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Mass lesion segmentation on mammograms is a challenging task since mass lesions are usually
embedded and hidden in varying densities of parenchymal tissue structures. In this article, we
present a method for automatic delineation of lesion boundaries on digital mammograms. This
method utilizes a geometric active contour model that minimizes an energy function based on the
homogeneities inside and outside of the evolving contour. Prior to the application of the active
contour model, a radial gradient index �RGI�-based segmentation method is applied to yield an
initial contour closer to the lesion boundary location in a computationally efficient manner. Based
on the initial segmentation, an automatic background estimation method is applied to identify the
effective circumstance of the lesion, and a dynamic stopping criterion is implemented to terminate
the contour evolution when it reaches the lesion boundary. By using a full-field digital mammog-
raphy database with 739 images, we quantitatively compare the proposed algorithm with a conven-
tional region-growing method and an RGI-based algorithm by use of the area overlap ratio between
computer segmentation and manual segmentation by an expert radiologist. At an overlap threshold
of 0.4, 85% of the images are correctly segmented with the proposed method, while only 69% and
73% of the images are correctly delineated by our previous developed region-growing and RGI
methods, respectively. This resulting improvement in segmentation is statistically
significant. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2790837�

Key words: Mass lesion segmentation, geometric active contour model, computer-aided diagnosis,

breast cancer
I. INTRODUCTION

Breast cancer is the most common malignancy in American
women and the second most common cause of death from
malignancy in this population. According to the American
Cancer Society, about 178,480 women in the United States
will be found to have invasive breast cancer in 2007, and
about 40,460 women will die from the disease this year.1

Although some imaging modalities, such as magnetic reso-
nance imaging �MRI�2,3 and sonography,4,5 are currently be-
ing investigated to improve sensitivity and specificity of
breast cancer diagnosis, x-ray mammography is still the most
prevalent imaging procedure for the early detection of breast
cancer.

Lesion segmentation, which extracts the lesion from the
surrounding tissues, is an essential step in the computerized
analysis of mammograms. As mass lesions are usually em-
bedded and hidden in varying densities of parenchymal
structures, the task of lesion segmentation is not trivial.
Many researchers have developed computer algorithms for
this task. Huo et al.6 employed a region-growing method to
find the contour, in which abrupt changes in size and circu-
larity were used as the rules of segmentation. Kupinski et al.7

segmented the mass by applying either a radial gradient in-
dex �RGI� model or a probabilistic model to the lesion, mul-
tiplied by a constraint function. Petrick et al.8 introduced a
segmentation algorithm that combines a density-weighted
contrast enhancement filter and a region growing method. Li

9
et al. employed a multiresolution Markov random field
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model to detect tumors in mammographic images. Timp et
al.10 employed both edge based information as well as a
priori knowledge about the gray level distribution of the re-
gion of interest �ROI� around the mass, and obtained an op-
timal contour using dynamic programming. To segment le-
sions, Guliato et al.11 proposed two fuzzy sets related
methods—one employing a region growing after fuzzy-sets-
based preprocessing, and the other using a fuzzy region-
growing method that takes into account the uncertainty
present around the boundaries of tumor. Li et al.12 presented
a statistical model for enhanced segmentation and extraction
of a suspicious mass area from mammographic images. In
their study, a morphological operation is derived to enhance
disease patterns of suspected masses by eliminating unre-
lated back-ground clutter, and a model-based image segmen-
tation is performed to localize the suspected mass areas using
stochastic relaxation labeling.

Originally introduced by Kass,13 active contour models
�or snakes� have attracted much attention as image segmen-
tation techniques. An active contour model minimizes an en-
ergy functional along a deformable contour, which is influ-
enced by both internal and external terms. The internal
energy controls the smoothness and elasticity of the contour,
while the external energy attracts the evolving contour to
deform toward salient image features, such as edges. Al-
though the active contour model has been used for segment-
ing objects in a wide range of medical applications,14–19 to

the best of our knowledge, few works have applied this
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model to the task of lesion segmentation in mammographic
images. Brake et al.20 segmented mass lesions by a discrete
active contour method, whose external energy was deter-
mined by the image gradient magnitude. Sahiner et al.21 ap-
plied an active contour model that incorporated edge and
region analysis, in which the contour energy was minimized
by a greedy algorithm. In their work, however, the contour
was represented by the vertices of an N-points polygon and
each vertex was tracked during the process, which makes it
difficult for the contour to adapt to a change of topology,
such as splitting or merging parts.

Differing from the segmentation methods mentioned
above, in this study we develop an automatic lesion segmen-
tation algorithm that employs a geometric active contour
model to extract lesions. Geometric active contour
models22,23 represent contours as a level set of a higher-
dimensional scalar function.24 The contours are obtained
only after complete evolution, thereby allowing the model to
handle the topological changes naturally. As mass lesions
usually have weak edges, we use a region-based active con-
tour model25 that is based on global image information, and
is less sensitive to noise and the initial contour. In order to
improve the computational efficiency and suppress the influ-
ence of unrelated structures, our previous RGI-based seg-
mentation method7 is applied first to delineate an initial con-
tour, which is relatively close to the actual margin, and to
estimate the effective background. We then exploit a dy-
namic stopping criterion, which is solely based on the prop-
erty of the given image, to terminate the evolving procedure
automatically.

