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a b s t r a c t 

Feature subset selection (FSS) has been an active area of research in machine learning. A number of 

techniques have been developed for selecting an optimal or sub-optimal subset of features, because it is 

a major factor to determine the performance of a machine-learning technique. In this paper, we propose 

and develop a novel optimization technique, namely, a binary coordinate ascent (BCA) algorithm that is 

an iterative deterministic local optimization that can be coupled with wrapper or filter FSS. The algorithm 

searches throughout the space of binary coded input variables by iteratively optimizing the objective 

function in each dimension at a time. We investigated our BCA approach in wrapper-based FSS under 

area under the receiver-operating-characteristic (ROC) curve (AUC) criterion for the best subset of features 

in classification. We evaluated our BCA-based FSS in optimization of features for support vector machine, 

multilayer perceptron, and Naïve Bayes classifiers with 12 datasets. Our experimental datasets are distinct 

in terms of the number of attributes (ranging from 18 to 11,340), and the number of classes (binary 

or multi-class classification). The efficiency in terms of the number of subset evaluations was improved 

substantially (by factors of 5–37) compared with two popular FSS meta-heuristics, i.e., sequential forward 

selection (SFS) and sequential floating forward selection (SFFS), while the classification performance for 

unseen data was maintained. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Feature subset selection (FSS) in classification and regression

as been an active area of research in machine learning. FSS plays

n important role in machine learning and data mining, because

t is a major factor to determine the performance of a machine-

earning technique [1] . Because of its importance, a number of

nvestigators have studied and developed various techniques. The

oal of an FSS technique is to select an optimal or sub-optimal sub-

et of features that makes a machine-learning technique the high-

st performance for a specific task (e.g., classification) [2] . A num-

er of surveys have been published in literature to review the effi-

acy and efficiency of FSS techniques in different machine-learning

asks [1, 3–6] . FSS for classification, which is the main focus of this

aper, was surveyed in detail in [4, 6] . A large number of inves-

igators have applied FSS methods in classification tasks in their

pplications to improve the performance of their systems [7–11] . 

FSS techniques can be generally categorized into filter, wrapper,

ybrid, and embedded methods [12, 13] . Filter methods use a mea-
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urement to assign meaningful scores to different combinations

f features, i.e., subsets of features, without using the knowledge

n the employed classifier [14–17] . Correlation criteria [18] and

utual information (MI) [19] are two of the most popular mea-

urements used in this type of technique, in order to determine

he usefulness of feature subsets. On the other hand, wrapper

ethods utilize an algorithmic-dependent measurement to ex-

mine the usefulness of feature subsets in an iterative manner

20] . Hybrid methods exploit both filter and wrapper methods

n a single context in a way to boost up the FSS algorithm [21] .

or high dimensional data, a filter FSS would be often followed

y a wrapper FSS in a hybrid FSS framework [22, 23] . Incremental

rapper-based subset selection (IWSS) and its recently improved

ersion, IWSS with replacement (IWSSr) belong to this FSS cate-

ory [24] . Unlike the mentioned categories, embedded techniques

uch as decision trees [25] and L1-support-vector-mahcine (SVM)

26] accomplish their goal by directly including FSS as a part of

he optimization objective of the learning algorithm. 

The wrappers have been used widely for classification because

hey often obtained superior performance as they find feature sub-

ets better suited with a pre-determined classifier [6] . In general,

here are three main factors that describe a wrapper procedure:

 type of the classifier, a feature subset evaluation criterion,

http://dx.doi.org/10.1016/j.knosys.2016.07.026
http://www.ScienceDirect.com
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and an optimization technique to find the best combination of

features. Several evaluation criteria such as accuracy [27, 28] , a

false-positive (FP) elimination rate [29, 30] , and area under the

receiver-operating-characteristic (ROC) curve (AUC) [31–35] have

been used widely. Meta-heuristics including sequential and ran-

domized techniques have been studied extensively and utilized in

order to find the optimum or a sub-optimum subset of features.

Genetic algorithms (GA) [29, 36] , particle swarm optimization

(PSO) [37–39] , and simulated annealing (SA) [27, 40, 41] are few

examples of randomized search strategies used widely in FSS.

Despite progress made through a randomized graph-based opti-

mization approach, they are not fully satisfactory as they either

yield a solution away from the optimum or they are computa-

tionally impractical [42] . There exist popular and commonly used

deterministic search strategies, designed specifically for the task

of FSS, as alternatives that try to overcome the above mentioned

problems, such as sequential forward selection (SFS) [2, 4, 43, 44]

and sequential forward floating selection (SFFS) [28, 42, 45] . 

In this paper, we propose and develop a novel optimization

technique, namely, a binary coordinate ascent (BCA) algorithm, in-

spired by the popular coordinate descent algorithm [46, 47] , for

efficiently solving combinatorial optimization problems. Our BCA

optimization algorithm, as a deterministic local optimization ap-

proach, starts its search from an initial point in the space with bi-

nary representation of input variables and continuous output val-

ues. It iteratively updates the solution by optimizing the given cost

function at each individual coordinate, one at a time. In this study,

we investigated our BCA approach in a wrapper-based FSS frame-

work for the task of classification in order to reduce a huge num-

ber of subset evaluations needed in earlier existing FSS techniques.

We use a binary representation of feature subsets to set up the

requirements for our BCA algorithm in FSS for classification. In or-

der to find the best (i.e., optimum or sub-optimum) subset of fea-

tures, AUC of a classifier which quantifies the generalization perfor-

mance of a classification system, obtained in a 10-fold cross vali-

dation (CV) manner, is set as the evaluation criterion to determine

the usefulness of different subsets. To examine the consistency of

our wrapper-based BCA approach, we investigated the efficiency

and performance of our proposed method coupled with SVMs [48] ,

multilayer perceptron (MLP) [49] , and naïve Bayes (NB) [50] clas-

sifiers. In order to reduce the risk of overfitting while performing

assessment of FSS methods [51] , an independent test set was used

for comparisons of our proposed algorithm with two of the most

popular FSS techniques, i.e., the SFS and SFFS. Additionally, we in-

vestigated the characteristics of our BCA algorithm when compar-

ing it with the IWSSr as a filter-wrapper approach, under different

scenarios. To our knowledge, no investigator has proposed the BCA

algorithm or developed an FSS algorithm based on the BCA algo-

rithm before. This paper is organized as follows. The proposed BCA

optimization algorithm, binary representation formulation of the

FSS, and the proposed FSS algorithms based on BCA are described

in Section 2 . Experimental results and comparisons are explained

in Section 3 . Thorough discussions of the proposed algorithms are

made in Section 4 ; and the paper is concluded in Section 5 . 

2. Methods 

2.1. Coordinate descent algorithm 

Coordinate descent (CD) algorithm [47] is one of the most

popular non-derivative optimization techniques that have been

used widely to solve a variety of optimization problems includ-

ing quadratic programming. It has been employed in the machine-

learning community for different tasks such as for training SVMs

[46] . Convergence of the CD algorithm to the global optimum is

guaranteed under specific assumptions such as convexity of the
bjective function and its smoothness, but such assumptions can-

ot always be made in real applications. Without following all of

hose assumptions, CD is capable of finding a local optimum. The

D algorithm can be formulated as follows: 

 

k +1 
i 

= argmin 

a ∈ R 
J 
(
X 

k +1 
1 , . . . , X 

k +1 
i −1 

, a, X 

k 
i +1 , . . . , X 

k 
N 

)
(1)

here N is the number of dimensions of the input variables, J (.): R N 

 R is the objective function, and X k 
i 

is the i th variable of the solu-

ion at the k th iteration. Without loss of generality, we can formu-

ate the coordinate ascent (CA) algorithm by considering the maxi-

ization of the negative of the objective function J in Eq. (1) . CD is

otivated by the hypothesis that one can find the local optimum

f an objective function by minimizing it along each coordinate,

ne at a time. If optimality assumptions are not followed, CD re-

ults are subject to the choice of initialization as well as other local

earch methods. 

