risk minimization states that the gen-
eralization error rate of a SVM on unseen testing data is
bounded by the sum of the error rate on training data and an
extra term that depends on the Vapnik–Chervonenkis (VC)
dimension.29 Therefore, a SVM is able to provide a good
generalization performance. A SVM was first invented by
Vapnik as a powerful tool for pattern recognition29,36 and has
been successfully applied in handwritten digit recognition,37

face detection,38 text categorization,39 and many others.36 On
the other hand, a SVM as a memory-based learning method
is very fast to train because part of the training data, called
support vectors, is stored after the training phase. SVR is a
regression version of SVM by incorporating a quantitative
response. This is one of the main motivations for use of SVR
in the massive-training framework to improve the efficiency.

A SVM has also been adapted for a nonlinear regression
problem with a quantitative response.30 Unlike the conven-
tional square loss function that is sensitive to the presence of
outliers, the SVR model employs an � -insensitive loss func-
tion that is robust to outliers. The �-insensitive error measure
ignores any errors of size less than �. It is defined as

V��e� = 
 0 if �e� � � ,

�e� − � , otherwise.
� �4�

Therefore, any error falling into the �-band is not counted
toward loss. This is analogous to the SVM classifier, where
data samples on the correct side of the decision boundary
and far away from it are ignored in the optimization.

Consider a nonlinear regression model where the depen-
dence of a scalar d on a vector u is given by

d = f�u� + � . �5�

The function f� · � and the statistics of noise � are unknown
except that the additive noise � is statistically independent of
the input vector u. In the massive-training framework, d is
the continuous voxel value T�x ,y ,z� from the corresponding
teaching 3D Gaussian function in Eq. �29�.The goal of the
nonlinear regression model is to estimate the dependence of
d on u, provided there is a set of training data ��ui ,di��i=1

N ,

where �ui ,di� are the sample values of the input vector u and
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model output d, respectively. In SVR, an estimate of d, de-
noted as g, is expanded in terms of the nonlinear functions in
the rich RKHS as follows:

g = �
j=0

L

wj� j�u� = wT	�u� , �6�

where 	�u�= ��0�u� ,�1�u� , . . . ,�L�u��T is the nonlinear
functions associated with RKHS, L is the dimension of the
feature space which might be infinite, and w
= �w0 ,w1 , . . . ,wL�T is the weights we aim to estimate. SVR
achieves this goal by minimizing the following empirical
risk:

min
w

= �
i=1

N

V��di − gi� +



2
�w�2, �7�

where V�� · � is the �-insensitive error function defined in Eq.
�4�, N is the total number of training samples, and 
 is the
regularization parameter which controls the VC dimension of
the model.

Because the cost function in Eq. �4� is not differentiable at
the points ��, the optimization problem can be reformulated
by introduction of nonnegative slack variables.30 If w is the
minimizer of the criterion in Eq. �7�, then the solution can be
shown to have the form

w = �
i=1

N

��i − �i��	�ui� , �8�

where �i and �i� are positive Lagrange multipliers that maxi-
mize the dual objective function

max
�i,�i�

�
i=1

N

di��i − �i�� − ��
i=1

N

��i + �i��

−
1

2�
i=1

N

�
j=1

N

��i − � j���� j − � j��K�ui,u j� , �9�

subject to the following constraints:

�
i=1

N

��i − �i�� = 0,

0  �i,�i�  1/
 .

K�ui ,u j� is a symmetric non-negative inner-product kernel
function defined in the RKHS with the Mercer’s theorem29

K�ui,u j� = 	�ui�T	�u j� . �10�

The solution depends on the input data samples through the
inner-product kernel function. Therefore, even though we
might not know the explicit formulation of each nonlinear
function 	�u�, we can still obtain the optimal solution via
the inner-product kernel function. In SVR, popular kernel

functions include
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Linear kernel function: K�ui,u j� = ui
Tu j , �11�

dth degree polynomial function:

K�ui,u j� = �1 + ui
Tu j�d, �12�

Gaussian kernel function:

K�ui,u j� = exp�− �ui − u j�2/2�2� , �13�

Tanh kernel function: K�ui,u j� = tanh�aui
Tu j + b� .

�14�

Note that only a subset of the solution values ��i−�i�� is
nonzero and the corresponding data points are called support
vectors. The two free parameters � and 
 impact the VC
dimension of the optimal nonlinear function

g�v� = �
i=1

N

��i − �i��K�ui,v� . �15�

� is the width that controls the tolerance of error measure. If
the response d is scaled such that we use V��e /�� instead,
then we might consider using a preset value for �. The regu-
larization parameter 
 can be estimated, for example, by
cross-validation. Given any unseen testing data sample v, the
prediction is obtained by plugging v into Eq. �15�

In our application, we aim at estimating an optimal non-
linear function g�v� so that it is able to characterize the un-
derlying image structures. In the testing stage, we obtained
the output of MTSVR O�x ,y ,z� by setting the variable v as
the input �I�x− p ,y−q ,z−r� � �p ,q ,r��Vs� in Eq. �15�.