The organization of this paper is as follows: Section II
introduces the database used for this study. Section III de-
scribes the proposed segmentation method. Section IV pre-
sents the results, and Sections V and VI give a discussion
and conclusion, respectively.

II. MATERIALS

In this study, we used a full-field digital mammography
�FFDM� database, which consists of 139 benign �327 mam-
mograms� and 148 malignant �412 mammograms� lesions.
All of the images were collected from the University of Chi-
cago Hospitals and obtained from GE Senographe 2000D
systems �GE Medical Systems, Milwaukee, WI� with a spa-
tial resolution of 95 �m�95 �m. The masses were identi-
fied and outlined by an expert breast radiologist based on
visual criterion and biopsy-proven reports. These outlines
were used as the “gold standard” for calibrating parameters
and evaluating performance. The distributions of effective
projection diameter, which is defined as the effective diam-
eter of the area inside the radiologist’s manually delineated
contours, are shown in Fig. 1.

III. METHODS

The main aspects of the proposed segmentation method
7
include an initial RGI segmentation, background estimation
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and trend correction, and an active contour segmentation
based on level sets. Figure 2 shows the flow chart of the
overall implementation.

III.A. Active contour model

The active contour model25 relies on an intrinsic property
of image segmentation: For an image formed by two regions,
each segmented region should be as homogeneous as pos-
sible. Mathematically, this model can be expressed by the
following energy function:

FIG. 1. Distribution of lesions’ effective diameters obtained from the FFDM
database.

FIG. 2. Schematic diagram of the proposed dual-stage lesion segmentation

algorithm.
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E�c1,c2,C� = � · length�C�

+ �1 · �
inside�C�

�f0�x,y� − c1�2dxdy

+ �2 · �
outside�C�

�f0�x,y� − c2�2dxdy , �1�

where ��0, �1, �2�0 are fixed weight parameters, C is the
evolving contour and length�C� is a regularizing term that
prevents the final contour from converging to a small area
due to noise, and c1 and c2 are mean values inside and out-
side of C, respectively. Note that many other active contour
models are edge-based as opposed to the gray-level based
method used here.

Equation �1� can be represented and solved by level set
theory.26 Level set theory, in which the two-dimensional
evolving contour C is represented implicitly as the zero level
set of a three-dimensional Lipschitz function ��x ,y�, i.e.,
C= ��x ,y��� :��x ,y�=0�, evolves the contour by updating
the level set function ��x ,y� at fixed coordinates through
iterations instead of tracking the contour itself. The initial
level set function ��x ,y� is usually defined as the signed
distance function:

��x,y ;t = 0� = ± d , �2�

where d is the distance from �x ,y� to C�t=0�, where C�t
=0� corresponds to the initial contour. The plus �minus� sign
is chosen if the point �x ,y� is inside �outside� the initial con-
tour C�t=0�.

With the evolution of the contour, the level set function �
cannot be held as a signed distance function, nor can it be
kept smooth. In order to maintain a smooth level set func-
tion, and thus ensure numerical stability of evolution, it is
necessary to reinitialize the evolving level set function to a
signed distance function periodically. However, reinitializa-
tion is a computationally consuming procedure as it evolves
solving the partial differential equation �t=sign��t��1
− 	��t	�, where ��t corresponds to the gradient of the level
set function. In addition, most reinitializing schemes tend to
move the contour to some degree due to numerical errors.27

A signed distance function �, however, has the intrinsic
property that 	��	=1. Thus, it is more natural to incorporate
this property into the contour evolution instead of using the
independent reinitializing procedure previously described.
Thus, we can introduce another regularizing term28 in the
active contour model in Eq. �1�:

E�c1,c2,C� = � · length�C� + � ·
1

2
�

�

�1 − 	��t	�2dxdy

+ �1 · �
inside�C�

�f0�x,y� − c1�2dxdy

+ �2 · �
outside�C�

�f0�x,y� − c2�2dxdy , �3�

where � is a weighted parameter and � represents the whole

image space.
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By replacing C with ��x ,y� in the energy functional in
Eq. �3� and introducing the regularized versions of the
Heaviside function H	���= 1

2 �1+2/
 arctan�� /	�� along
with the corresponding Dirac measure �	���=d /d�H	���
=	 · �
 · �	2+�2��−1, as given by Chen and Vese in,25 Eq. �3�
can be expressed as:

E	�c1,c2,�� = � · �
�

�	���x,y��	���x,y�	dxdy

+ � ·
1

2
�

�

�1 − 	���x,y�	�2dxdy

+ �1 · �
�

�f0�x,y� − c1�2H	���x,y��dxdy

+ �2 · �
�

�f0�x,y�

− c2�2�1 − H	���x,y���dxdy , �4�

where the first integral controls the length of the contour and
the second integral helps to smooth the level set function and
thus avoid the need for reinitialization.