.2. Binary coordinate ascent algorithm 

In a variety of programming problems, a binary representation

f input variables is possible, and it can be used to encode the in-

ut space [52] . FSS is one of the problems that can be represented

n a binary variable framework, which was the main motivation for

he proposed method. The general form of an unconstrained pro-

ramming problem of maximizing a continuous objective function

n a binary variable framework is given by: 

 

∗ = argmax 
X∈ B N 

J ( X ) , B = { 0 , 1 } . (2)

The problem in Eq. (2) is a special case of integer program-

ing; therefore, an exhaustive search can possibly be performed

f the number of variables is not too large, but the problem

s considered as one of the NP-hard problems in the computa-

ional complexity theory [1] . As a result, a variety of subopti-

al solution techniques such as evolutionary-algorithm-based op-

imizations [53] and swarm-based algorithms [54] have been used

idely to deal with these problems. However, most of these either

tochastic or deterministic heuristics are computationally expen-

ive; thus, they require minor or major modifications for the task

f FSS. Motivated by the given facts, we propose a new version of

he CA algorithm, suitable for solving these types of problems in

erms of efficiency and efficacy, namely, a binary coordinate ascent

BCA) algorithm. Unlike the CA algorithm that requires defining a

earch line optimization approach through single coordinates, the

CA employs a zero-one switch strategy to find the local optimum

long each coordinate, one at a time. The detailed pseudocode of

ur BCA optimization algorithm is given in Table 1. 

In the given algorithm in Table 1 , the BCA starts its search from

n initial point, i.e., the binary vector of all zeroes at the origin.

e discuss the choice of the initial point that depends on the ap-

lication requirements in a later section. The BCA then updates the

olution to the optimization problem through maximizing the ob-

ective function at each coordinate individually. A zero-one switch-

ng strategy is used to find the maximum along a single coordi-

ate. Once the BCA completes the search through all coordinates,

ere referred to as one BCA scan, the solution (i.e., maximum) Y ∗
s updated. The algorithm stops when there is no more significant

hange in the optimum objective function value. The total number

f iterations then can be calculated as S × N where S is the total

umber of BCA scans, and N is the dimension of solution space.

ther stopping criteria such as the number of iterations or the

umber of BCA scans S could be employed, as the BCA performs in

n any-time programming algorithm manner. Eventually, the algo-

ithm returns a pair of Y ∗ and X ∗ as the final maximum and argu-

ent of the maximum, respectively. Although the BCA is designed

xplicitly for the task of FSS, the algorithm can be performed in
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Table 1 

Pseudocode of our BCA optimization algorithm for combinatorial optimization in a binary repre- 

sentation framework. 

BCA optimization algorithm 

Initialization: 

Set X ∗ = (0, 0, …, 0) T , where X ∗ ∈ {0, 1} N // vector of all zeroes as the initial solution 

Set Y ∗ = J( X ∗) // initial value of the objective function to be maximized 

Set � // � and Stop variables are defined for convergence criterion 

Stop = 0 

while ( Stop = 0 ) // convergence criterion is examined after each BCA scan 

for ( i = 1 : N ) // each complete loop (N iterations) is one BCA scan of all coordinates 

X = X ∗

X i = not( X ∗
i 
) // not(0) = 1 and not(1) = 0 

if ( J ( X ) > J ( X ∗)) 

X ∗ = X

end 

end 

Y = J ( X ∗) // objective function value for the current solution 

if ( | Y ∗ − Y | < �) // stopping criterion, i.e. , convergence of the objective function value 

Stop = 1 

end 

Y ∗ = Y 

end 

Output: 

Final solution ( X ∗, Y ∗) 
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Fig. 1. State diagram for visualizing FSS in a binary representation framework. In 

this example, the diagram shows all combinations of feature subsets in a four- 

dimensional binary space, i.e., the total number of features is four. 

Fig. 2. Block diagram of our proposed wrapper FSS algorithm employing the BCA 

optimization algorithm. 

a  

h  

t  

i  

f  

fi  

a  
ny programming problem with a binary representation of input

ariables and continuous objective function values, given the fact

hat there is no initial assumption about the objective function J (.)

n the methodology. 

.3. BCA-based wrapper FSS 

Based on our BCA optimization approach, we propose a fast

rapper FSS algorithm with two variants of initialization strate-

ies: one starting with an empty set of features, namely, BCA

ased FSS with zero initialization (BCA-Zero); and the other with a

eature-rating-based initialization scheme, namely, BCA-based FSS

ith initialization (BCA-Initialized). In order to set up the FSS

roblem to be solved with the BCA optimization algorithm, we first

epresent feature subsets in a binary fashion. In this framework,

ach feature subset is represented as a binary vector of length N,

here N is the total number of initial input features (i.e., the num-

er of attributes), and each element corresponds to one of the in-

ut features. An element of this vector is one only if the corre-

ponding feature to that element is included in the feature subset

orresponding to that binary vector. In this scenario, we can repre-

ent the FSS problem using Eq. (2) having X and J (.) be the binary-

ncoded feature subsets and the performance of a pre-determined

lassifier, respectively. An example of the state diagram to visual-

ze FSS in a binary fashion for the case of N = 4 is given in Fig. 1 .

n the figure, nodes represent feature subsets (the total of 2 N solu-

ions exist), while edges connect feature subsets with a Hamming

istance of one, i.e., a shift between these subsets can be made by

dding or removing only one feature. 

The block diagram of our proposed wrapper FSS algorithm is

hown in Fig. 2 . In the BCA-Zero approach, our FSS algorithm starts

ts search from an empty set of features, i.e., a vector of all ze-

oes in a binary representation fashion. The BCA algorithm itera-

ively adds and removes features to and from the selected sub-

et of features based on the objective function values. In fact, at

ach iteration, the BCA ensures whether existence of a feature, in

 given subset of features, improves or drops the classification per-

ormance. If a feature was included in or removed from the fea-

ure subset accidently, BCA algorithm is freely capable of correcting

he wrong decisions through the proceeding BCA scans, in order

o approximate the optimal solution as much as possible. In our

mplementation, AUC, which approximates the generalization per-

ormance of a learning algorithm properly by estimating the prob-
bility that a classifier ranks a randomly chosen positive instance

igher than a randomly chosen negative instance [55] , is used as

he objective function J (.). Indeed, the objective function is the val-

dation performance of a pre-determined classifier obtained by 10-

old CV on a validation set. Once the algorithm converges to the

nal solution, i.e., the best subset of features, a classifier is trained

nd tested on the entire validation set and an independent test
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Table 2 

Description of the datasets used in our comparative evaluation experiments. 