II.B.2. GPR

GPR is considered as a useful probabilistic regression
technique due to its theoretical simplicity and excellent gen-
eralization capacity. Whereas SVR aims at direct minimiza-
tion of the regularized �-insensitive error function, GPR em-
ploys a Bayesian methodology to derive the optimal
nonlinear regression model. GPR has been successfully ap-
plied to a wide range of areas, such as object categorization32

and others.31 It is able to fit any arbitrary-shaped curves due
to its nonparametric nature.

A Gaussian process t�u� is a collection of random vari-
ables, any finite number of which have a joint Gaussian dis-
tribution. It is completely specified by its mean m�u� and
covariance function V�u ,u��, which are defined as follows:

m�u� = E�t�u�� , �16�

V�u,u�� = E��t�u� − m�u���t�u�� − m�u���T� . �17�

For notation simplicity, we set the mean as zero. In our case,
the random variables represent the value of the function t�u�
at location u. A Gaussian process can be applied in a nonlin-
ear regression model in Eq. �5�. To this end, we model the

estimated output as
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t�u� = wT��u� , �18�

where w is the weight vector that we aim at estimating and
��u� is the basis function. Similar to 	�u� used in SVR,
��u� is also associated with the RKHS induced by the cova-
riance function in the Gaussian process.

Bayesian methodology is employed in the Gaussian pro-
cess to estimate the regression model. We assume a priori
distribution of weight vector w such that w is a multivariate
Gaussian random variable with zero mean and covariance
function Qw. We further assume that the additive noise v in
the regression model in Eq. �5� follows an independent, iden-
tically distributed Gaussian distribution with zero mean and
variance �2. Then, the likelihood of the observations d given
the parameter w can be written as

p�d�u,w� = 
i=1

N

p�di�ui,w�

= 
i=1

N
1

	2��2
exp�−

�di − wT��ui��2

2�2 �
=

1

�2��2�N/2exp�−
�d − wT��u��2

2�2 � , �19�

where d is the vector of all individual responses, ��u� is the
matrix format of the nonlinear basis function for all the input
samples, and �z�2 denotes the Euclidean length of vector z.

Given the likelihood �19� and prior information of w, in-
ference in the Bayesian regression model can be achieved via
a posterior distribution based on Bayes’ rule, i.e.,

p�w�u,d� =
p�d�u,w�p�w�

p�d�u�
� exp�−

�d − wT��u��2

2�2 �
�exp�−

wTQw
−1w

2
�

� exp�−
1

2

wT���u���u�T

�2 + Qw
−1�w

− 2
wT��u�d

�2 +
dTd

�2 ��
� exp�−

1

2
�w − w�TQ�w − w�� , �20�

where Q=�−2��u���u�T+Qw
−1 is the posterior covariance

function, and w=�−2Q−1��u�d is the mean function of the
posterior, which is plugged into the final regression model in
Eq. �18�. Unlike SVR, GPR provides not only the estimate of
the weight vector w, but also its covariance function.

In order to obtain a prediction for a testing case, we av-
erage over all possible parameter values weighted by their
posterior probability. This is in contrast to non-Bayesian
schemes such as SVR, where a single parameter is typically
chosen by maximization of the cost function �7�. Therefore,

the predictive distribution t�v� for any testing sample v is
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p�t�v��v,u,d� =� p�t�v��v,w�p�w�u,d�dw

= p�t�v��v,w�� p�w�u,d�dw

= p�t�v��v,w�

� N� 1

�2��v�TQ−1��u�d,��v�TQ−1��v�� ,

�21�

where N �� denotes a Gaussian distribution with mean
�1 /�2���v�TQ−1�u�d and covariance function
��v�TQ−1��v�. The mean is the optimal estimate for the
testing sample v. The results of Eq. �21� can be alternatively
explained by Eq. �18�. Because the estimate of weight vector
w follows a Gaussian distribution, t�v� is also a Gaussian
random variable with mean ��v�Tw and covariance function
��v�Tcov�w���v�. Based on the matrix inversion lemma, we
can rewrite the mean as ��v�TQw�u����u�TQw��u�
+�−2I�−1d. We define V�u ,u��=��u�TQw��u�, which is ex-
actly the covariance function of the Gaussian process in Eq.
�17�. The covariance function between training samples u
and any testing sample v is described as V�v ,u�
=��v�TQw��u�. Therefore, the optimal estimate for any
testing sample v in the nonlinear regression model in GPR is
given by

t�v� = V�v,u��V�u,u�� + �−2I�−1d . �22�

The accuracy of the estimate is highly dependent on the
covariance function V. In this study, we investigated several
popular covariance functions widely used in the Gaussian
process