By fixing c1 and c2 and minimizing E	 in terms of � at
each iteration, the associated Euler–Lagrange equation can
be derived as:

�	��� · �� · � − �1 · �f0 − c1�2 + �2 · �f0 − c2�2�

+ � · div
�1 −
1

	��	� · �� = 0, �5�

where

� = div� ��

	��	� �6�

represents the curvature of the contour C, and also now in-
corporates the regularizing term from Li et al.28 This deriva-
tion, combining the aspect of active contour without edges
and level set without reinitialization, is given in the Appen-
dix I. Using the gradient descent method, we can solve � in
Eq. �5� iteratively by letting � be a function of iteration t and
replace the zero on the right-hand side of Eq. �5� by the time
derivative of �. Thus, we obtain a partial differential equa-
tion as:

��

�t
= �	��� · �� · � − �1 · �f0 − c1�2 + �2 · �f0 − c2�2�

+ v · div
�1 −
1

	��	� · �� . �7�

The time derivative �� /�t was approximated by a forward
finite difference:

��

�t
=

�n+1 − �n

t
, �8�

while considering the numerical stability of the PDE solu-

tion, the curvature � was approximated by a discretizing
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scheme that combines both forward and backward finite dif-
ferences, as suggested in Ref. 29.

� = −
x� +

x�i,j
n

��+
x�i,j

n �2 + �m�+
y�i,j

n ,−
y�i,j

n �2�1/2�
�

+ −
y� +

y�i,j
n

��+
y�i,j

n �2 + �m�+
x�i,j

n ,−
x�i,j

n �2�1/2�
� , �9�

where

�
x = � ��i�1,j − �i,j� , �10�

and similarly for �
y �i,j;

m�a,b� = � sng�a� + sng�b�
2

�min��a�, �b�� . �11�

III.B. Contour initialization

The energy function in Eq. �3� depends on the evolving
curve C in a complex way. It is not guaranteed to be qua-
dratic or even convex, and one might find a local minimum
of the energy function somewhere in the neighborhood of the
initial contour. Thus, initializing the contour is a nontrivial
task for active contour models. Since lesion sizes vary, it is
difficult to find fixed parameters �such as the radius of a
circle� with which to initialize the contour for an entire da-
tabase. Hence, we use our previous RGI-based segmentation
method7 to estimate the initial boundary of a lesion.

The RGI-based segmentation algorithm7 incorporates
prior knowledge that mass lesions are roughly compact, and
thus, the original image f�x ,y� is multiplied with a two-
dimensional constraint function G�x ,y ;�x ,�y ,�2� to yield a
preprocessed image h�x ,y� as

h�x,y� = f�x,y� � G�x,y ;�x,�y,�
2� , �12�

where G�x ,y ;�x ,�y ,�2� is a Gaussian function centered at
the manually indicated seed point ��x ,�y�, and with variance
�2. The multiplication with the Gaussian function reduces
the contribution of structures beyond the lesion, and thus, �
is set to 15 mm to accommodate most mammographic lesion
sizes. We have found that the segmentation performance is
not strongly dependent on the choice of �. Larger lesions can
also be segmented even though the small deviations around
the margin of the lesion are usually not delineated well.

Starting from the given seed point ��x ,�y�, a series of
gray level thresholds are then applied to the preprocessed
image h�x ,y� to yield multiple contours. For each contour, an
RGI value is calculated, where RGI is defined as

RGI��x,�y,Ci� =

�
�x,y��Ci

��h�x,y� ·
r̂�x,y�

	r̂�x,y�	
�

�
�x,y��Ci

	�h�x,y�	
, �13�

where Ci is the set of points on the ith contour, �h�x ,y� is

the gradient vector of h�x ,y� at point �x ,y�, and
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r̂�x ,y� / 	r̂�x ,y�	 is the normalized radial vector, the direction
of which is calculated at position �x ,y� with respect to the
seed point ��x ,�y�. Of these contours, the one yielding the
maximum RGI value is chosen as the contour that best de-
lineates the lesion in the initial step.

RGI represents the average proportion of the gradients in
the radially outward direction. The strategy of choosing
maximum RGI works well for benign lesions as most have
circularlike shapes and smooth margins. However, for malig-
nant lesions, because of irregular shapes and spiculate mar-
gins, the resulting contours are usually undergrown. Never-
theless, RGI provides a good initial contour for the following
evolution driven by active contour model.