Data set 

Number of 

instances 

Number of 

Attributes 

Number of 

Classes 

Polyp 2670 79 2 

Sonar 208 60 2 

Landsat 6435 36 6 

Parkinson 195 22 2 

Breast Cancer 569 30 2 

Segmentation 2310 19 7 

Climate 540 18 2 

Average 1846 .7 37 .7 
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set, respectively, in order to evaluate the algorithm. To examine the

consistency in the efficiency and performance of our wrapper ap-

proach with the choice of the classifier, in our implementations,

we employed three well-known classifiers, i.e., SVM, MLP, and NB,

which are distinct in their strategies to learn a model. Regarding

the second scheme, i.e., the BCA-Initialized, the FSS procedure and

all corresponding implementation details are exactly the same as

that of the BCA-Zero, except that in this case, a feature-rating-

based strategy is utilized to select the initial subset of features,

instead of starting from the empty set of features. To do so, we

use a ranking scheme of features based on a classifier-dependent

score calculated for each feature individually. In other words, for

each feature independently, we calculate the AUC (i.e., the objec-

tive function in our scheme) of the pre-determined classifier in a

10-fold CV fashion, as its individual score in the absence of other

features. Once the features are ranked based on this score, the first

T% of the best features (i.e., the highest AUCs) are selected in the

initial subset of features. T is a variable set by the user and needs

a prior knowledge of the dataset such as the total number of fea-

tures. In our experiments, T is set to 20%, based on the number of

attributes of the datasets that we experiment on. 

3. Experimental results 

In order to show the efficiency and performance of our pro-

posed BCA FSS algorithm, we compared our algorithm with two of

the most popular wrapper-based FSS techniques, i.e., SFS [43] and

SFFS [42] . We also compared our proposed algorithm with a rela-

tively new efficient filter-wrapper FSS technique, i.e., IWSSr [24] .

We did the comparative evaluation in terms of the classifica-

tion performance, the number of selected features, the number

of subset evaluations, and the processing time. To have a ratio-

nal comparison, for this experiment we used seven independent

datasets with fairly large numbers of instances (average of 1846.7).

Six out of seven datasets, which are either binary or multi-class

classification tasks, are publicly available and obtained from the

UCI machine-learning repository [56] . The seventh dataset, namely

Polyp, is a medical database containing 2670 polyp candidates for

one of each 79 morphology, intensity, and shape-based features,

which were extracted from CT colonography (CTC) images. The

number of dataset attributes ranges from 18 to 79 excluding the

class attribute. The full description of the datasets is summarized

in Table 2. 

In order to examine the consistency of the performance of the

proposed algorithm with the choice of the pre-determined classi-

fier in a wrapper FSS framework, we coupled both the proposed

algorithms and the reference techniques with three different clas-

sifiers, namely, the SVM, MLP, and NB. These classifiers were se-

lected because they are distinct in terms of their nature of learning

of a model. LIBSVM [57] and WEKA [58] packages were utilized for

implementation of these learning algorithms in our experiments.

All classifier parameters in our implementations were set to de-

fault values of these libraries. In order to reduce the risk of over-
tting while performing FSS [51] , we employed independent test

ets for evaluation of each approach. We extracted approximately

0% of samples from each dataset as a training set, randomly and

n a stratified manner, while we kept the rest for testing purpose.

n other words, each FSS method was executed on the training data

sing a 10-fold CV strategy. Once the best subset of features (i.e.,

he best validation performance) was obtained, a model was then

rained on the entire training set, using only selected features, and

ested on the independent test set. 

The performance results represented by AUC values as well as

he number of selected features obtained for the proposed algo-

ithms and the two reference methods, using three classifiers on

even datasets, are shown in Table 3 . We performed statistical

nalysis on the results obtained for each classifier separately. In

his study, we followed the statistical analysis methodology rec-

mmended in [59–61] . Namely, Friedman aligned ranks test was

tilized to statistically compare the results obtained for all five ap-

roaches for each classifier, separately. If a significant difference

ith a confidence level of 0.05 was detected, we proceeded to

he Holm post hoc analysis of experimental approaches using the

CA-Zero as the control algorithm. We use the notations NS and

 under the results of each method, when there was no signifi-

ant or a significant difference between the corresponding method

nd the BCA-Zero as the control algorithm, respectively. Regarding

he AUC values, our experiments showed that none of the three

tatistical tests obtained significance; thus, we did not proceed to

airwise comparisons. Therefore, the performance, in terms of AUC

alues, of the proposed methods is considered comparable to that

f the SFS, SFFS, and IWSSr techniques. The average rank of each

pproach obtained by the Friedman ranking method is also de-

icted in Table 3 for a better understanding of the comparisons.

ote that the best AUC and the best number of selected features

hould result in ranks of 1 and 5, respectively. Moreover, one can

ee that there is no substantial difference between the two vari-

nts of the proposed algorithm in terms of the classification per-

ormance. The same comparison and statistical analysis methodol-

gy was also applied for the number of selected features obtained

or each method. While most of the results were statistically com-

arable in terms of the number of selected features, IWSSr was ca-

able of selecting a smaller subset of features. In fact, IWSSr was

pecifically designed to select compact subsets of features through

 filter-wrapper approach and a novel feature replacement strategy

24] . Moreover, one might notice that the BCA-Initialized found a

maller subset of features on average, compared with that of the

CA-Zero, although the difference was not statistically significant.

his result makes sense because the BCA-Initialized employs the

ore sophisticated initialization strategy. 

Table 4 shows the number of feature subset evaluations (i.e.,

he number of trials before selecting the best feature subset) and

he algorithm running time, for both our proposed algorithms and

he reference FSS techniques. In order not to manipulate the ref-

rence methods, we used the exact implementation of the IWSSr

echnique [24] , which uses a 5-fold CV (unlike the 10-fold CV in

ur implementations) to estimate the usefulness of feature subset

andidates; therefore, we did not report the timing results for the

WSSr. All timing results were obtained on a workstation running

he Ubuntu Linux 14.04 operating system with Intel Core i7-4790 K

 4.0 GHz CPU and 16 GB RAM. Results show that the number of

ubset evaluations was reduced by the factors of approximately 2,

 and 37 on average, when comparing our BCA-Initialized to the

WSSr, SFS and SFFS techniques, respectively. Comparing our BCA-

ero with the IWSSr, SFS and SFFS techniques, the number of sub-

et evaluations was reduced approximately by factors of 1.5, 5 and

8 on average, respectively. Looking at Table 4 , one can see that the

rocessing speed was also improved by the proposed algorithms,

hich is consistent with our analysis of the number of subset
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Table 3 

Comparisons of the classification performance (in terms of AUC) as well as the number of selected features (#Feats) of our BCA algorithms with zero and feature-rating- 

based initialization schemes with that of the SFS, SFFS, and IWSSr FSS techniques for seven datasets using SVM, MLP, and NB classifiers. AUC results on independent 

(unseen) test data as well as the number of selected features (#Feats) are reported. 

