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Rationale and Objectives. A computerized scheme for automated detection of lung nodules in low-dose computed to-
mography images for lung cancer screening was developed.

Materials and Methods. Our scheme is based on a difference-image technique for enhancing the lung nodules and suppress-
ing the majority of background normal structures. The difference image for each computed tomography image was obtained by
subtracting the nodule-suppressed image processed with a ring average filter from the nodule-enhanced image with a matched
filter. The initial nodule candidates were identified by applying a multiple-gray level thresholding technique to the difference
image, where most nodules were well enhanced. A number of false-positives were removed first in entire lung regions and sec-
ond in divided lung regions by use of the two rule-based schemes on the localized image features related to morphology and
gray levels. Some of the remaining false-positives were eliminated by use of a multiple massive training artificial neural net-
work trained for reduction of various types of false-positives. This computerized scheme was applied to a confirmed cancer da-
tabase of 106 low-dose computed tomography scans with 109 cancer lesions for 73 patients obtained from a lung cancer screen-
ing program in Nagano, Japan.

Results. This computed-aided diagnosis scheme provided a sensitivity of 83% (91/109) for all cancers with 5.8 false-posi-
tives per scan, which included 84% (32/38) for missed cancers with 5.9 false-positives per scan.

Conclusion. This computerized scheme may be useful for assisting radiologists in detecting lung cancers on low-dose
computed tomography images for lung cancer screening.
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Low-dose helical computed tomography (LDCT) screen-
ing is regarded as one of the most promising techniques
for early detection of lung cancer (1–5). It has been re-
ported that CT images are superior to chest radiographs
for detecting peripheral lung cancers (1). However, it is a
difficult and time-consuming task for radiologists to de-
tect subtle lung nodules in a large number of CT slices
for lung cancer screening. Thus, a computer-aided diag-
nostic (CAD) scheme would be useful in assisting radiol-
ogists for cancer screening by using LDCT.

A number of investigators (6–14) have attempted to
develop CAD schemes for computerized detection of lung
nodules by using various methods and techniques. In an

early attempt, Yamamoto et al (6) developed a CAD sys-

617



ARIMURA ET AL Academic Radiology, Vol 11, No 6, June 2004
tem in lung cancer screening with LDCT based on a mor-
phologic filter (Quoit filter), and with this technique Jiang
et al (7) reported 100% sensitivity with 0.14 false-posi-
tives per slice for 82 cases (2,160 slices), including 21
cancers. Ukai et al (8). developed a prototype CAD sys-
tem for automated detection of suspicious regions from
LDCT images by using a fuzzy clustering method and
reported a sensitivity of 95%, although the number of
false-positives was not reported. Armato et al (9,10) re-
ported a computerized method for detection of lung nod-
ules in helical CT scans based on 2-dimensional and 3-di-
mensional analyses of the image data. Armato et al (11)
evaluated the performance of the CAD system for a data-
base of LDCT scans with 38 cancers missed in a screen-
ing program; the CAD system correctly detected 84% of
all cancers with 1.0 false-positive per slice. The database
used by Armato et al (11) was a subgroup of our database
used for this study. Wormanns et al (12) reported the
evaluation of a CAD workstation with an automatic de-
tection algorithm of pulmonary nodules with LDCT in a
clinical setting for early detection of lung cancer; the sen-
sitivity for 88 CT examinations was 38% with about 5.8
false-positives per scan. Recently, Gurcan et al (13) re-
ported a preliminary evaluation of a CAD system for lung
nodule detection on helical CT images; with their scheme
based on weighted k-means clustering segmentation, the
sensitivity was 84% with 1.74 false-positives per slice.
Brown et al (14) developed an automated system for de-
tecting lung micronodules on thin-section CT images
based on 3-dimensional segmentation by use of a model
of lung nodules and intrathoracic anatomy; they reported
a sensitivity of 100% for nodules (�3 mm in diameter)
and 70% for micronodules (�3 mm) with 15 false-posi-
tives per scan. However, further efforts would still be
required for development of CAD systems for lung cancer
screening by use of LDCT with a higher sensitivity and a
lower number of false-positives per scan.

Our purpose in this study was to develop a computer-
ized scheme for automated detection of pulmonary nod-
ules in LDCT scans for lung cancer screening. Our CAD
scheme was based on a difference-image technique (15–
17) developed for enhancing nodule-like objects in chest
radiographs, and then selecting initial nodule candidates.
Because the purpose of lung cancer screening is to find
cancers as early as possible, we used a confirmed cancer
database including “missed” cancer scans obtained from a
lung cancer screening program for development and test-

ing of the CAD scheme.