III.C. Background estimation

In the active contour model, contour evolution relies on
the competition between the region inside the contour �fore-
ground� and that outside the contour �background�. The pres-
ence of structure noises, such as lymph nodes, parenchyma,
and localization markers, complicates the background in
mammograms. RGI segmentation provides not only the ini-
tial contour, but also a means of estimating the effective
background surrounding the lesion. In our study, the effec-
tive background is defined as the set of pixels within a given
distance d �pixels� from the circumscribed rectangle of the
initial contour, as shown in Fig. 3.

Distance d plays an important role in determining the ef-

FIG. 3. Illustration of defining the effective background. In this figure, the
solid line represents the initial contour obtained by RGI segmentation and
the dashdotted rectangle is the circumscribed rectangle of this initial con-
tour. The effective background is defined as the region inside the dashed
rectangle excluding the region within the initial contour. An automatic
scheme is employed to determine the best d.
fective background. On one hand, a large d yields a large
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region and thus better statistics on the background. On the
other hand, a small d would not be contaminated by nearby
structures. In this study, an automatic scheme was developed
to determine the best distance d from a series of candidates.

For a series of distances di, i=1, . . . ,L, two series of re-
gions can be determined, as Fig. 4�a� shows. One series of
regions are background candidates Bi �Fig. 4�b��, and the
other series are net increases of background BNi �Fig. 4�c��,
where BNi=Bi+1−Bi, i=1, . . . ,L−1. Our method is based on
the following two principles: With the expansion of back-
ground, �1� the mean gray value of Bi, i.e., mean�Bi�, should
decrease as more areas with lower gray level are included
and �2� the standard deviation of BNi, i.e., std�BNi�, should
not change substantially for relatively smooth background.
By monitoring mean�Bi� and std�BNi� with increasing di, two

FIG. 4. The illustration of determining the distance d: �a� a mammogram
with a series of distances di, in which the thick dashed rectangle represents
the computer-selected distance d; �b� Bi: the ith background candidate cor-
responding to di; and �c� BNi: the ith net background increase. Background is
defined as the set of pixels within a given distance di �pixel� from the
circumscribed rectangle of the initial contour.

FIG. 5. Left: The trend of mean value of Bi, the ith background candidate wi

background increase with respect to Bi and Bi+1.
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potential distance candidates are obtained. One candidate is
defined as the distance at which mean�Bi� reaches a mini-
mum value, and the other candidate is defined as the distance
at which std�BNi� demonstrates the maximum increase, as
shown in Fig. 5. At last, the final distance is chosen as the
minimum of these two candidates. As for the example in Fig.
4, the distance is automatically determined d=110 �pixels�.

III.D. Background trend correction

Due to the nonuniformity of the background distribution,
some pixels in the background have similar gray values as in
the lesion, which hinders the segmentation performance of
the active contour model. Thus, a two-dimensional back-
ground trend correction was employed prior to segmentation.
The background trend is estimated by fitting a two-
dimensional surface with a least-squares method to the
gradual change in the background pixel values within the
extracted background estimation region. Here, we used a
first-order polynomial function, i.e., f�x ,y�=a+b ·x+c ·y, to
describe the two-dimensional surface as higher order poly-
nomial functions will estimate mass lesion instead. Figure 6
demonstrates the significance of the background trend cor-
rection when a nonuniform background is present.

III.E. Dynamic stopping criterion

To stop the evolution of a contour, a predetermined
threshold is often used. Various metrics can be used to check
convergence of evolution, such as the change of level set
function �30 and the change of length of contour.31 The con-
tour evolution can also be terminated when the area inside
the contour differs from the initial one by a given value.32 In
our initial study, we had defined a stopping criterion of rela-
tive foreground change �RFC�, which is the ratio between the
change of foreground and the area of foreground. Comparing
with the stopping criterion of change of contour length used
in,31 RFC has two advantages: �1� RFC is a relative measure
and thus is more suitable for lesions with various sizes and

pect to distance di. Right: The trend of standard deviation of BNi, the ith net
th res
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�2� RFC is more computationally efficient as the acquisition
of contour in31 brings additional computation. No matter
what strategy is used, it is necessary to set some threshold in
advance. However, due to varying sizes of lesions, as well as
sizes of background obtained from automatic background es-
timation, it is difficult to find a fixed parameter for control-
ling convergence.

In our preliminary work,33 we developed a dynamic
method to terminate contour evolution automatically. In that
work, as the contour evolves, the mean values of both fore-

FIG. 6. An example of the effect of background trend correction on segmen
after background trend correction; and �d� segmentation result of �c�.
ground and background will decrease gradually. As the fore-
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ground is generally more homogeneous than the background,
the rate of foreground mean change is less than that of back-
ground mean change. However, as the evolving contour
crosses the lesion margin, the foreground mean will decrease
faster than the background mean. Thus, during dynamic con-
touring, the difference between the rate of foreground mean
change and that of background mean change is tracked, and
contour evolution is terminated when the decrease of fore-
ground mean value is more rapid than that of the background
mean value. This method provides a way to terminate con-

. �a� the original ROI; �b� segmentation result of �a�; �c� the processed ROI
tation
tour evolution free of predefined threshold. However, it ne-



4186 Yuan et al.: Dual-stage method for lesion segmentation on digital mammograms 4186
glects the influence of the sizes of both the foreground and
background, and thus ceases contour evolution earlier than
expected.