Dataset BCA-Zero BCA-Initialized SFS SFFS IWSSr 

AUC #Feats AUC #Feats AUC #Feats AUC #Feats AUC #Feats 

SVM 

Polyp 0 .964 18 0 .966 35 0 .945 16 0 .934 17 0 .876 2 

Sonar 0 .779 17 0 .743 17 0 .756 9 0 .744 10 0 .798 6 

Landsat 0 .976 17 0 .976 16 0 .975 14 0 .976 15 0 .975 12 

Parkinson 0 .855 6 0 .855 6 0 .855 6 0 .855 6 0 .827 2 

Breast Cancer 0 .997 15 0 .998 10 0 .997 12 0 .997 12 0 .997 6 

Segmentation 0 .988 8 0 .990 8 0 .989 6 0 .989 6 0 .987 6 

Climate 0 .974 10 0 .978 9 0 .973 12 0 .974 10 0 .976 7 

Mean ± SD 0.933 ± 0.08 13 ± 4.9 0.929 ± 0.09 14.4 ± 9.9 0.927 ± 0.09 10.7 ± 3.8 0.924 ± 0.09 10.9 ± 4.2 0.919 ± 0.08 5.9 ± 3.4 

Average rank 2 .79 1 .71 1 .93 2 .36 3 .43 3 .14 3 .14 2 .93 3 .71 4 .86 

NS NS NS NS NS NS NS S 

MLP 

Polyp 0 .802 21 0 .896 21 0 .899 46 0 .783 23 0 .974 7 

Sonar 0 .880 18 0 .897 16 0 .797 8 0 .839 17 0 .798 6 

Landsat 0 .973 17 0 .977 23 0 .976 36 0 .969 28 0 .964 7 

Parkinson 0 .767 4 0 .705 8 0 .796 12 0 .776 12 0 .776 3 

Breast Cancer 0 .999 12 0 .998 9 0 .997 5 0 .998 18 0 .994 7 

Segmentation 0 .992 15 0 .982 11 0 .989 14 0 .994 18 0 .989 5 

Climate 0 .973 11 0 .962 5 0 .959 14 0 .953 10 0 .962 5 

Mean ± SD 0.912 ± 0.10 14 ± 5.6 0.917 ± 0.10 13.3 ± 6.8 0.916 ± 0.09 19.3 ± 15.5 0.902 ± 0.10 18 ± 6.1 0.922 ± 0.09 5.7 ± 1.5 

Average rank 2 .43 2 .64 2 .86 3 .43 3 .07 2 .36 3 .29 1 .79 3 .36 4 .79 

NS NS NS NS NS NS NS NS 

NB 

Polyp 0 .964 22 0 .973 26 0 .956 20 0 .973 26 0 .886 14 

Sonar 0 .802 16 0 .734 11 0 .664 14 0 .783 8 0 .726 7 

Landsat 0 .958 13 0 .959 13 0 .959 13 0 .958 13 0 .957 9 

Parkinson 0 .680 6 0 .672 6 0 .680 6 0 .680 6 0 .832 4 

Breast Cancer 0 .998 10 0 .999 9 0 .998 12 0 .998 9 0 .995 8 

Segmentation 0 .982 8 0 .979 8 0 .982 8 0 .982 8 0 .978 7 

Climate 0 .978 10 0 .978 10 0 .977 10 0 .977 10 0 .980 5 

Mean ± SD 0.909 ± 0.12 12.1 ± 5.4 0.899 ± 0.14 11.9 ± 6.6 0.888 ± 0.15 11.9 ± 4.6 0.907 ± 0.12 11.4 ± 6.8 0.908 ± 0.09 7.7 ± 3.3 

Average rank 2 .57 2 .29 2 .64 2 .57 3 .29 2 .43 2 .79 2 .71 3 .71 5 

NS NS NS NS NS NS NS S 

Note: when considering the results for Holm post hoc statistical analysis, NS and S under the results of a method indicate that there is no significant or a significant 

difference between the corresponding method and the BCA-Zero as the control algorithm, respectively. 
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valuations. Similar statistical analysis methodology discussed ear-

ier was used to examine the significance for the timing and the

umber of subset evaluation results. In this case, all p-values ob-

ained by the Friedman aligned ranks tests were less than 0.05,

ielding to reject the null hypothesis in favor of the alternative

ypothesis, i.e., there exist some significant differences in the ob-

ained results. Therefore, we proceeded to the Holm post hoc anal-

sis. The statistical analysis showed that the differences between

he number of subset evaluation results obtained by BCA-Zero

ere significant, with a significance level of 0.1, with respect to

hose of obtained by either of the SFS or SFFS techniques. The

ifference between the BCA-Zero and IWSSr was not statistically

ignificant. This will be further discussed in detail with consid-

ring the impact of feature ordering and having higher dimen-

ional datasets (more than 10 0 0 features) in Section 4 . In fact, we

ill see a clear difference between the computational complexity

f the BCA and IWSSr. Moreover, we compared the two variants

f our proposed approach, i.e., the BCA-Zero and BCA-Initialized.

hey were comparable in terms of timing results, whereas there

as a slight improvement (although not statistically significant) in

erms of the number of subset evaluations for the case of the BCA-

nitialized. This was achieved by sacrificing some processing time

or the algorithm initialization through the feature-rating-based

nitialization process. Note that, although we performed statisti-

al analysis to confirm our comparisons, one might easily see from

able 4 that the SFS and SFFS techniques were always assigned the

econd last and the last ranks, respectively, by the Friedman rank-

ng method in all experiments, where the higher the rank, the bet-
er the method is. M  
. Discussion 

In general, there is not a strong reason to believe that bet-

er approaches might overlap in selecting the best subset of fea-

ures, without having the knowledge of the ground truth features.

owever, we believe it useful to analyze the selected features for

he methods to gain insight into the characteristics of the meth-

ds. Table 5 shows the results of the pair-wise analysis of over-

apping features for the four wrapper approaches in our experi-

ents, i.e., the BCA-Zero, BCA-Initialized, SFS, and SFFS. The num-

er of overlapping features alone may not necessarily provide an

ccurate similarity measure for this particular purpose, as it does

ot consider the length of each subset; therefore, we used the

accard similarity (JS) metric for feature analysis, i.e., the ratio of

he size of the intersection of two sets divided by the size of

heir union. Looking at the average JS metrics depicted in Table 5 ,

ne might see that there is a better match between the SFS and

FFS techniques than between these two and the proposed algo-

ithms, i.e., the SFS obtained similar features to those obtained

y the SFFS. However, all JS values in pair-wise comparisons were

omparable, indicating the pair-wise overlap of the selected fea-

ures was comparable. This does not necessary show the effec-

iveness of any of these approaches. However, an interesting re-

ult can be depicted by considering the JS similarities obtained

or the case of the MLP classifier and comparing them to those

btained for the SVM and NB classifiers. Most of the JS results

btained for the MLP were smaller than those of the SVM and

B classifiers. This difference can be understood by considering

LP classifiers as one of the learning algorithms with a built-in
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Table 4 

Comparisons of the computational complexity (in terms of the number of subset evaluations) as well as the timing results (in minutes) of our BCA algorithms with zero 

and feature-rating-based initialization schemes with that of the SFS, SFFS, and IWSSr FSS techniques for seven datasets using SVM, MLP, and NB classifiers. 