618
MATERIALS AND METHODS

Database

A database of 106 LDCT scans used for this study was
acquired on a mobile LDCT scanner (CT-W950SR; Hita-
chi Medical, Tokyo, Japan) from 73 lung cancer patients
obtained in a lung cancer screening program in Nagano,
Japan (1996–1999) (2,18). All scans were acquired ac-
cording to a low-dose protocol at a tube voltage of 120
kV, a tube current of 25 mA or 50 mA, 10 mm collima-
tion, and a 10 mm reconstruction interval at a helical
pitch of two. The number of CT slices per scan used for
this study was 31 or 33, and this database included 3,292
slices. Each image was 512 � 512 pixels with a pixel
size of 0.586 mm or 0.684 mm, and the number of gray
levels was 4,096. Each of the 73 patients whose screening
CT data were used in this study had at least one cancer.
All cancers were intrapulmonary and were subsequently
confirmed to be lung cancers on the basis of results of
biopsy or surgery. We excluded cancers larger than 30
mm, and also central cancers, which are endobronchial
tumors in or proximal to a segmental bronchus, from an
original Nagano database (18).

Because the lesions of 26 cancers had been “missed”
one or more times in the screening program, the database
included one or more scans for the same patients. This
database of 106 scans with 109 confirmed cancers con-
sisted of 68 scans for 68 patients with 71 cancers, which
were prospectively detected by radiologists, and also 38
scans for 31 patients with 38 cancers, which were retro-
spectively identified and considered “missed” because of
detection error or interpretation error during clinical inter-
pretation (18). Twenty-three missed cancers identified as
detection errors were not mentioned in the radiologists’
reports, and 15 cancers identified as interpretation errors
were reported, but misinterpreted. This database also in-
cluded 22 other nodules, ie, 13 benign nodules confirmed
by follow-up diagnostic CT examinations, eight suspi-
cious benign nodules, and one suspicious malignant nod-
ule, where suspicious nodules were based on agreement
between two radiologists, but not confirmed by surgery or
follow-up CT examinations. Figure 1 shows the distribu-
tions of nodule sizes (effective diameters) for the 71 de-
tected cancers ranging from 6 mm to 24 mm with a mean
of 14 mm, and 38 missed cancers ranging from 6 mm to
26 mm with a mean of 12 mm. The 131 nodules were
found in 226 slices of a total of 3,292 slices, with some
of the nodules existing in several slices. If we would in-
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clude all slices for evaluation, it would become difficult
to summarize the overall performance because there
would be a mixture of results yielding some “true” posi-
tives and some “false” negatives in several slices for one
nodule. Therefore, for the purpose of designing rules and
evaluating computer detections of nodules in this study,
we manually selected one representative CT slice with the
largest nodule diameter for each nodule, but we excluded
99 nodules on 99 other slices; this is because the perfor-
mance of our scheme would be evaluated adequately as
long as one nodule in one of the slices would be detected.
Consequently, the number of slices, where each nodule
existed in one slice, was 127, because four slices included
two nodules.

Overall Scheme
Our overall scheme for automated detection of pulmo-

nary nodules on LDCT images is shown in Fig 2. Our
CAD scheme is based on a difference-image technique
(15–17), by which structures similar to nodules were en-
hanced, and most of the background normal structures
such as small vessels or background noise were sup-
pressed. In this scheme, at first, the left or right lung re-
gion was segmented by use of linear discriminant analysis
(LDA) (19) on the histogram of CT values for the entire
body region, which usually have two main peaks in histo-
grams for lung regions and other tissue regions. By use of

Figure 1. Distributions of nodule sizes for missed cancers and
detected cancers in the lung cancer database used in this study.
LDA, a threshold CT level was automatically determined
for dividing the histogram of the entire body region, lung
regions were then segmented. The morphologic operation
(closing operation) was applied for smoothing the outline
of the segmented lung, and an image restoration tech-
nique (20) by use of the lung outline (filling in the entire
region within the outline) was applied sequentially to the
initially segmented lung for filling in holes in the seg-
mented lung. If the area of the segmented lung was
smaller than 450 mm2, which was determined empirically,
the slices with the smaller lungs were not applied for the
subsequent processing. Each CT slice image was pro-
cessed by two different filtering operations, namely, one
for enhancement of nodules by use of a matched filter (8
mm nodule shape) and the other for suppression of nod-
ules by use of a ring average filter (13 mm outside diam-
eter, 0.6 mm width) (17). The difference image was then
obtained by subtracting the nodule-suppressed image from
the nodule-enhanced image. The effect of using the dif-
ference-image technique is shown in Fig 3, which depicts
an original CT image with a missed cancer (detection
error) overlapped with pulmonary vessels, and the corre-
sponding difference image, where the cancer was well
enhanced and small vessels were suppressed. The initial
nodule candidates were selected on the difference image

