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Abstract. Object location and track in image sequences is an important task in computer vi-
sion, which has many applications. Major challenges of object track have been, and continued 
to be, improvement of its accuracy and real-time performance. In this paper, a novel BP-
neural-network-based object location approach is proposed, in which a threshold for the ob-
ject-matching quality is used for determining whether the object is present in a given frame. 
To simplify the network structure, a directional wavelet transform (DWT) is used for extract-
ing image features, which can reduce the size of the input patterns. In order to further im-
prove the computation speed of the method, the information on the position of the target ob-
ject in the previous frames is used for predicting the position of the target object in the current 
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frame. Experiments indicate that the proposed method is more accurate in target detection and 
more computationally efficient than conventional methods.  

Keywords: object location, object track, neural networks, image sequences . 

1  Introduction 

Interests in object location and track in image sequences have increased significantly over the past 
few years, and many methods have been proposed. The two mainstream methods are Template 
matching methods and feature invariant approaches [1]-[6]. Template matching methods store 
several patterns of objects and describe each pattern by image pixels. The correlation among an 
input image and the stored patterns is computed for detecting objects. The principles are simple. 
However, the sum of the image pixels is great and the intensity value of each pixel is sensitive to 
changes in absolute intensity, contrast and illumination. Hence, template matching techniques 
usually need expensive computation and give low accuracy results. Feature invariant approaches, 
on the other hand, use symbolic features derived from intensity images. Such features include 
points defined by local intensity, extremes, edges, corners, and regions. Because feature-based 
techniques allow simple comparisons between the attributes of features, they are generally faster 
and accurate than template matching methods. However, since they rely on single scale segmenta-
tion to extract features (e.g., edges, corners, regions), difficulty of finding feature correspondences 
across images is increased by segmentation errors [5] [6]. Thus when local image feature informa-
tion is insufficient, the method will fail to work. 

In recent years, ANN (Artificial Neural Network) has attracted considerable attention for object 
location and track in image sequences because of its capability of high-speed information process-
ing and uncertainty information processing [7]-[11]. Nasrabadi and W. Li [8]-[9] and Shi et.al.[10] 
used a two dimensional Hopfield network to perform a sub-image isomorphism to obtain the op-
timal compatible matches between the two images with application in object recognition. N.SANG 
[11] used a relaxation labeling method to perform invariant matching between patterns. 

Differing from above works, this paper focuses on the application of BP (Back Propagation, BP) 
neural network [12] for object location in image sequences. A BP neural network has the advan-
tages that it is easy to understand and can be efficiently implemented in real-time hardware. Com-
pared with the neural network based methods mentioned above, the proposed algorithm in this 
paper has a very good advantage. It uses the location predicted from previous image sequences as 
the candidate position for detection and location the target object and uses a threshold for the 
object-matching quality for determining whether the object is present in a given frame, which is 
very beneficial to reduce computational cost and to improve robustness to object lost. By employ-
ing the capabilities of the BP network in functional approximation and generalization to learn the 
non-structured knowledge required, higher computing speed and higher accuracy in real time 
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object location are both achieved. Experimental results (performed under different conditions) 
indicate that the proposed method is very promising. 

The remainder of this paper is organized as follows: Section 2 describes the proposed method 
in detail. Section 3 shows the experimental results conclusions of this paper with remarks and 
suggestions for future work are shown in Section 4. 

2  The Proposed Method 

2.1  Design of Neural Networks 

Design of the best neural network for a considered application should be constrained by the trade 
off among the training time, the required memory, the computational complexity and the computa-
tional time, other than the probability of success. 

The objective of our research is to location and track an object in the frames grabbed from a 
movie clip playing at the speed of 25 frames per second. In order to guarantee the real time behav-
ior of the systems, the location should be performed as fast as possible. 

Base on what mentioned above, a three layers BP (Back Propagation, BP) neural network 
(namely an input layer, a hidden layer, and an output layer) is constructed to perform the operation 
in this paper. It has been noted that a back propagation neural network (BPNN) with one (or more) 
sigmoid-type hidden layer(s) and a linear output layer can approximate any arbitrary function [12]. 