Dataset BCA-Zero BCA-Initialized SFS SFFS IWSSr 

Time #subset Time #subset Time #subset Time #subset #subset 

SVM 

Polyp 11.9 237 26.9 237 282.3 3160 3336.8 22,939 234 

Sonar 5.1 540 2.03 180 17.29 1830 110.53 9567 326 

Landsat 63.6 108 89.4 108 338.7 666 1043.4 1810 322 

Parkinson 0.7 88 0.64 66 1.93 253 6.43 792 57 

Breast Cancer 1.6 90 1.17 60 7.59 465 32.15 1676 156 

Segmentation 7.2 57 8.90 57 21.90 190 113.30 886 93 

Climate 1.1 90 0.62 36 1.94 171 7.70 597 97 

Mean ± SD 13.0 ± 22.6 172.8 ± 171 18.5 ± 32.7 106.3 ± 74 95.9 ± 147.7 962.1 ± 1128 664.3 ± 1235.6 5466.7 ± 8330 183.6 ± 111 

Average rank 4.43 3.79 3.57 4.5 2 2 1 1 3.71 

NS NS S S S S NS 

MLP 

Polyp 94.5 237 117.7 237 2808.7 3160 58,335.0 27,973 430 

Sonar 9.3 300 4.01 120 87.70 1830 1531.6 16,094 326 

Landsat 191.1 144 175.5 108 698.4 666 7606.6 4208 237 

Parkinson 0.8 66 0.83 44 4.18 253 30.24 408 75 

Breast Cancer 7.4 150 4.20 90 24.48 465 427.83 5364 169 

Segmentation 28.8 57 28.90 76 59.32 190 416.13 1005 99 

Climate 2.1 54 1.82 54 5.62 171 46.30 1042 85 

Mean ± SD 47.7 ± 71.3 144.0 ± 95 47.6 ± 70.3 104.1 ± 64 526.9 ± 1036.4 962.1 ± 1128 9770.5 ± 21,584 8013.4 ± 10,334 203 ± 135 

Average rank 3.43 4.29 3.57 4.71 2 2 1 1 3 

NS NS S S S S NS 

NB 

Polyp 11.8 395 13.7 395 107.2 3160 728.4 15,409 687 

Sonar 1.4 240 1.56 240 10.90 1830 64.00 9343 362 

Landsat 10.0 180 8.1 144 28.6 666 94.3 1736 237 

Parkinson 0.4 88 0.31 44 1.22 253 6.48 1158 62 

Breast Cancer 0.9 120 0.84 90 3.58 465 16.34 1796 149 

Segmentation 0.9 57 1.12 57 2.86 190 7.71 453 94 

Climate 0.3 36 0.37 36 1.18 171 3.29 430 86 

Mean ± SD 3.7 ± 4.9 159.4 ± 125 3.7 ± 5.2 143.7 ± 131 22.2 ± 38.7 962.1 ± 1128 131.5 ± 265.5 4332.1 ± 5792 239.5 ± 234 

Average rank 3.57 4.14 3.43 4.71 2 2 1 1 3.14 

NS NS S S S S NS 

Note: when considering the results for Holm post hoc statistical analysis, NS and S under the results of a method indicate that there is no significant or a significant 

difference between the corresponding method and the BCA-Zero as the control algorithm, respectively. 

Table 5 

Analysis of overlapping features between each pair of wrapper FSS algorithms (BCA-Zero, BCA-Initialized, SFS, and SFFS). Similarities of the selected features with respect 

to the feature subset length are compared in terms of the Jaccard similarity (JS). 

Dataset BCA-Zero/BCA-Initialized BCA-Zero/SFS BCA-Zero/SFFS BCA-Initialized/SFS BCA-Initialized/SFFS SFS/SFFS 

SVM 

Polyp 0 .293 0 .214 0 .207 0 .186 0 .182 0 .222 

Sonar 0 .478 0 .4 4 4 0 .588 0 .368 0 .500 0 .357 

Landsat 0 .737 0 .550 0 .455 0 .579 0 .476 0 .813 

Parkinson 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 

Breast Cancer 0 .563 0 .500 0 .500 0 .467 0 .467 1 .0 0 0 

Segmentation 1 .0 0 0 0 .556 0 .556 0 .556 0 .556 1 .0 0 0 

Climate 0 .583 0 .833 1 .0 0 0 0 .750 0 .583 0 .833 

Mean ± SD 0.665 ± 0.26 0.585 ± 0.26 0.615 ± 0.29 0.558 ± 0.26 0.621 ± 0.22 0.746 ± 0.32 

MLP 

Polyp 0 .200 0 .264 0 .189 0 .264 0 .294 0 .353 

Sonar 0 .214 0 .130 0 .207 0 .263 0 .320 0 .250 

Landsat 0 .429 0 .472 0 .364 0 .639 0 .546 0 .778 

Parkinson 0 .333 0 .231 0 .333 0 .427 0 .333 0 .714 

Breast Cancer 0 .167 0 .133 0 .364 0 .167 0 .421 0 .150 

Segmentation 0 .368 0 .526 0 .737 0 .667 0 .611 0 .789 

Climate 0 .455 0 .563 0 .500 0 .357 0 .500 0 .600 

Mean ± SD 0.309 ± 0.12 0.331 ± 0.19 0.385 ± 0.19 0.376 ± 0.19 0.398 ± 0.19 0.519 ± 0.26 

NB 

Polyp 0 .778 0 .615 0 .778 0 .582 1 .0 0 0 0 .582 

Sonar 0 .421 0 .429 0 .500 0 .563 0 .583 0 .467 

Landsat 0 .733 0 .625 0 .857 0 .857 0 .857 0 .733 

Parkinson 0 .714 0 .714 0 .714 0 .714 0 .714 1 .0 0 0 

Breast Cancer 0 .727 0 .692 0 .583 0 .500 0 .636 0 .500 

Segmentation 0 .778 1 .0 0 0 1 .0 0 0 0 .778 0 .778 1 .0 0 0 

Climate 1 .0 0 0 0 .818 0 .818 0 .818 0 .818 1 .0 0 0 

Mean ± SD 0.736 ± 0.17 0.699 ± 0.18 0.750 ± 0.17 0.687 ± 0.14 0.769 ± 0.14 0.755 ± 0.24 
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Table 6 

Detailed structure of the experimental FSS techniques studied in this paper. 

Table 7 

Description of the new datasets used in our detailed comparative evaluation. 

Data set 

Number of 

instances 

Number of 

Attributes 

Number of 

Classes 

Colon 62 20 0 0 2 

Leukemia 72 7070 2 

ALLAML 72 7129 2 

Prostate 102 5966 2 

CLL_SUB 111 11,340 3 

Average 83.8 6701.0 

F  

n

 

p  

n  

w  

i  

c  

e  

t  

o  

o  

t  

a  

n  

t  

t  

s  

s  

w  

a  

w  

p  

w  

l  

i  

i  

w  

f  

u

 

r  

o  

u  

e  

e  

t  

W  

g  

s  

s  

s  

t  

s  

t  

o  

w  

s  

n  

h  

i  

c  

f  

o  

o  

t  

w  

m  

f  

c  

i  

i  

f  

s  

F  

i  

e  

n  

m

 

r  

o  

i  

o  

b  

n  

o  

g  

a  

a  

o  

t  

i  

p  

T  

a  

i  

t  

c  

u  

t  

m  

a  

b  

g

5  

c  

t  

j  

w  
SS capability through optimization of the weights of the neural

etwork. 