Matern covariance:

V�v,u� = �1 +
	3�v − u�

l
�exp�−

	3�v − u�
l

� , �23�

Neural network covariance:

V�v,u� = sin−1� vTPu
	�1 + vTPv��1 + uTPu�

� , �24�

Rational quadratic covariance:

V�v,u� = �1 +
�v − u�2

2��2 �−�

, �25�

Gaussian covariance: V�v,u� = exp�−
�v − u�2

2�2 � , �26�

Linear covariance: V�v,u� = vTPu . �27�

The Gaussian covariance function in Eq. �26� is exactly the
Gaussian kernel �13� used in SVR. The rational quadratic
covariance can be viewed as an infinite sum of Gaussian

covariance functions with different length scales. Different
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covariance functions characterize different similarity mea-
sures between pairs of two data samples.

In the application of the Gaussian process, covariance
functions are typically weighted by a smoothness factor, i.e.,
� fV�v ,u�+�2I, where �2 is the variance of noise and � f

controls the balance between a covariance function and
noise. These two variables, together with free parameters in
different covariance functions, are called hyperparameters,
denoted as �.

Given a covariance function, it is important to seek an
optimal set of hyperparameters to fit the observation data
samples. In the Gaussian process, this is achieved by maxi-
mization of the marginal log-likelihood function �19�, repre-
sented by

�

�� j
log p�d�u,�� =

1

2
tr����T − V−1�

�V

�� j
� , �28�

where tr denotes the trace of the matrix, V is the gram matrix
with each element as V�ui ,u j�, and � is a vector defined as
�=V−1d. The inversion of matrix V is computationally inten-
sive with O�N3�. However, once the value is known, we can
easily obtain the optimal set of hyperparameters. Note that in
a Gaussian process, we only assume that the weight param-
eter w, the output t�u�, and the additive noise v in the regres-
sion model follow Gaussian distributions. No assumptions
are imposed on the original input u in the definition and
derivation of a Gaussian process. The Bayesian paradigm is
derived based only on these assumptions. In the context of
MTGPR, we assume that the individual voxels in the output
volume follow a Gaussian distribution, but not the voxels in
the input subvolume inside the quasispherical region.

II.B.3. Training of nonlinear regression models

We used ten polyps and ten nonpolyps as training cases,
which had been used in our previous studies.20 If we scan the
whole 64�64�64 volume with a 7�7�7 cube voxel by
voxel, there will be 195 112 �58�58�58� subvolumes. Be-
cause most of the subvolumes overlap and are away from the
polyps, we only focus on the subvolumes extracted from a
15�15�15 cube �i.e., a training volume� centered at the
center of the volume object. The 15�15�15 cube was used
in the training phase for the purpose of reduction of the num-
ber of training samples, whereas the whole 64�64�64 vol-
ume was used in the testing phase to cover output responses
from a regression model sufficiently. To reduce the number
of subvolumes further, we selected those subvolumes
sampled at every other voxel. Therefore, 512 �8�8�8� sub-
volumes were extracted from each volume object. In total,
we extracted 5120 �512�10� subvolumes for each class,
with 171 dimensions for each subvolume, according to the
methodology described in Sec. II B. Therefore, there are
10 240 training examples in total. Hence, we called the pro-
posed nonlinear regression models as MTSVR and MTGPR.
The requirement for selection of a certain number of subvol-
umes from certain locations in the original volume is to
strike a balance between the number of subvolumes and suf-

ficient representation of volumes using subvolumes. The
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overlapping subvolumes in the training volume are highly
correlated when they are closely spaced; therefore, neighbor-
ing subvolumes may be redundant for training. As described
in Sec. II B 3, we selected subvolumes at every other voxel
inside the 15�15�15 training volume. This pruning
method reduced the number of training subvolumes while
maintaining a comparable performance.47 The teaching vol-
umes in the massive-training framework contain the distribu-
tion for the “likelihood of being a polyp.” The teaching re-
sponse T in MTSVR and MTGPR for training examples
extracted from polyps used a 3D Gaussian weighting func-
tion whose peak was located at the center of the polyp.
Therefore, we need to extract subvolumes from a whole
polyp as well as its background. Recently, Ong et al.40 pro-
posed to select voxels that belong to the elliptic class of the
peak subtype using a one-ring neighborhood �i.e., voxels that
satisfy a certain geometric criterion� in detecting polyps in
CTC. They demonstrated a better performance with this ap-
proach, which limits the feature extraction area in the surface
of polyps because their approach focused on geometric �or
shape� features. This is different in the massive-training
framework where the nonlinear regression model learns the
local texture or gray-level information on whole polyps and
nonpolyps based on the individual subvolumes. Therefore,
we need to extract subvolumes not only from a polyp sur-
face, but also from the inside of the polyp. The teaching
response T in MTSVR and MTGPR for training examples
extracted from polyps used a 3D Gaussian weighting func-
tion whose peak was located at the center of the polyp. On
the other hand, we used all zero values as the desired re-
sponse for nonpolyp training examples. Therefore, both
models were able to learn the underlying image structures by
enhancing polyps with a 3D Gaussian weighting function
and suppressing nonpolyps with zeros. The desired response
is described as follows:

T�x,y,z� = � 1
	2��T

exp
−
x2 + y2 + z2

2�T
2 � for a polyp,

0 for nonpolyps.
�

�29�

The standard deviation �T controls the size of the Gaussian
weighting function. The coordinate �x ,y ,z� is consistent with
the one used in Eq. �1�. Training of MTSVR and MTGPR
involves a large number of subvolume-voxel pairs. The input
sample is a vector of length 171 and the teaching response T
is a scalar, either a voxel value extracted from the 3D Gauss-
ian weighting function or zero.

MTSVR used quadratic programming to solve the maxi-
mization problem in Eq. �9� and to obtain the optimal solu-
tion in Eq. �15�. MTGPR employed the conjugate gradient
for maximizing the marginal log-likelihood function in Eq.
�28� and achieved the optimal hyperparameter. Both methods
are memory-based because compact kernel/covariance func-
tions are used in both approaches. Therefore, some training
examples were stored after the training process. In MTSVR,
only a part of training examples was retained, which are

called support vectors. On the other hand, all the training
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data were stored in MTGPR because the functional evalua-
tion in Eq. �22� required the presence of all training samples.
This is very different from the MTANN approach, where all
of the training data were discarded after the linear-output
back-propagation algorithm.41,42 The relevant information
was represented in the optimal weights in the linear-output
ANN regression model.

We will explore different kernel functions in Eqs.
�11�–�14� used in MTSVR. We used grid search to find the
best kernel function with optimal parameters. On the other
hand, MTGPR is able to compute the hyperparameters
through the optimization process for all of the covariance
functions in Eqs. �23�–�26�. The optimal prediction for any
testing samples can have noiseless and noisy formulations in
MTGPR. Specifically, the noiseless prediction setup sets �
=0 in Eq. �22� and noisy prediction optimizes the parameter.
However, we only used noisy prediction in MTGPR in the
following experiments in Sec. III, as becomes evident in Sec.
IV when we compare these two approaches.

II.C. Performance evaluation criteria

We used a mean-square error �MSE� to evaluation the
training performance of MTSVR and MTGPR as it offers a
direct comparison between the teaching response and the
output from the models. To assess the performance of the
trained models in the testing data, we calculated the area
under the receiver-operating-characteristic �ROC� curve
�AUC� values,43 a FP reduction rate without removal of TPs,
and free-response ROC �FROC� analysis44 as performance
metrics. The AUC value is calculated based on the
maximum-likelihood estimation of the binormal ROC
curve.45 It offers the overall performance of the regression
models after 3D scoring as classifiers to distinguish between
polyps and nonpolyps. We conducted statistical tests to de-
termine whether the difference in AUC values from different
methods is statistically significant. The FP reduction rate
without removal of TPs describes the percentage of FPs that
have been eliminated by selecting a threshold without sacri-
ficing any TPs.

III. RESULTS

In this section, we present the performance of the pro-
posed MTSVR and MTGPR in reducing FP detections. We
also compare the results to the previous studies on
MTANN.20

III.A. Training performance of MTSVR and MTGPR

We manually selected ten representative polyps and ten
nonpolyps with different visual appearance such as size,
shape, and contrast from the CTC data sets. The ten nonpol-
yps covered major sources of FPs such as rectal tubes, stool,
haustral folds, colonic walls, and the ileocecal valve. The
purpose was to make the training data samples represent the
database �ideally the whole population�. The standard devia-
tion �T in the desired response volume �29� was empirically

20
chosen as 4.5 voxels.
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Table I presents the MSE between the teaching responses
and the outputs from MTSVR, MTGPR, and MTANN with
different parameters. The four kernel functions in Eqs.
�11�–�14� with different parameter values were studied in
MTSVR. The Gaussian kernel function offered the best per-
formance in terms of MSE over the other three kernel func-
tions. Linear and polynomial kernel functions produced a
much higher MSE. It is interesting to note that the tanh ker-
nel function had a relatively similar performance for differ-
ent combinations of parameters. We tested four individual
covariance functions in Eqs. �23�–�26� in MTGPR. One use-
ful property of the covariance function in the Gaussian pro-
cess is that the combination of two covariance functions
forms another valid covariance function. Therefore, we also
applied a popular combination of Gaussian �Eq. �26�� and
linear �Eq. �27�� covariance functions in MTGPR. The neural
network covariance function produced the largest MSE,
whereas other covariance functions achieved a relatively
close performance. The combination of Gaussian and linear
covariance functions did not provide a performance better
than the Gaussian covariance function alone. This was due to
the normalization of training samples. We varied the number
of neurons in the hidden layer in MTANN. Suzuki et al.20