Figure 2. Overall scheme for computerized detection of pulmo-
nary nodules on LDCT images based on a difference-image tech-
nique.
by use of a multiple gray-level thresholding technique.
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Next, regions of the nodule candidates were determined
by monitoring the morphologic features with a region-
growing technique. The false-positives among the candi-
dates were reduced by applying the two rule-based
schemes, first on the entire lung regions and second on
divided lung regions. Finally, to further remove a number
of false-positives, we separately applied two different
classifiers, ie, a pattern-classification technique based on
an artificial neural network (ANN), which is called a
massive training artificial neural network (MTANN) (21–
24), and LDA. By comparing the free response receiver
operating characteristic (FROC) curves obtained by the
two classifiers, we examined the usefulness of these clas-
sifiers.

Identification of Initial Nodule Candidates
Multiple gray-level thresholding was applied to the

difference image for identification of initial nodule candi-
dates (17). The pixel values above a given threshold level
correspond with specific upper percentage of the area un-
der the histogram. Each threshold level was determined
according to a certain specific percentage of the area un-
der the pixel-value histogram in the difference image
from the high end of the histogram. Usually, the pixel
values of nodules in the difference image are located at
the high end of its histogram (the portion of the histo-
gram closest to the highest pixel value). Therefore, we
selected, empirically, specific percentages of 3% and 27%
as the beginning and ending percentage threshold levels,
respectively, with an increment of 3%. The regions in the

Figure 3. An original CT image with a m
parallel vessel, and the corresponding diff
difference image above a certain threshold value were
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called “islands.” Islands with effective diameters smaller
than 3 mm were excluded because the effective diameters
of all cancers used in this study were larger than 6 mm,
and the number of cancers less than 6 mm, which can be
identified on LDCT images as “true” cancers, is generally
very small (25), as will be addressed in the Discussion
section. At the first percentage threshold level where each
island emerged (referred to as “starting percentage thresh-
old level”), the effective diameter and degree of circular-
ity for the island were determined for selection of initial
nodule candidates, because most of the nodules in the
difference image are enhanced as being round, and the
enhanced non-nodules (such as large vessels parallel to
the cross-section) are not round and are larger than the
nodules. A candidate selected at a starting percentage
threshold level would not be examined again at the subse-
quent percentage threshold levels. The effective diameter
of a candidate was defined by the diameter of a circle
with the same area as that of the candidate. The degree of
circularity was defined by the fraction of the overlap area
of the circle with the candidate area. Note that nodules
with various sizes and circularities tend to be picked up at
low percentage threshold levels, whereas nodules with
small size and large circularity tend to be picked up at
high percentage threshold levels, as will be shown later.
Thus, we designed the initial rule for picking up the nod-
ule candidate at each starting percentage threshold level,
for removal of some false-positives, if the circularity was
lower than a certain threshold, and/or the size was larger
than a certain threshold, as will be illustrated later. If the

cancer partially overlapped with small
e image.
issed
erenc
feature values of the island satisfied the initial rule for
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picking up the nodule candidate at one of the starting per-
centage threshold levels, the island was considered an
initial nodule candidate. Ten one-feature and one two-
feature rules were determined for the initial pick-up of
candidates.

Determination of Candidate Regions
To obtain the image features of the candidates for sub-