In order to address this problem, we modified the previous
method, which we present here in one dimension. As Fig. 7
shows, g�x� is a decreasing function defined on the interval
�0,L�, and point s is moving within �0,L� at the speed of v� .
s also splits �0,L� into two regions. For simplicity, the region
�0,s� is named region 1, and �s ,L� is region 2. Then, the
mean values of regions 1 and 2 are:

c1 =

�
0

s

g�x�dx

s
, c2 =

�
s

L

g�x�dx

L − s
.

The slope of c1 is

dc1

dt
=

dc1

ds
·

ds

dt
,

=
d

ds
��0

s

g�x�dx

s
� · v� ,

=
g�s� − c1

s
· v̄ .

Here, we use the fact that v� =ds /dt · v̂, where v̂ is the outward
unit vector. Similarly, the slope of c2 is

dc2

dt
=

g�s� − c2

L − s
· v� .

Thus, the difference between these two slopes is

v =
dc1

dt
−

dc2

dt
= �g�s� − c1

s
+

g�s� − c2

L − s
� · v� . �14�

As the discussed above, as s moves within the object, we
have v�0. As s moves across the edge, v will become
negative. When v=0, we have g�s�=s /L ·c2+ �L−s /L�c1

�1/2�c1+c2�, as in general L−s�s and c1�c2. However, if
only the speed terms driven by image property in Eq. �7� are
considered, the evolution should stop at s0 such that g�s0�
=1/2�c1+c2�. Because of the influence of sizes, s will stop

FIG. 7. The illustration of determining the stopping point. g�x� is a decreas-
ing function defined on �0,L� and s� �0,L� is a moving point with speed of
v� .
moving quickly if the criterion in Eq. �14� is used.
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In order to eliminate the influence of size, a weighted
difference between slope of c1 and that of c2 is introduced as

vw =
s

L − s
·

dc1

dt
−

dc2

dt
=

1

L − s
· �2 · g�s� − c�c1 + c2�� · v� .

�15�

It can be shown that vw goes to zero at the desired contour
s0, where g�s0�=1/2�c1+c2�.

The one-dimensional case, described above, can be ex-
tended to a two-dimensional one. During the contour evolu-
tion, the weighted difference between the mean slope of fore-
ground and that of background is monitored, and the contour
evolution is terminated when the weighted slope difference
converges to zero.

III.F. Implementation

In order to calibrate parameters in the proposed segmen-
tation method, ten digitized screen-film mammograms
�SFM� with spatial resolution of 100 �m�100 �m were
analyzed. The calibrated segmentation method was then ap-
plied to the entire FFDM database for independent perfor-
mance evaluation.

In our study, we kept both �1 and �2 in Eq. �7� to one �i.e.,
�1=�2=1� since the contribution of the homogeneities of
inside and outside the contour should be equally considered.
Other parameters in Eq. �7� were chosen as follows: 	=1 and
t=0.1, where 	 influences the Heavyside function and t
controls how quickly the level set function changes. Note
that � controls the smoothness of the final contour. However,
if one wants to depict the fine details of the object, one
should choose a small �. On the contrary, if one wants to
obtain a smoother contour, one should set a large �. As some
of our computer-extracted features, such as spiculation, char-
acterize the fine details of the lesion margin, we chose a
fairly small value of �, i.e., 0.001�10232, which also allows
for the use of the 10-bit data. To ensure numerical stability,
the coefficient v must satisfy � ·t�1/4,28 so we set �=2 in
our study. The maximum number of iterations is set to 500.

III.G. Performance evaluation

The performance of the proposed segmentation algorithm
was assessed by comparing the computer-delineated contours
with the outlines drawn by an expert breast radiologist. Be-
sides visually evaluating the agreement of computer-
segmented results with radiologist’s manually contoured le-
sion margins, a quantitative measure was used to evaluate the
segmentation performance. For a particular lesion, the area
overlap ratio �AOR� between manual segmentation and com-
puter segmentation is defined as

AOR =
Area�M � C�
Area�M � C�

, �16�

where M is the manually segmented contour and C is the
computer-segmented contour. AOR ranges from zero to one,
with zero in the case of no overlap and 1.0 in the case of a

perfect match. For the entire database, a series of AOR
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thresholds were obtained and at each AOR threshold one the
percentage of lesions “correctly” segmented was calculated
by counting the number of lesions with AOR greater than
that threshold.