TABLE I. MSE between teaching responses and outputs for training data sam
from different regression models with different parameters for testing data s

Methods Model parameters

MTSVR Linear
Polynomial d 2

4
6
8
10

Gaussian � 0.1
0.35
0.7
1
5
10

tanh a=1, b=0
a=2, b=0
a=3, b=0
a=3, b=1

MTGPR Matern
Neural network
Rational quadratic
Gaussian
Gaussian+linear

MTANN Number of hidden neurons 10
20
25
30
40
50
used 25 in their study. Although the MTANN with 25 neu-
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rons in the hidden layer did not offer the best MSE for train-
ing samples, it achieved the highest FP reduction rate for
testing samples.20

In order further to gain qualitative insights into the differ-
ent performance of the three methods, we applied the best-
trained regression models to the training polyps and nonpol-
yps. Figure 3 presents five representative training polyps and
nonpolyps with corresponding output images from MTSVR,
MTGPR, and MTANN. We used a Gaussian kernel in Eq.
�13� with �=0.35 in MTSVR, a Matern covariance function
in Eq. �23� in MTGPR, and 25 neurons in the hidden layer in
the MTANN. The teaching response images for polyps in the
training phase contain the 3D Gaussian function in Eq. �29�
shown in the second row of Fig. 3�a�. The second row in Fig.
3�b� shows the teaching response images for nonpolyps. All
three methods were able to learn the underlying CTC images
by enhancing polyps and suppressing nonpolyps. The output
volumes for two small polyps �the farthest left and right
images� from three methods are stronger and larger than the
original ones in the input volumes, which demonstrates the
ability of MTSVR, MTGPR, and MTANN to enhance small
polyps. However, it should also be noted that the shapes of
the output volumes for the farthest left polyp in MTGPR and

and AUC values and false positive reduction rates without removal of TPs
es.

Training MSE Testing AUC
FP reduction rate

without removal of TPs

0.0419 0.7821 0.1391
0.0363 0.7734 0.1623
0.0343 0.7754 0.1656
0.0347 0.7752 0.1634
0.0456 0.7802 0.1367
0.1458 0.7572 0.1574
0.0278 0.7930 0.4151
0.0178 0.7864 0.5147
0.0131 0.7900 0.4519
0.0114 0.7941 0.3885
0.0083 0.8578 0.2378
0.0082 0.8608 0.2085
0.0435 0.7738 0.1428
0.0422 0.7823 0.1439
0.0420 0.7834 0.1445
0.0420 0.7835 0.1446
0.0204 0.8215 0.5042
0.0304 0.8288 0.4662
0.0194 0.8245 0.4746
0.0235 0.7938 0.4113
0.0233 0.8032 0.4430
0.0239 0.7804 0.2965
0.0182 0.7867 0.3476
0.0162 0.7707 0.4683
0.0147 0.8012 0.2822
0.0117 0.8139 0.2638
0.0106 0.8080 0.3905
ples
ampl
MTSVR are rounder and larger than the one in MTANN
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output volume. Figure 3�b� presents the case for training
nonpolyps. The center object is dark in the farthest left out-
put volume of MTGPR, whereas it remains in the output
volume of MTANN. MTSVR had an intermediate perfor-
mance.

III.B. Performance comparison on testing CTC data

The main focus of the study is to reduce the number of FP
detections in CTC CADe. Although MSE is a good indicator
for regression, it might not be strictly correlated with the FP
reduction. Therefore, we applied all the trained regression
models, not only the best one in terms of MSE, to 474 testing
nonpolyps �FPs� and 36 TP volumes �that constitute 18 pol-

FIG. 3. Illustrations of the central axial slices of representative training �a�
polyp volumes and �b� nonpolyp volumes. In the output volumes of
MTSVR, MTGPR, and MTANN, polyps are represented by bright voxels in
the center, whereas nonpolyps are suppressed and almost dark.
yps�. Table I presents the AUC values and FP reduction rates
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without removal of TPs for MTSVR, MTGPR, and MTANN
with different parameters for the testing CTC cases. MTSVR
with a Gaussian kernel with �=10 produced the best AUC
value. This is consistent with the lowest MSE obtained with
the same parameter. However, the highest FP reduction rate
was achieved with a Gaussian kernel with �=0.35, which
suggests the difference between two performance metrics.
Linear, polynomial, and tanh kernel functions had much
lower performance than the Gaussian kernel function. The
best performance was obtained with a Matern covariance
function in MTGPR, though the rational quadratic covari-
ance function had a slightly better MSE value for the training
data samples. The combination of Gaussian and linear cova-
riance functions did not offer performance better than the
Gaussian covariance function alone in MTGPR. We also pro-
vide the performance for MTANN with different numbers of
neurons in the hidden layer in Table I. MTANN with 25
hidden layer neurons achieved the best FP reduction rate.
Because the FP reduction rate is the most important criterion
in this study, we chose a Gaussian kernel function with �
=0.35 for MTSVR, a Matern covariance function for MT-
GPR, and 25 hidden layer neurons for MTANN in the fol-
lowing experiments without further mentioning the specific
parameters.