Earlier we compared BCA-based FSS algorithms with two wrap-

er techniques, i.e., the SFS and the SFFS, and a filter-wrapper tech-

ique, i.e., IWSSr. However, the comparison of a wrapper approach

ith a hybrid FSS technique, without considering the effect of the

nterior components of the FSS technique separately, might not be

ompletely fair. In fact, there are three main modules that differ-

ntiate the experimental FSS methods in this paper, including a

ype of the search method, an initialization strategy, and a feature

rdering technique. Table 6 shows the detailed structure of each

f the experimental FSS techniques studied in this paper. In order

o obtain a detailed comparison between BCA-algorithm-based FSS

nd the IWSSr, and to further explore the effect of interior compo-

ents, we investigated the effect of presence and absence of fea-

ure ordering. Additionally, we were interested to study the effec-

iveness of the corresponding approaches when the dataset dimen-

ionality is high (more than 10 0 0 features). To this end, we con-

idered comparing four methods including the BCA-Zero, BCA-Zero

ith feature ordering (here referred to as BCA-withOrder), IWSSr,

nd IWSSr without feature ordering (here referred to as IWSSr-

ithoutOrder) on 10 datasets. Five out of the ten datasets were ex-

lained earlier and can be found in Table 2 . The new five datasets,

ith number of attributes ranging from 20 0 0 to 11,340, are pub-

icly available and obtained form the ASU feature selection repos-

tory [62] . The full description of the new datasets is summarized

n Table 7 . For feature ordering, to obtain an unbiased comparison,

e used the same ordering that the IWSSr employs, i.e., sorting the

eatures based on the symmetrical uncertainty (SU) as the feature

sefulness [24] . 

Unlike the datasets used in Section 3 , the new datasets have

elatively small numbers of samples (average of 83.8); thus, the

uter stratified hold-out (70% training - 30% test) strategy that was

sed earlier might not be an appropriate choice for performance

stimation. Therefore, we performed a 5-fold stratified CV strat-

gy and reported the AUC, the number of subset evaluations, and

he number of selected features, averaged over 5 runs, in Table 8 .

e were interested in making comparisons in order to investi-

ate the effect of individual and combined modules including the

earch method and the feature ordering on the resulting number of

ubset evaluations and the number of selected features. Wilcoxon

igned ranks test [59] is the statistical test we utilized for each of

he pair-wise comparisons over ten datasets for each of the clas-

ifiers separately. Considering the comparison of BCA search with
he incremental search with replacement strategy, the performance

f BCA-Zero and BCA-withOrder was higher than that of the IWSSr-

ithoutOrder and IWSSr with average factors of 3.3 and 2.3, re-

pectively (with statistically significant differences), in terms of the

umber of subset evaluations. The difference was much higher for

igher dimensionalities. This suggests a difference in the complex-

ty, which will be discussed further later. More interestingly, we

an see that exploiting the feature ordering had a reduction ef-

ect for the incremental with replacement search approach (factor

f 1.7), while the same effect was not seen for BCA. In fact, BCA

ptimization showed more robustness to the ordering. In terms of

he number of selected features, the incremental with replacement

as capable of finding smaller subsets than BCA. Indeed, the for-

er was specifically designed to reduce the number of selected

eatures, while the BCA optimization algorithm focused on effi-

iency. However, the difference became much smaller when utiliz-

ng the feature ordering for both search strategies. In fact, exploit-

ng the feature ordering reduced the number of selected features

or BCA by 44%. This suggests a further study on the number of

elected features and the effect of feature ordering on BCA-based

SS. Moreover, if we compare the BCA-Zero (without feature order-

ng) and the IWSSr (with feature ordering), the number of subset

valuations was reduced by a factor of 2.3 (with statistically sig-

ificant difference). Lastly, note that the AUC obtained by the four

ethods were all comparable. 

We saw earlier that the BCA-Zero and BCA-Initialized algo-

ithms outperformed the SFS, SFFS, and IWSSr techniques in terms

f the number of subset evaluations. We investigated the complex-

ty of these approaches with theoretical and experimental formula

f the number of subset evaluations f ( N ) as a function of the num-

er of initial attributes N . The formula for the case of the SFS tech-

ique is deterministic and can be derived analytically. For the case

f the proposed algorithms and SFFS technique, we utilized re-

ression to find experimental formulas. We fit two linear models

nd a quadratic polynomial to the data obtained by the proposed

lgorithms and the SFFS technique, correspondingly. For the case

f IWSSr, approximation was not straight-forward; thus, we used

he experimental values obtained earlier. The worst-case complex-

ty of IWSSr is O( N 

2 ) , while in practice it is usually less and de-

ends on different factors such as the number of selected features.

he three experimental expressions for BCA-Zero, BCA-Initialized,

nd SFFS as well as the analytical function for the SFS are shown

n Fig. 3 . The error bars in Fig. 3 show the exact data obtained

hrough our experiments. For example, the error bar on the SFFS

urve at N = 60 is obtained on the Sonar dataset with 60 attributes

sing the SVM, MLP, and NB classifiers (total of 3 points). Taking

he hypothesis that the actual points indeed follow the approxi-

ated curves, which might be in fact a reasonable hypothesis by

 subjective evaluation of Fig. 3 , we might conclude that the num-

er of subset evaluations for the BCA-Zero and BCA-Initialized al-

orithms follow a linear complexity, with some scaling factor (3–

), with respect to the number of initial attributes N . In fact, the

omplexity of the BCA optimization algorithm is O( SN ) , where S is

he number of BCA scans over N input attributes. Having a similar

udgment and considering the exact formula for the SFS technique,

e might conclude that the SFS and SFFS techniques both follow
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Table 8 

Comparisons of the classification performance in terms of AUC, the computational complexity in terms of the number of subset evaluations (#subsets), 

and the number of selected features (#Feats) of the BCA-Zero and IWSSr FSS with and without using the feature ordering, for ten datasets using SVM, 

MLP, and NB classifiers. 

Dataset BCA-Zero IWSSr-withoutOrder BCA-withOrder IWSSr 

AUC #subsets #Feats AUC #subsets #Feats AUC #subsets #Feats AUC #subsets #Feats 

SVM 

Polyp 0.837 316.0 21.8 0.742 418.6 7.0 0.851 237.0 9.2 0.715 303.0 3.4 

Sonar 0.829 276.0 19.8 0.771 265.8 5.6 0.821 240.0 15.0 0.802 417.0 8.4 

Parkinson 0.902 79.2 10.0 0.901 94.0 6.0 0.891 48.4 5.2 0.896 73.4 3.4 

Breast 0.993 96.0 13.8 0.992 179.0 7.0 0.992 96.0 9.4 0.991 164.2 6.6 

Climate 0.949 61.2 8.0 0.951 66.4 5.2 0.947 43.2 8.4 0.951 96.8 7.0 

Colon 0.674 40 0 0.0 14.6 0.739 13,695.6 6.2 0.882 40 0 0.0 5.0 0.807 9960.8 4.0 

Leukemia 0.850 14,140.0 18.8 0.724 57,633.8 7.2 0.988 14,140.0 2.0 0.988 19,793.4 1.8 

ALLAML 0.871 14,258.0 18.6 0.785 69,050.4 8.8 0.968 14,258.0 1.4 0.968 17,107.4 1.4 

Prostate 0.901 11,932.0 27.0 0.901 62,746.6 9.8 0.962 11,932.0 4.6 0.967 26,215.8 3.4 

CLL_SUB 0.810 22,680.0 63.0 0.728 195,470.6 16.8 0.670 29,484.0 74.2 0.644 235,939.0 21.6 

Mean 0.862 6783.8 21.54 0.823 39,962.1 7.96 0.897 7447.9 13.44 0.873 31,007.1 6.1 