sequent rule-based schemes, the candidate regions were
determined by applying the region growing technique to
the difference image and monitoring the morphologic im-
age features (17). The region growing started at the loca-
tion where the pixel value was a maximum in the area of
the candidate, and was performed at various gray levels,
which were decreased from each previous gray level with
a decrement of a pixel value of 5 for low-contrast candi-
dates or a pixel value of 10 for high-contrast candidates.
The contrast was estimated for the purpose of determining
a high or low contrast from the maximum pixel value in
the candidate region on the initial identification of a nod-
ule candidate (ie, whether the maximum pixel value was
higher or lower than a specific pixel value), because pixel
values on the background in the difference image were
almost zero, and the maximum pixel value was very close
to the contrast. At each gray level, the grown region of
the candidate was quantified by the morphologic image
features, ie, the effective diameter, circularity, and irregu-
larity. The degree of irregularity was defined by 1–(P/N),
where P is the perimeter of the circle and N is the length
of the candidate outline. At a certain gray level, the effec-
tive diameters or the irregularity of many candidates
tended to increase rapidly, but the circularity decreased
steeply. This abrupt change in the size and shape of the
candidate indicated that the candidate island merged with
its surrounding background structures after that gray
level. Therefore, at this transition point, the candidate
regions and morphologic image features were determined.
The transition point was defined at the gray level when
the circularity decreased by more than 0.15 or when the
irregularity or effective diameter increased by more than
0.20 or 5 mm, respectively. If the transition point was not
detected, the candidate regions were determined when the
circularity decreased below 0.6 or when the effective di-
ameter increased above 10 mm. For the candidate for
which the change did not occur, the candidate regions
were determined at the last grown region, which was de-

termined by region growing at a threshold value of 200.
Removal of False Positives by Two Rule-based
Schemes

Two rule-based schemes were applied for removal of a
number of false-positives first in the entire lung regions
and second in the divided lung regions (inside and outside
regions). In the first rule-based scheme for the entire lung
regions, we determined the contrasts of the candidates on
the difference image and original image, the standard de-
viation (SD) and contrast of pixel values in the outer re-
gion of candidate on the original image as well as the
morphologic features, ie, the effective diameter, circular-
ity, and irregularity of the candidate region as described
above. The outer region of the candidate, where the SD
and contrast were calculated, was defined as the outer
region with a width of 3 pixels obtained from the candi-
date region by use of dilation of the morphologic filter
with a 5-point kernel (four neighbors with a point of in-
terest). The contrast used in this study was defined as the
difference between the maximum pixel value and the
minimum pixel value within a specific region (eg, the
segmented candidate region or the outer region of a can-
didate region). The SDs and contrasts in the outer regions
for candidates such as branching points of parallel vessels
can be greater than those for nodules. The maximum
pixel value of the candidate was obtained as the average
pixel value in an area of 3 � 3 pixels over the pixel with
the maximum value of the candidate. For determining the
contrast on the original image, the pixel with the maxi-
mum value was searched in an area of 11 � 11 pixels of
the original image, centering the pixel with maximum
value in the candidate on the difference image.

In the second rule-based scheme, respective rules
based on localized image features obtained from nodule
candidates were established in divided lung regions for
removal of the remaining false-positives. Each lung was
divided into an outside region and an inside region, as
shown in Fig 4a, because we believe that the characteris-
tics (ie, image features) of false-positives in the outside
region would be different from those in the inside region.
For example, in the outside region, the effective diameters
of vessels tended to be smaller or larger than those of the
nodules. Therefore, we can remove some false-positives
by selecting each rule in each region. The outside region
and inside region in the lung were obtained by applying
erosion of a morphologic filter with a circle kernel (10
mm diameter) to the segmented lungs, where the width
(10 mm) of the outside region was determined empirically
by observation of the effective diameter of vessels on the

CT images. To analyze the localized image features of
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candidates, inside and outside regions for the candidate
were obtained as shown in Fig 4b. The width of the out-
side region of the candidate obtained by use of dilation of
the morphologic filter was 5 mm, where the appearance
of nodules was different from that of vessels, especially
parallel vessels. Because the pixel value distributions in
the inside or outside region for some false-positives such
as parallel vessels were different from those of the nod-
ules, such false-positives could be distinguished from the
nodules. Localized features calculated for the inside and
outside regions of the nodule candidate were the average
pixel value, full width at half maximum of the gray-level
histogram, full width at tenth maximum of the gray-level
histogram for the inside and outside regions, and the
overlap area of gray-level histograms between the inside
and outside regions, referred to as an overlap measure
(26). In addition, the cross-correlation value between the
difference image and the original image was obtained for
eliminating the false-positives whose morphologic appear-
ance on the difference image changed from that on the
original image; however, the morphologic appearance of
most nodules did not change appreciably. All of these
features except the cross-correlation value were calculated

Figure 4. (a) Outside and inside regions in a lung used for de-
termination of localized image features; (b) outside and inside re-
gions of nodule candidate for determination of localized image
features.
in the original images.