We selected five representative testing polyps and nonpol-
yps to show different output volumes from MTGPR,
MTSVR, and MTANN in Fig. 4. The trained models were
able to enhance the testing polyps and suppress the nonpol-
yps. The ability of all methods to enhance small polyps can
be demonstrated again in the middle of the images in Fig.
4�a�. In the farthest left and middle images of Fig. 4�b�, the
testing nonpolyps become dark in the output volumes of MT-
GPR and MTSVR. However, the nonpolyps can still be seen
in the output volumes of MTANN.

Table II presents the two-sided p-values of the differences
between two AUC values from three methods. As can be
seen from the table, the differences between the AUC values
from MTGPR and MTANN and from MTGPR and MTSVR
are statistically significant �two-sided p-values �0.05�. On
the other hand, the AUC values from MTSVR and MTANN
is not statistically significant with a two-sided p-value of
0.75. The results demonstrate better performance of MTGPR
over MTSVR and MTANN. Figure 5 plots the ROC curves
from the three methods.

The difference between ROC curves from MTGPR and
MTSVR can be further investigated by examining the score
distributions. We present the histograms of scores from
MTSVR and MTGPR in Figs. 6 and 7. The dynamic range of
the scores from MTGPR is larger than the one from
MTSVR. The distribution of nonpolyps in MTSVR has a bell
shape centering in the middle. On the other hand, the distri-
bution of nonpolyps in MTGPR is more concentrated in the
center with longer tails. The distributions of polyps in both
methods are much closer than those of nonpolyps. The scores
for polyps in MTGPR tend to have a larger dynamic range.
Although both methods were able to eliminate half of the FP
detections, the underlying score distributions are very differ-

ent.
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We evaluated the performance of the proposed MTGPR
and MTSVR for FP reduction by using FROC analysis. Fig-
ure 8 shows the FROC curves for comparison. The FROC
curves indicate that MTGPR was able to reduce 50% �239/
474� of the FP detections without removing any of the 36 TP
volumes, i.e., a 94.7% �18/19� by-polyp sensitivity was ob-
tained at a FP rate of 2.52 �235/93� per patient, whereas
MTSVR achieved a 94.7% �18/19� by-polyp sensitivity with
a FP rate of 2.47 �230/93� per patient. The FP rates for
MTSVR and MTGPR are very close. However, MTGPR
achieved a slightly better AUC value than did MTSVR. This
is due to the outward shape of the FROC curve for MTGPR
in the drop-off region. MTANN was able to eliminate 48.5%
�230/474� of the FPs, which results in a 94.7% �18/19� by-

FIG. 4. Illustrations of the central axial slices of representative testing �a�
polyp volumes and �b� nonpolyp volumes. Testing polyps are enhanced in
the center of the output volumes, whereas testing nonpolyps are suppressed.

TABLE II. Statistical comparisons among the perform
the distinction between polyps and nonpolyps. The A
are shown.

MTGPR �AU

MTSVR �AUC=0.79�0.03�
MTGPR
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polyp sensitivity with 2.62 �244/93� FPs per patient. MTGPR
and MTSVR offered slightly better performance than
MTANN in terms of the FP reduction rate.

III.C. Computational efficiency comparison

One of the main contributions of the paper is to improve
the computational efficiency of the massive-training frame-
work in the development phase of a CADe scheme by using
SVR and GPR while maintaining a comparable performance.
In the development stage of a new CADe scheme, a low
training computational cost is crucial because one would
change some parameters of the massive-training model, alter
training cases, or optimize the parameters of an initial detec-
tion scheme.

Let N be the total number of training samples, m the num-
ber of support vectors in MTSVR, dl the dimension of train-
ing input samples, in the case where m /N�1, the number of
operations for MTSVR is O�m3+m2N+mNdl�.