Average rank 2.25 3.05 1.2 2.95 1.4 2.8 2.25 3.65 2.35 2.55 1.9 3.65 

NS S S NS S S 

MLP 

Polyp 0.869 363.4 28.4 0.850 470.8 7.8 0.859 395.0 24.0 0.863 627.4 11.2 

Sonar 0.826 300.0 25.0 0.784 409.2 9.2 0.809 264.0 17.0 0.832 390.2 8.6 

Parkinson 0.899 74.8 14.0 0.891 80.0 3.6 0.886 57.2 5.8 0.892 73.6 3.4 

Breast 0.990 114.0 13.4 0.992 195.8 8.4 0.990 78.0 10.8 0.991 144.6 5.8 

Climate 0.952 54.0 10.2 0.953 76.0 6.0 0.951 54.0 8.0 0.949 108.8 7.6 

Colon 0.815 40 0 0.0 13.8 0.789 15,778.6 7.0 0.870 4400.0 5.4 0.878 9969.6 4.0 

Leukemia 0.859 14,140.0 18.4 0.893 61,038.4 7.6 0.984 14,140.0 2.2 0.984 22,619.2 2.2 

ALLAML 0.912 14,258.0 18.4 0.893 61,038.4 7.6 0.968 14,258.0 1.4 0.968 17,107.4 1.4 

Prostate 0.901 11,932.0 27.0 0.901 62,746.6 9.8 0.974 11,932.0 5.4 0.968 27,417.4 3.6 

CLL_SUB 0.810 22,680.0 63.0 0.728 195,470.6 16.8 0.793 22,680.0 57.2 0.747 159,248.8 14.0 

Mean 0.883 6791.6 23.16 0.867 39,730.4 8.38 0.908 6825.8 13.72 0.907 23,771.7 6.18 

Average rank 2.4 3.35 1 3.15 1.2 2.8 2.45 3.55 2.5 2 1.9 3.7 

NS S S NS S NS 

NB 

Polyp 0.824 379.2 23.0 0.852 566.2 11.4 0.838 347.6 23.4 0.829 717.0 14.2 

Sonar 0.805 312.0 21.4 0.774 403.4 8.4 0.830 276.0 22.0 0.759 433.2 9.2 

Parkinson 0.906 92.4 7.4 0.906 90.2 5.0 0.886 57.2 5.8 0.892 73.6 3.4 

Breast 0.992 144.0 9.6 0.990 144.4 6.4 0.990 78.0 10.8 0.991 146.8 6.2 

Climate 0.947 57.6 7.4 0.952 82.8 6.2 0.951 50.4 7.0 0.949 92.8 6.2 

Colon 0.818 4400.0 14.6 0.801 12,788.8 5.8 0.849 40 0 0.0 5.0 0.869 9836.8 4.0 

Leukemia 0.868 14,140.0 15.4 0.850 63,270.2 8.0 0.984 14,140.0 2.0 0.972 19,793.4 1.8 

ALLAML 0.853 14,258.0 15.0 0.877 65,310.2 8.2 0.968 14,258.0 1.8 0.968 18,533.0 1.6 

Prostate 0.823 11,932.0 29.4 0.817 75,044.0 12.4 0.961 11,932.0 4.8 0.958 28,514.4 3.8 

CLL_SUB 0.746 22,680.0 51.2 0.622 219,794.0 18.6 0.687 22,680.0 36.8 0.726 170,355.4 14.8 

Mean 0.858 6839.5 19.44 0.844 43,749.2 0.904 0.894 6781.9 11.94 0.891 24,849.6 6.52 

Average rank 2.65 2.9 1.3 2.9 1.6 2.85 2.1 3.8 2.1 2.35 1.7 3.75 

NS S S NS S S 

Note: when considering the results for Wilcoxon signed ranks statistical test, NS (not significant) and S (significant) under the results of the IWSSr- 

withoutOrder and IWSSr are obtained through a pairwise comparison with the BCA-Zero and BCA-withOrder, respectively. The average rankings are 

obtained through the Friedman ranking scheme when considering all methods, where the highest rank corresponds to the smallest value. 
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a quadratic complexity formula with respect to N, and there is a

scaling factor (approximately 5) for the case of the SFFS technique.

The approximated curve for the BCA-Zero over 10 datasets (from

Table 8 ) as well as the exact points with error bars for the IWSSr

technique are shown in Fig. 4 . The same linear complexity for BCA-

based FSS still exists when considering high dimensional datasets.

As for IWSSr, the points do not completely follow a smooth trend.

This is due to the deviation of the dataset-based factors such as

the number of important features, which affects the complexity of

the IWSSr. 

To gain more insights into the reason why BCA-based FSS al-

gorithms are linear, whereas the SFS and SFFS techniques are

quadratic, we considered the graph-based representation of fea-

ture subsets (an example for N = 4 is shown in Fig. 1 ). Using the

binary representation of feature subsets, we can represent feature

subsets for any dataset with N number of attributes, as a graph

with N + 1 layers, where the L th layer contains ( N 
L 
) subsets. The

SFS method starts searching from the subset of all 0 s (L = 0) and

scans the graph in a greedy-algorithm-based manner through the

b  
ast layer (L = N). In other words, once the SFS technique finds

he best subset of the L th layer, it searches throughout N-L candi-

ates in the L + 1th layer; thus, the total number of subset evalua-

ions is quadratic with respect to N. The SFFS technique follows the

ame greedy approach, except that it allows the backward search

hrough the previous layers while performing the graph search.

ote that regardless of what layer the best subset of features is

ocated in, the SFS and SFFS techniques scan all layers at least

nce, where for each layer L, an order of N evaluations is required

or a forward or backward search. BCA-based FSS algorithms over-

ome the problem of computational complexity by reducing the

umber of evaluations needed to pass over a layer in the graph

earch, i.e., when in layer L, only one subset of either the L + 1th

ayer (adding a feature) or the L-1th layer (removing a feature) will

e examined. In fact, BCA-based FSS follows a line search strategy

hrough the graph. Moreover, one might notice that the BCA al-

orithm does not necessarily scan all the layers. To make it clear,

onsider the example of Sonar dataset with 60 features. One can

ee from Table 3 that the number of selected features obtained

y five methods and three classifiers were all less than 30% of N;
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Fig. 3. Number of wrapper subset evaluations as a function of the number of input 

attributes (N). Linear and non-linear fitted function curves for the BCA algorithms 

with zero and feature-rating-based initializations, SFS, and SFFS techniques are il- 

lustrated. Note the log scale in the vertical axis. 

Fig. 4. Number of wrapper subset evaluations as a linear function of the number 

of input attributes (N) for BCA-Zero, as well as the error bars obtained from the 

experimental results for both BCA-Zero and IWSSr. Note the log scale in the vertical 

axis. 

t  

S  

g  

s

 

b  

n  

f  

s  

p  

r  

m  

d  

f  

c  

w  

Fig. 5. Optimization trend of the objective AUC function over the number of itera- 

tions in our BCA optimization algorithm. The figure shows the trend for the case of 

the Sonar dataset and the SVM classifier. 
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t  
herefore, about 70% of layers were redundantly scanned by the

FS and SFFS techniques. On the other hand, BCA-based FSS never

oes far away from the optimal or sub-optimal subsets in its search

pace; thus, substantially more efficient. 