IV. RESULTS

IV.A. Evaluation of level set smoothness

In our study, a new term ES����1− 	��t	�dxdy is added
to the original active contour model in,25 thus we initially
evaluate the usefulness of this term. Two sets of final con-
tours were extracted from the entire FFDM database; one
was obtained with ES and the other without. The results show
that ES cannot only provide a smoother contour, but also can
push the contour closer to the lesion margin with less itera-
tions, yielding a mean number of iterations of 160 compared
to the mean number of iterations of 327 without ES. In the
example shown in Fig. 8, the left figure shows the segmen-
tation result without smoothing level set function, which
took 500 iterations. Meanwhile, for the result with smooth-
ing level set function shown in the right figure, it took only
248 iterations to converge.

IV.B. Evaluation of dynamic stopping criterion

We investigated our new stopping criterion based on the
weighted slope difference between foreground mean and
background mean �vw�, and compared it to the unweighted
slope difference method as well as the relative foreground
change �RFC�. The RFC thresholds to terminate contour evo-
lution were set as 0.05, and 0.01, respectively. During the
evolution, we recorded the contours using these four stop-
ping criteria and obtained the AOR with radiologist’s out-

FIG. 8. An example of the effect of level set smoothness to the final s
segmentation with level set smoothness.
lines.
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Figure 9 shows plots of the fraction of correctly seg-
mented lesions at various AOR threshold for the four stop-
ping criteria �vw, v, RFC0.05, and RFC0.01� on the FFDM
databases. For benign images, all the criteria yielded similar
segmentation performances since the initial contours, ob-
tained by RGI segmentation, are close to the true lesion mar-
gins. However, as RGI segmentation is inferior for malignant
lesions, vw does perform better among all the stopping cri-
teria.

Table I summarizes the statistical comparison �Holm t
test�34 among these four criteria, given the mean and stan-
dard deviation of AOR for each criterion. In terms of AOR,
the weighted slope difference method is statistically better
than the unweighted slope difference method, and the con-
vergence rate at RFC=0.05 �overall significant level �T

=0.05�. However, we failed to show a statistically significant
difference between the weighted slope difference method and
the convergence rate at RFC=0.01. Nevertheless, if the num-
ber of iterations is taken into account, the mean number of
iterations for weighted slope difference is 156, while it is 280
for RFC0.01. The weighted slope difference is more efficient
than RFC0.01.

IV.C. Comparative evaluation of the segmentation
method

The segmentation algorithm was compared with our pre-
viously reported region-growing6 and RGI-based
segmentation7 methods. Figure 10 shows several examples
of lesion segmentations using these three segmentation meth-
ods. The result of the proposed method visually demonstrates
a better agreement with the radiologist’s outline of the lesion.

Figure 11 shows the fraction of lesions correctly seg-

ntation results. Left: Segmentation without level set smoothness; Right:
egme
mented at various overlap threshold levels. At the overlap
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threshold of 0.4, for benign lesions, 87% of the images are
correctly segmented with the proposed method, while 72%
and 81% of the images are correctly segmented by the
region-growing and RGI-based methods, respectively. For
malignant lesions, 84% of the images are correctly seg-
mented with the proposed method, while 66% and 67% of
the images are correctly segmented by region-growing and
RGI-based methods, respectively.

Table II gives the statistical comparison �Holm t test�34 for
AOR means from the three segmentation methods. The im-
provement of AOR with the proposed method was found to
be statistically significant �overall significant level �T=0.05�.

FIG. 9. Segmentation performance of four different stopping criteria in term
difference between foreground mean value and background mean value, in
area outside contour; v is the unweighted slope difference between these
from evolution when the RFC is not greater than 0.01. Similarly, RFC0.05 st
327 benign images; Right: Evaluated on 412 malignant images. The results sh
difference and convergence rate at RFC=0.05 on malignant images.

TABLE I. Statistical comparison of the performance o
terms of AOR, and p-values are given for the com
stopping criterion. The significant level �i for the ind
�overall �T=0.05�. Same convention as Fig. 9.

vw

Benign
mean±std 0.61±0.19
p-value —
sig. lev. ��i� —

Malignant
mean±std 0.59±0.19
p-value —
sig. lev. ��i� —

All
mean±std 0.60±0.19
p-value —
sig. lev. ��i� —
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V. DISCUSSION

We developed a dual-stage segmentation method to effi-
ciently segment mass lesions from the parenchymal surround
in FFDM images. Our proposed method includes a geometric
active contour model, which includes analysis of homogene-
ities both inside and outside of the evolving contour. The
application of RGI-based segmentation to provide initial
contour not only improves the computational efficiency, but
also provides a method with which to estimate the effective
background about the lesion and to suppress unrelated pixel

OR on a clinical FFDM database. In both plots, vw is the weighted slope
foreground is the area within the evolving contour and background is the

ean values. RFC0.01 stands for a stopping criterion that terminates contour
e contour evolution when RFC is not greater than 0.05. Left: evaluated on

hat the weighted slope difference is statistically superior to unweighted slope

r stopping criteria in the dual-stage segmentation in
n of the weighted slope difference with any other
al paired t test is calculated using Holm’s procedure

v RFC0.01 RFC0.05

0.61±0.19 0.61±0.19 0.61±0.19
0.856 0.801 0.601

— — —

0.53±0.20 0.57±0.19 0.52±0.20
�0.001 0.192 �0.001

0.05 — 0.025

0.57±0.20 0.59±0.19 0.56±0.20
0.002 0.25 �0.001
0.05 — 0.025
s of A
which
two m
ops th
ow t
f fou
pariso
ividu
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FIG. 10. Segmentation results for five malignant lesion examples: �a� radiologist’s outline, �b� region-growing, �c� RGI-based segmentation, and �d� the

proposed dual-stage segmentation method.