36 In our ap-
plication, the ratio m /N is usually around 0.2. In MTGPR,
the inversion of the Gram matrix is required in order to carry
out the prediction in Eq. �18�. The computational complexity
of inverting the Gram matrix is O�N3�. Great efforts have
been devoted to reducing the computation cost of GPR for
large data sets.31 Because there is redundancy in the training
data due to the approach we used to extract subvolumes in
MTGPR, we employed projected process approximation
methodology to reduce the computational cost to O�s2N�,
where s is the number of latent function values.31 We used a
random selection method to choose half positive and half

�AUC values� of MTSVR, MTGPR, and MTANN in
alues with standard deviation and two-sided p values

.82�0.03� MTANN �AUC=0.77�0.03�

0.75
0.03

FIG. 5. The ROC curves for MTSVR, MTGPR, and MTANN with AUC
values.
ance
UC v

C=0

0.04
¯
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negative training samples as the number s.31 Therefore, both
MTSVR and MTGPR scale linearly with the number of the
training samples N. On the other hand, the computational
complexity of the MTANN depends on the dimension of
training input samples dl, the number of hidden neurons NH,
the number of training samples N, and the number of itera-
tions to train the ANN by using the back-propagation
algorithm.46 The training of an MTANN was performed
500 000 times.20 Therefore, the computational costs of
MTSVR and MTGPR would be lower than that of the
MTANN in most situations.

We compared the computational costs of MTSVR, MT-
GPR, and MTANN on a workstation �Intel, Xeon, 2.7GHz,

FIG. 6. Histogram of the scores from MTSVR with a Gaussian kernel func
positives �nonpolyps� produced by the original CADe scheme for the detec

FIG. 7. Histogram of the scores from MTGPR with a Matern covariance f

�nonpolyps� produced by the original CADe scheme for the detection of polyps
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1GB RAM�. The training of the original MTANN took 38 h,
whereas that of the MTSVR and that of the MTGPR took 12
min and 25 h, respectively. The training time was reduced by
factors of 190 and 1.3 with the MTSVR and the MTGPR,
respectively. Compared to the MTANN coupled with a La-
placian eigenmap for dimension reduction in Ref. 28, the
MTSVR offered a comparable performance in terms of AUC
values and the FP reduction rate without removal of TPs
while reducing the training time even more �i.e., by a factor
of 20�. Although the MTGPR did not reduce the training
time as much as the MTSVR did, it obtained a statistically
significant increase in AUC values over the MTANN.

with �=0.35 for 36 true positive volumes �from 18 polyps� and 474 false
f polyps in CTC.

on for 36 true positive volumes �from 18 polyps� and 474 false positives
tion
tion o
uncti

in CTC.
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IV. DISCUSSION

We used Eq. �16� to predict the output for any testing data
samples in MTGPR. This is called noisy prediction because
of the �2 term in the formulation. This is realistic in model-
ing the output since we do not have direct access to function
values themselves, but only noisy version thereof Eq. �5�.
From an optimization perspective, �2 serves as regularization
in Eq. �16�. Another modeling in MTGPR is called noiseless
prediction, where �2 is omitted in Eq. �16�. This approach
focuses on incorporating the knowledge about the nonlinear
function that training data samples provide without using any
a priori information about the function. In order to compare
these two approaches in MTGPR, we also trained noiseless
prediction with different covariance functions. Table III pre-
sents the performance comparison between two approaches.
It is evident from the table that the noisy prediction method
outperforms the noiseless prediction one. Therefore, noisy
prediction is more realistic and achieves better performance.

The standard deviation �w in Eq. �3� controls the shape of
the 3D Gaussian weighting function which, in turn, deter-
mines the output scores for objects �i.e., polyp candidates�.
We investigated the effect of �w parameter change on the
performance of the MTSVR and MTGPR. We changed the
standard deviation �w in the range between 0.5 and 15. The
FP reduction rates without removal of TPs on the testing
cases are shown in Fig. 9. It is interesting to note that the
curves for the MTSVR and MTGPR exhibit a similar trend.
Because the performance was the highest at a standard de-

FIG. 8. FROC curves for MTSVR, MTGPR, and MTANN for the testing
CTC cases. The performance of the original CADe scheme is shown on the
far right with a 94.7% sensitivity at 5.09 FPs per patient. MTSVR achieves
the best specificity with 2.47 FPs per patient, followed by MTGPR with 2.52
FPs per patient and MTANN with 2.62 FPs per patient.

TABLE III. Performance comparisons of noisy and no

Noisy prediction

Testing AUC
FP reduc

without rem

Matern 0.8215 0.50
Neural network 0.8288 0.46

Rational quadratic 0.8245 0.47
Gaussian 0.7938 0.41
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viation of 2.7 for the MTGPR and 3.3 for the MTSVR, we
used these two values in our experiments. These results were
consistent with that in the distinction between benign and
malignant nodules in CT images by means of MTANNs.47

Both MTSVR and MTGPR are memory-based methods
because a compact kernel and covariance functions are used
in the formulations. Therefore, part or all of the training data
were required during testing phase. This is inherent in any
kernel-based learning methods.29,30 On the other hand,
MTANN discarded all the training data after training phase
where information from training data was extracted.