In principle, a BP neural network may be trained to locate an object in images directly. How-
ever, for even a moderate image size, the network can be quite complex. For example, if the im-
ages were 128ⅹ128, and if all the pixels are directly put into the neural network, the number of 
inputs of the network would be 16384, it will be very difficult to process the images in real-time 
with a standard PC. Therefore, a preprocessing stage must be incorporated to reduce the size of 
the input pattern. 

For the purpose of reducing the size of an input pattern, there are many methods can be em-
ployed to perform this task, such as principal component analysis, factor analysis and DWT (Di-
rectional Wavelet Transform, DWT) [13]-[16]. Usually, the edges and textures of images some-
times have strong directionality, which is usually very useful for image analysis, especially in the 
problem of real time object tracking, since the real time images are usually small, directionality of 
the image features are more obvious and can be used for image matching. However, the direction-
ality of image edges and textures usually appears in the local change of an image or entirety along 
some directions. This kind of properties can not be incarnated by the image features extracted with 
a conventional method, such as principal component analysis, factor analysis. However the direc-
tion wavelet transform is well able to describe this kind of image properties, which has very strong 
capability in resisting grayness reversal and noise [16]. Due to this reason, in this paper, DWT is 
selected to perform this task. The DWT can be depicted as following [16]: 
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Its corresponding discrete formation is written as 
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is extracted. All extracted value sets consist of the image feature set, its feature number is deter-
mined by the following expression: 

featureNum S L= ×Ω×  (3)

Since ( , , )DWf s γ θ  is only dependent upon the local varieties γ, θ, and integrals of an image in 
a certain direction V=(sinθ, cosθ) along the line cos sin 0x yθ θ γ+ − = , the DWT not only holds 
the local analysis ability of conventional wavelet transform in spatial and frequency domain, but 
also holds directional analysis ability, these ensure that even if there exist grayness reversal and 
noise in an image, the DWT corresponding to each image feature point is still stable. This indi-
cates that the DWT of an image is a robust image feature.  

In this paper, experimental parameters are chosen as: S={1, 2}, Ω={0, 0.3925, 0.785, 1.175, 
1.57, 1.9625, 2.355, 2.7475}, L=3, so for each image block, the feature number is 48. Therefore 
the number of input neurons in the proposed network is 48. 

The output layer of the network is designed according to the need of the application output. 
Since the output of the neural network is expected to detect and location a special object in image 
sequences, so the number of output neuron is designed as 2, which is expected to produce the row 
and column coordinates of the target. 

Hidden layer automatically extracts the features of the input pattern, and reduces its dimension-
ality further. There is no definite formula to determine the number of hidden neurons. In this re-
search, the following trial-and-error process was used to identify the number of neurons in the 
single hidden layer: 

First, the initial neurons number in hidden layer is given by an empirical equation: 

α++= OIh  (4)

Where h is the number of hidden layer, I and O are the numbers of the input layer and output 
layer respectively, α is a constant and ∈α [1,10]. Then the number is updated based on experi-
ment results. 

By use of the results of the experimental analysis described above, the number of hidden units 
was determined to be 10 units. 

Object Location and Track in Image Sequences by Means of Neural Networks

GLOBAL INFORMATION PUBLISHER 277



Thus, the numbers of units in the input, hidden, and output layers were 48,10 and 2, respec-
tively. 

2.2  Object Location and Track by BP Neural Network 

To locate and track an object in image sequences based on the neural network designed above 
include two stages  (As shown in figure 1): 

 

Fig. 1. Location and track an object in image sequences by BP networks 

(1)  BP Neural Network Learning 

In the learning process, we first produce distorted images of an object image to form a training 
image set. Then DWT is used to extract these images features, and form training data. Subse-
quently, the training data is processed through input layer, hidden layer and output layer (called 
forward propagation). The output of hidden layer and that of output layer are: 

  
48

1

( ) ( 1, 2,...,10)j ij i
i

b f W a jθ
=

= • − =∑  (5)
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Where bj denotes the jth output of hidden layer, Wij represents the connection weight from node 
i of input layer to node j of hidden layer, ai denotes the ith input of input layer, θ denotes the 
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threshold of hidden layer, c represents the output of output layer, Vj represents the connection 
weight from node j of hidden layer to hidden layer, γ denotes the threshold of output layer. 