Medical Physics, Vol. 34, No. 11, November 2007
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values. Also, our automatic stopping criterion is lesion-
specific and does not rely on fixed iterations.

As the results show, the term ES in the active contour
model plays an important role in effective and efficient seg-
mentation. As 	��	�1, div��1− �1/ 	��	����� will evolve
the level set function � toward reducing 	��	, thus to
smooth �. The larger the gradient magnitude of level set
function, the more it will be smoothed. While as 	��	�1,
div��1− �1/ 	��	����� will evolve the level set function to-
ward increasing 	��	 to maintain the gradient of the level set
function to some level. This mechanism ensures the level set
function, and thus the final contour, is relatively smooth.
Meanwhile, as 	��	 is restricted in magnitude, the fore-
ground has the potential to grow faster.

It should be noticed that the weighted slope difference
vw is always non-negative as long as g�x� is a decreasing

FIG. 11. Performance of three different segmentation methods in terms of A
Evaluated on 412 malignant images. The results show that the dual-stage seg
method.

TABLE II. Statistical comparison of the three lesion segmentation algorithms.
Performance is given by average AOR, and p-values are given for the com-
parison of the dual-stage segmentation with the previous region-growing
and RGI-based method. The significant level �i for the individual paired t
test is calculated using Holm’s procedure �overall �T=0.05�.

Dual-stage
segmentation RGI

Region-
growing

Benign
mean±std 0.61±0.19 0.58±0.19 0.51±0.20
p-value — 0.01 �0.001
seg. lev. ��i� — 0.05 0.025

Malignant
mean±std 0.59±0.19 0.48±0.20 0.49±0.20
p-value — �0.001 �0.001
seg. lev. ��i� — 0.025 0.05

All
mean±std 0.60±0.19 0.52±0.20 0.50±0.20
p-value — �0.001 �0.001
seg. lev. ��i� — 0.05 0.025
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function. In the active contour model, if only the speed term
driven by image property is considered, the speed of contour
can be simplified as:

v� = ��g�s� − c2�2 − �g�s� − c1�2� · v̂ ,

=�c1 − c2� · �2 · g�s� − �c1 + c2�� · v̂ ,

where v̂ is the outward unit vector. Inserting v� into Eq. �15�,
we have:

vw =
1

L − s
· �c1 − c2� · �2 · g�s� − �c1 + c2��2 · v̂ � 0.

If v� is driven by another image property, such as edge infor-
mation, this relationship still holds. When g�s��1/2�c1

+c2�, i.e., s is within the object, the contour will move out-
ward to the edge, thus, we have vw�0. While if g�s�
�1/2�c1+c2�, i.e., s is out of object, it will move inward to
the edge, we will also have vw�0. So the weighted slope
difference also provides a general mechanism for terminating
contour evolution with other active contour models.

In this study, we empirically compared the segmentation
performance of the proposed method with our previously
reported region growing6 and RGI-based7 segmentation
methods. However, it is impossible for us to perform empiri-
cal comparisons between our method and those reviewed in
the introduction section, as we do not have codes of those
methods. Timp’s method10 uses polar coordinate and restricts
the mass sizes within a certain range; thus one would expect
their method to work better for lesions with circularlike mar-
gins. However, for lesions with irregular shapes or very large
sizes, their method may have difficulty. Our dual stage seg-
mentation method is able to handle this situation by further
evolving the contour via the active contour model. For the
fuzzy-set-based methods developed by Guliato et al.,11 both
of them need to present some thresholds such as the gray-

n a clinical FFDM database. Left: Evaluated on 327 benign images; Right:
ation method is statistically superior to both region-growing and RGI-based
OR o
ment
level threshold in the first method and the maximum allowed
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difference between the value of the pixel being analyzed and
the mean of the subregion in the second method, which pre-
vents these methods from being applied in a large database.
Their two thresholds were manually selected case by case in
their evaluation using a database with 47 mammograms. On
the other hand, our method is flexible in that no threshold
needs to be set in advance.