In MTSVR, the Gaussian kernel function offered the best
performance both for the training set and for the testing set.
This suggests that there exists a nonlinear structure underly-
ing the CTC images, while linear and polynomial kernel
functions failed to capture the nonlinearity. On the other
hand, different covariance functions in MTGPR produced
quite close performance. This suggests that CTC images are
quite robust to different similarity measures offered by dif-
ferent covariance functions in MTGPR. It is interesting to
notice that MTSVR with a Gaussian kernel function outper-
forms MTGPR with a Gaussian covariance function in terms
of FP reduction rate. This is because two methods have very
different mathematical formulations. The kernel width of �
in MTSVR was selected using the grid search strategy, while
it was optimized through maximization of the marginal prob-
ability density function in MTGPR.

One limitation of our study is the limited number of CTC
cases with polyps used in the experiments. A larger data set
of CTC might provide more realistic and reliable evaluation

ss predictions in MTGPR.

Noiseless prediction

ate
f TPs Testing AUC

FP reduction rate
without removal of TPs

0.8182 0.4662
0.8233 0.4345
0.8192 0.4683
0.7893 0.2532

FIG. 9. FP reduction rates without removal of TPs versus parameter �w in
the 3D Gaussian weighting function for MTGPR and MTSVR, respectively.
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of the proposed methods. However, it should be noted that
both SVMs and Gaussian process were designed to have
good generalization ability.29 In addition, the proposed meth-
ods were tested by use of a widely “accepted” leave-one-
lesion-out cross-validation test which is generally
unbiased.48–50 Especially for a small number of cases, a
leave-one-out cross-validation test provides a pessimistically
biased estimate; in other words, the performance estimate
obtained with this test is lower than the “true”
performance.48,51 Also, a study in Ref. 52 showed that a
leave-one-out cross-validation test provides a performance
estimate with good generalization ability. Thus, we expect
that the performance estimates for both MTSVR and MT-
GPR reported in this paper would be comparable to �or po-
tentially better than� the performance obtained when applied
to a larger data set.

Evaluation with a larger data set is desirable because it
would provide more reliable performance estimates �i.e.,
precise or with a lower variance�, but not necessarily offer
more accurate evaluation estimates �i.e., close to true perfor-
mance or with a smaller bias�. The authors in Ref. 52 stated,
“Please note that the bias is the primary concern of inaccu-
racy in the estimated performance levels that we should try
to minimize, even at a cost of slight increase in the variance
of estimated performance levels.” Our primary interest is
closeness to the true performance and generalization of per-
formance estimators. When we discuss performance evalua-
tion, the accuracy of the evaluation is most important; thus,
researchers have been seeking an unbiased estimator.48–54 As
stated earlier, the performance estimate by a leave-one-out
cross-validation test provides a pessimistically biased
estimate48–50 with good generalization.48,51 Therefore, we ex-
pect that the performance estimates reported in this paper
would be comparable to �or potentially better than� the per-
formance obtained when applied to a larger data set. On the
other hand, if our primary interest is precision of evaluation
�as opposed to accuracy�, evaluation with a large data set is
much more important. This is true for other studies where the
cohort population is seriously important, such as population-
based studies in medicine. In other words, the larger your
sample size, the more sure you can be that the answers truly
reflect the population. However, our study interest is differ-
ent from that. Therefore, we would like to leave evaluation
with a large data set as our future work.

The dimension of the input vector to the model is closely
related to the training time of the proposed MTSVR and
MTGPR. In our previous studies, we presented two dimen-
sion reduction techniques, namely, Laplacian eigenmap28 and
principal component analysis �PCA�,55 in the MTANN
framework to improve the efficiency in the training. Both
methods were able to reduce the MTANN training time
while maintaining a comparable performance in terms of the
AUC value and FP reduction rate. The application of dimen-
sion reduction techniques, such as PCA and Laplacian eigen-
maps, in the MTSVR and MTGPR would be important and
interesting. Based on our previous studies,28,55 we expect that
similar results would hold for MTSVR and MTGPR. We will

leave this topic as our future research work.
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V. CONCLUSION

We developed a 3D MTSVR and a 3D MTGPR to reduce
FPs in a CADe scheme for the detection of polyps in CTC.
Both MTSVR and MTGPR were able to eliminate around
half of the FP detections from the original CADe scheme
without sacrificing the sensitivity. We compared the perfor-
mance against previously presented MTANN �Ref. 20� that
was based on artificial neural networks. MTGPR achieved
statistically significant increase of the AUC value over
MTANN and MTSVR. Both MTSVR and MTGPR obtained
a slightly better FP rate than did MTANN at the same sensi-
tivity level. With MTSVR, the training time was reduced by
a factor of 190 compared to that of MTANN. Therefore, both
MTSVR and MTGPR could be useful for improving the
specificity of a CADe scheme for the detection of polyps in
CTC.
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