In Section 3 , we investigated the performance of each algorithm

ased on its AUC obtained on an independent test set, but we did

ot discuss the results obtained in the 10-fold CV scheme (5-fold

or IWSSr) on the validation set through the FSS process. Table 9

hows the performance comparison in the validation test. Our ex-

loration indicated that the validation results were also compa-

able. To confirm that, we performed statistical analysis with the

ethodology we used earlier. There was no statistically significant

ifference among our comparisons of the validation AUC results. In

act, we might conclude that our BCA optimization algorithm suc-

essfully obtained a local optimum in the space of feature subsets

ith the objective function value (i.e., the validation AUC) compa-
able to that of the reference techniques, while reducing the num-

er of iterations. Investigating the validation results, one might no-

ice that although some approaches reached a better AUC on the

alidation set, the corresponding performance on the independent

est set was lower. This is consistent with the study on the perfor-

ance evaluation of the FSS techniques, conducted in [51] . 

Most of sequential search techniques have to be executed com-

letely in order to obtain a sub-optimum point as the best subset

f features. As mentioned earlier, our BCA optimization algorithm

s an anytime iterative algorithm, i.e., it can be stopped earlier by

onsidering early stopping criteria. Fig. 5 illustrates a trend of the

bjective function (AUC) maximization through the iterations (i.e.,

he subset candidates) for an example case of the FSS for the Sonar

ataset and SVM classifier. This single case was only selected for

he ease of illustration, while curves for all other BCA-based FSS

xperiments followed the same trend. In this example, with a to-

al of 540 iterations, there was almost no significant improvement

f the objective function after the 400th iteration; therefore, one

ight stop the algorithm at this point based on the application

eeds. We might also consider this property as one of the lim-

tations of our BCA optimization algorithm. In other words, our

CA algorithm might end up in a local optimum such that there

s no way of improving the objective functions even by increasing

he number of iterations. In fact, this is a common limitation of

ost local search methods. This can be studied further for the case

f our BCA optimization algorithm by considering techniques that

ake trade-off between the number of iterations and the objective

unction results. For the classification application, we showed that

ven though this limitation exists, the performance results were

onvincing while significant reductions in the computational com-

lexity were obtained. 

. Conclusion 

We proposed and developed an efficient iterative determin-

stic local optimization algorithm, namely, binary coordinate as-

ent (BCA). Our BCA algorithm can be utilized in the optimiza-

ion frameworks with a binary representation of the input vari-

bles and continuous objective function values. To study the ef-

ciency and the performance of our BCA optimization algorithm,

e investigated this algorithm for the task of FSS in classifica-

ion applications. To this end, we first represented the space of
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Table 9 

Validation performance (in terms of AUC) comparison of our BCA algorithms with zero and feature- 

rating-based initializations with the SFS, SFFS, and IWSSr FSS techniques for seven datasets using the 

SVM, MLP, and NB classifiers. 

Dataset BCA-Zero BCA-Initialized SFS SFFS IWSSr 

SVM 

Polyp 0 .91 0 .93 0 .95 0 .96 0 .80 

Sonar 0 .93 0 .91 0 .93 0 .93 0 .92 

Landsat 0 .98 0 .98 0 .98 0 .98 0 .98 

Parkinson 0 .95 0 .95 0 .95 0 .95 0 .94 

Breast Cancer 0 .99 0 .99 0 .99 0 .99 0 .99 

Segmentation 0 .99 0 .99 0 .99 0 .99 0 .99 

Climate 0 .96 0 .95 0 .95 0 .96 0 .95 

Mean ± SD 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 

Average rank 2 .71 3 .36 2 .79 2 .29 3 .86 

NS NS NS NS 

MLP 

Polyp 0 .88 0 .93 0 .90 0 .94 0 .86 

Sonar 0 .96 0 .96 0 .96 0 .99 0 .92 

Landsat 0 .98 0 .98 0 .98 0 .98 0 .98 

Parkinson 0 .99 0 .99 0 .99 0 .99 0 .98 

Breast Cancer 0 .99 0 .99 0 .99 0 .99 0 .99 

Segmentation 0 .99 0 .99 0 .99 0 .99 0 .99 

Climate 0 .95 0 .97 0 .95 0 .98 0 .96 

Mean ± SD 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.02 0.99 ± 0.02 0.96 ± 0.03 

Average rank 3 .29 2 .64 3 .14 2 .07 3 .86 

NS NS NS NS 

NB 

Polyp 0 .90 0 .90 0 .88 0 .90 0 .89 

Sonar 0 .93 0 .93 0 .92 0 .94 0 .95 

Landsat 0 .96 0 .96 0 .96 0 .96 0 .97 

Parkinson 0 .95 0 .95 0 .95 0 .95 0 .94 

Breast Cancer 0 .99 0 .99 0 .99 0 .99 0 .99 

Segmentation 0 .99 0 .99 0 .99 0 .99 0 .98 

Climate 0 .95 0 .95 0 .95 0 .95 0 .94 

Mean ± SD 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.04 0.95 ± 0.03 0.95 ± 0.03 

Average rank 2 .79 2 .79 3 .43 2 .57 3 .43 

NS NS NS NS 

Note: when considering the results for Holm post hoc statistical analysis, NS and S under the results 

of a method indicate that there is no significant or a significant difference between the corresponding 

method and the BCA-Zero as the control algorithm, respectively. 
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feature subsets using binary vectors of 0 s and 1 s. Based on that,

we proposed two efficient wrapper-based FSS techniques, namely,

BCA-Zero and BCA-Initialized. The task of our wrapper-based FSS

approaches was to efficiently find the best subset of features in

terms of the AUC. We experimented on seven datasets (18–79 at-

tributes) using three classifiers, i.e., the SVM, MLP, and NB, and

compared the performance and efficiency results of our proposed

algorithms with those of two of the most popular wrapper-based

FSS techniques, i.e., the SFS and SFFS. Additionally, to gain further

knowledge of our BCA optimization search method, we compared

the proposed algorithms with an efficient filter-wrapper-based FSS

technique, i.e., IWSSr. Five more datasets (20 0 0–11,340 attributes)

were explored for this purpose. The performance analysis demon-

strated that the AUC results for our proposed algorithms were

comparable to those of the SFS, SFFS, and IWSSr techniques. In-

vestigating the efficiency of the approaches, we demonstrated that

with our BCA optimization algorithm, the number of subset evalu-

ations and the processing time of the FSS algorithm were reduced

substantially, compared with those of the SFS and SFFS techniques.

We also showed that the number of subset evaluations was re-

duced for BCA-based FSS algorithms when comparing with filter-

wrapper IWSSr, where the difference was greater for the datasets

with higher dimensionalities. We also performed statistical anal-

ysis for all of the experiments and comparisons to confirm our

statements. Additionally, our detailed analysis of the BCA based al-

gorithms suggested a further study on the BCA-based FSS system

in terms of the initialization strategy and the feature ordering tech-

nique. Through our analysis and experiments, we found that our

BCA-based algorithms follow a linear complexity (the number of
ubset evaluations) with respect to the number of initial attributes,

hereas the SFS and SFFS techniques follow a quadratic form. Cor-

espondingly, one can use the BCA optimization algorithm as an

fficient alternative approach in applications in which efficiency is

 requirement, specifically in FSS for classification of datasets with

 high number of initial attributes. 
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