The status of neurons in every layer affects status of neurons in the next layer only. If there is 
an error between the desired output and the actual output, i.e., the network does not produce the 
desired output, then the backward propagation begins, which tends to feedback the error and ad-
just the weight values for each layer. Errors between the desired output and the actual output are 
calculated by 

  21 ( )
2 k kE y c= −∑  (7)

Where yk denotes the desired output of the kth sample, and ck denotes the actual output of the kth 
sample. The BP algorithm adjusts the weight values for each layer in the steepest descent direction, 
which can be shown as followings: 

     )()1( nWanW ijiiij Δ+=+Δ αηδ  (8)

Where η is the learning rate, α is a flat factor and belongs to (0, 1), iδ denotes the correction 
error of each node, ai is the ith input value. 

The whole process is repeated for each of the sample cases, then back to the first case again, 
and so on. The cycle is repeated until the overall error value drops below some pre-determined 
threshold. 

(2)  Location and Track an Object in Image Sequences 

Once the BP network is trained, it can be used for positioning an object in image sequences di-
rectly. This stage is carried out by comparing template features with features extracted from sub-
images of each frame image according to the following procedures: Each frame of image se-
quences is divided into small image blocks according to the reference object image size firstly, 
where the block is shifted pixel by pixel inside the scan area. Then image features of these image 
blocks is extracted by DWT and fed to the trained BP network, then forward propagation is done, 
the process looks for the correspondences that match each region to the most similar one, a 
threshold on the match quality is used to determine whether the object is present in a given frame.  

Since the successive image sequences do not differ much due to the high temporal sampling 
rate, poison of target between adjacent images do not differ significantly. In order to improve 
computational speed and to reduce computational cost, the position information of the target ob-
ject in previous images is used to predict the position of the target object in the current image in 
our research. We first predict the current position of the target object based on a trajectory com-
puted from 3 previous image sequences, and construct a plausible bounding box centered at this 
position. Next, we find all threshold network responses from the trained BP networks. If there is a 
strongest response from the network in some a spatial location, we choose that location as the 
candidate position for detection and location the target object. Otherwise, we use the location 
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predicted from previous image sequences as the candidate position for detection and location the 
target object. Especially for the later case, if the object has not be found in several successive 
frames, then the object is lost, and object detection can be given up. The number of images that 
the network waits before giving up detecting the object depends on how long the object has suc-
cessfully been followed. Thus the network can detect and locate an object that is hidden from view 
for a substantial time period. 

3  Experiments 

3.1  Materials 

For the BP neural network is trained in a supervised manner, so the desired output for every train-
ing pattern must be included in dataset. In our research, 12 traffic image sequences are adopted as 
dataset, which are downloaded from the website of Group Prof. Dr. H.-H. Nagel[17]. These image 
sequences contain the variations in the background and target illumination and in the scene con-
tent and included various types of traffic object of various appearance and sizes. 

All experiments were done on a standard 1.8GHz PC with 256 MB RAM and MATLAB 6.5. 

3.2  Training 

For selecting the training object images for the proposed neural network, we classified objects 
images into several groups based on the visual appearance of patterns in terms of appearance, size, 
contrast, and background. We selected one images from each group, and obtained ten typical ob-
ject images. We trained the neural network with the ten object images as teaching images and with 
eight out of twelve image sequences as training cases. The sizes of the train region in the teaching 
image were 16ⅹ16 pixels. The slope of the linear function of the output units of the neural net-
works, and the learning rate for training the neural networks were 0.01 and 0.001, respectively. 
With the parameters above, the training of the neural networks used in this paper required a CPU 
time of 16.5 hours on the workstation mentioned above. After training, the trained neural network 
was applied to the entire database to obtain scores for all images. The time for applying the trained 
neural network to object location and tracking was negligibly small (as shown in table 1). 