In our preliminary study,35 we compared two radiologists’
outlines with a digitized screen-film mammograms �SFM�
database, which consisted of 29 benign �51 mammograms�
and 55 malignant �96 mammograms� lesions. At an overlap
threshold of 0.4, 96.6% of lesion images were correctly seg-
mented by one radiologist in comparison with the other. This
result indicates that the radiologists highly agreed on the
lesion margins for SFM. We could expect that the radiolo-
gists would also agree on the lesion margins for FFDM as
the manufacturer has preprocessed the FFDM images to
make them appear to the radiologist as traditional-looking
SFM mammographs.

When we developed the proposed segmentation algo-
rithm, the FFDM database was being constructed, so our
method was initially calibrated and tested with the SFM
database.33 After building the FFDM database, we randomly
picked three groups of FFDM images, each of which con-
sisted of five benign and five malignant images, and evalu-
ated the segmentation performance using the proposed
method calibrated with SFM images. The results were simi-
lar with what we had obtained with SFM images. Thus, we
believe that the parameters obtained by SFM also work with
FFDM images, which was subsequently validated by the in-
dependent evaluation with the entire FFDM database.

Our results could be partially explained by the preprocess-
ing of FFDM images, which is performed by the manufac-
turers. After preprocessing, the gray-level range and contrast
of FFDM images become similar to those of SFM images,
which ensures the possibility of applying parameters from
SFM images to FFDM images as gray-level range and con-
trast are two key components used in our proposed lesion
segmentation method. Our results also show the robustness
of the proposed method as it mainly uses the global informa-
tion of images.

VI. CONCLUSION

In this article, we present a new lesion segmentation
method based on a geometric active contour model, which
includes an initial RGI segmentation, background estimation,
background trend correction, and a dynamic stopping crite-
rion. Evaluation with a large number of FFDM images has
shown that the proposed method is statistically superior to
our previous region-growing and RGI-based algorithms in
terms of overlap ratios obtained in comparison with experts’
manual outlines. At an overlap threshold of 0.4, 85% of the
images are correctly segmented by the proposed method,
while only 69% and 73% of the images are correctly seg-
mented by our previous region-growing and RGI-based

methods, respectively.
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APPENDIX

In this part, we provide the details of the derivation from
energy function �4� to the associated Euler–Lagrange equa-
tion �5�. For convenience, we restate Eq. �4� here as

E	�c1,c2,�� = �
�

� · �	���x,y��	���x,y�	

+
v
2

· �1 − 	���x,y�	�2 + �1 · �f0�x,y�

− c1�2H	���x,y�� + �2 · �f0�x,y�

− c2�2�1 − H	���x,y���dxdy . �A1�

We define F�� ,�� ,x ,y� as

F��,��,x,y� = ��	���	��	 +
v
2

�1 − 	��	�2 + �1�f0

− c1�2H	��� + �2�f0 − c2�2�1 − H	�0�� .

�A2�

For simplicity, we have omitted the independent variables
�x ,y� of � and f0. According to calculus of variations, the
scalar function ��x ,y� that minimizes E	�c1 ,c2 ,�� solves the
PDE:

d

dx
� �F

��x
� +

d

dy
� �F

��y
� −

�F

��
= 0. �A3�

Taking the partial derivative of F with respect to �x, �y,
and �, respectively, we have:

�F

��x
= ��	���

�x

	��	
+ v��x −

�x

	��	� ,

�F
= ��	���

�y + v��y −
�y � ,
��y 	��	 	��	
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�F

��
= �	��	�	���� + ��1�f0 − c1�2 − �2�f0 − c2�2��	��� ,

�A4�

where �	�=d� /d� and we use the relation 	��	=��x
2+�y

2.

The partial derivative of �F /��x with respective to x is

d

dx
� �F

��x
� = ��	����

�x
2

	��	
+ ��	���

d

dx
� �x

	��	�
+ v

d

dx

�x −

�x

	��	 . �A5�

Similarly, we have

d

dy
� �F

��y
� = ��	����

�y
2

	��	
+ ��	���

d

dy
� �y

	��	�
+ v

d

dy

�y −

�y

	��	 . �A6�

Inserting Eqs. �A4�–�A6� back to �A3�, we obtain

0 = ��	����
 �x
2

	��	
+

�y
2

	��	
− 	��	 + ��	���

�
 d

dx
� �x

	��	� +
d

dy
� �y

	��	� + v� d

dx

�x −

�x

	��	
+

d

dy

�y −

�y

	��	� − �	�����1�f0 − c1�2

− �2�f0 − c2�2� . �A7�

By noticing that

�x
2

	��	
+

�y
2

	��	
= 	��	 ,

d

dx
� �x

	��	� +
d

dy
� �y

	��	� = div� ��

	��	� ,

and

d

dx

�x −

�x

	��	 +
d

dy

�y −

�y

	��	
= div
�1 −

1

	��	� � � ,

we finally obtain the compact form of Eq. �A7� as

0 = �	���
� · div� ��

	��	� − �0�f0 − c1�2 + �2�f0 − c2�2
+ v · div
�1 −

1

	��	� � � . �A8�
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