3.3  Evaluation 

This section consists of three parts. First, we perform experiments testing the effectiveness of the 
proposed method, then we present experiments to test the generality of the proposed method, and 
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lastly, we present results comparison to other approaches to evaluate the computational perform-
ance of the proposed method.  

Figure 2 shows the track process of a gray car in a cluttered scene, which has been used as a 
training case in our research. The detected region is shown surrounded by rectangular bounding 
boxes. From the figure, it can be seen that the proposed neural networks works very well, even in 
the case that the car significantly overlapped with other ones (e.g. figure 2(b)). 

 

   
(a)                                                                       (b) 

   
(c)                                                                        (d) 

Fig. 2. The track process of a gray car in a cluttered scene 

 To investigate the generalization ability (performance for non training cases) of the proposed 
neural networks method, we evaluated its performance with non training cases alone. Figure 3 
illustrates the track process of a white microbus in a cluttered scene, which is obtained by a still 
camera. In this example, the object turns over the road and its shape and size changes gradually 
through the sequence as it moves further away from a viewer view point. As can be seen, Even 
though the microbus changes in pose occur, it is robustly detected and located. 
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(a)                                                                            (b) 

     
(c)                                                                            (d) 

   
(e)                                                                             (f) 

Fig. 3. Detection and location a microbus in a nontraining image sequences while it turns over and changes 
its size and shape 
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We also compared the computational performance of the proposed method with the classical 
template matching method and Hopfield neural networks based method [15]. Figure 4 shows the 
tracking trace using template matching method and our proposed method respectively, which is 
correspondence to the video shown in Figure 3. From figure 4, it can be seen that the value of 
coordinate y of the tracking trace obtained by the proposed method is closer to the true trace than 
that of the classical template matching method. 

 

Fig. 4. The tracking trace using different methods 

Table 1. Comparison of computational performance 

Method Average   time to process a frame Location ration  

Template matching 0.0291 sec. 85% 

Hopfield Neural networks 

based method 

0.0056 sec. 95% 

Proposed method 0.0044 sec. 96% 
 
Table 1 shows the average location ration for all frames of the image sequences used in figure 3 

and the average per-frame processing time for a frame size of (160×120) using different methods. 
From Table 1 we can see that the neural networks (e.g. Hopfield neural network and neural net-
work used in our study) based methods had almost the same high location ration, which was 95% 
and 96%, respectively, while the location ration of template matching based method was very 
lower compared with that of them, only 85%. The average time of template matching based object 
location method and Hopfield neural network based method was 0.0291 seconds and 0.0056 re-
spectively, and that of the proposed method in this paper is only 0.0044 seconds. The results 
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clearly indicate that the performance of object location method proposed in this paper is superior 
to other ones. 

4  Conclusions 

In this paper, we described an efficient and novel approach for detecting and track an object in 
image sequences based on BP neural network, where a threshold on the match quality is used to 
determine whether or not the object is present in a given frame. In order to simply the network 
structure, DWT is used for extracting image features. By DWT, the size and dimensionality of the 
input pattern can be reduced. At the same time, in order to improve the computation speed of the 
method, position information of the target in previous frames is used to predict the position of the 
target in the current frame. Experimental results indicate the efficiency and the effectiveness of the 
proposed method. 

Unlike many methods using the low-level features of the video frames, the proposed method is 
not sensitive to the small change in luminance. Moreover, it has high precision as shown in our 
experiments. 

But it should be noticed that training of the proposed neural network took a long time, i.e., 
about 16.5 hours for each pattern. There are many methods [18]-[19] for accelerating the conver-
gence speed of the BP algorithm. These methods can be applied to our modified BP algorithm, 
and the time for training can be shortened. It should also be noticed that training with our pro-
posed neural networks method may be trapped at local minima, because our modified neural net-
works was based on the standard BP algorithm. Therefore some effective amelioration for it must 
be done. There are many methods [20]-[21] for avoiding local minima for the BP algorithm. By 
use of these methods, the performance of the proposed neural networks might be improved by 
avoiding possible local minima and this will be discussed in our other papers in future. 
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