622
False-positive Removal by use of Multi-MTANN
or LDA Classifier

To reduce the false-positives of the nodule candidates
in the final stage of the CAD scheme, the LDA classifier
has commonly been used (11,13). Recently, a pattern-
classification technique based on an ANN, the MTANN
(21–24), was developed for removal of various types of
false-positives produced by a CAD scheme developed by
Armato et al (11). In our scheme, as a classifier, we ap-
plied the MTANN and the LDA separately, and we eval-
uated the overall performance shown by use of FROC
curves, which were determined by changing the threshold
for the multi-MTANN score or the LDA score. Finally,
we examined the FROC curves obtained by MTANN and
LDA, and the sensitivities at the same number of false-
positives.

The MTANN consists of a modified multilayer ANN,
which is capable of operating directly on the original im-
age. The MTANN was trained by use of a large number
of subregions extracted from input images together with
the teacher images containing the distribution for the
“likelihood of being a nodule.” The output image was
obtained by scanning an input image with the MTANN.
The distinction between a nodule and a non-nodule was
made by use of a score that was defined from the output
image of the trained MTANN. The multi-MTANN for
eliminating various types of non-nodules consisted of plu-
ral MTANNs that were arranged in parallel. Each
MTANN was trained by use of the same nodules but with
a different type of false-positives, such as various sized
vessels, and acted as an expert to distinguish nodules
from a specific type of false-positive. The outputs of the
MTANNs were combined by use of the logical AND op-
eration so that each of the trained MTANNs did not elim-
inate any nodules, but removed some of the various types
of false-positives. In this study, 15 MTANNs were con-
figured, and the multi-MTANN was trained with 10 nod-
ules (true-positives) obtained from nine scans (nine pa-
tients) and 150 false-positives from 51 scans (45 pa-
tients), which were produced by the second rule-based
scheme with the missed cancer cases. All cases, including
the training cases, were used for determining the FROC
curve which indicates the overall performance of our
CAD scheme using the multi-MTANN. Note, however,
that the FROC curve obtained without the training cases
was very similar to that obtained with all cases, where the
sensitivities at 0.28 false-positives on two FROC curves
were almost the same, as will be shown later in the Dis-

cussion section.
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In our scheme, 18 image features can be used for the
LDA, but some of the features were insignificant. To se-
lect the most effective image feature combination for sep-
arating the remaining candidates into the true-nodules and
false-positives by use of a linear discriminant function,
we determined the ROC curve for distinction between
nodules and false-positives by using all data of true-posi-
tives and false-positives, and also used a stepwise method
based on Wilks’ lambda, which is defined by the ratio of
within-group variance to the total variance (27), and the F
value, which is a cost function based on Wilks’ lambda.
In the stepwise method, each feature was added or re-
moved one-by-one by use of two thresholds on the F
value, one for removal and another for addition (28), and
the Az value, ie, the area under ROC curve, for each
combination was computed for selection of the most ef-
fective feature combination with the highest Az value.
Consequently, the final combination consisted of a start-
ing percentage threshold level, effective diameter on the
difference image, circularity on the difference image, SD
of pixel values in the outer region of the candidate on the
original image, overlap measure, average pixel value in
the inside region, and full width at tenth maximum in the
inside region. For determining the FROC curve of the
CAD scheme using the LDA, a round-robin method per-
patient basis (or leave-one-out-by-patient) was used. With
this method, all candidates except for those obtained from
the same patient were used for training, and candidates
left out were used for testing the linear discriminant func-
tion. This procedure was repeated for all candidates, so
that each candidate was used once as a test candidate.

RESULTS

Our computerized scheme for nodule detection in
LDCT images was applied to a cancer database of 106
scans (total number of slices, 3,292) with 131 nodules
including 71 detected cancers and 38 missed cancers. As
a result of lung segmentation, 524 of the 3,292 slices with
small lung areas were excluded before use of the differ-
ence-image technique. Therefore, the number of CT im-
ages calculated for nodule detection processing in this
database was 2,768, where the numbers of slices with and
without nodules were 226 and 2,542. As shown in Figure
3, the missed cancer on the difference image was en-
hanced compared with that on the original image, and the

small vessels adjacent to the nodule and background noise
were suppressed. However, some of the large parallel ves-
sels, vertical vessels, and lung edge regions were also
enhanced, and were included as false-positives in the ini-
tial nodule candidates. Because the difference-image tech-
nique was basically equivalent to a band-pass filter for
enhancing the nodule-like objects, the vessels and lung
edges were also enhanced with the filter.

Figures 5a and 5b demonstrate the initial pick-up rules
in the relationship between the effective diameter and the
circularity at starting threshold levels of 3% and 6%, re-
spectively. These data for nodules and false-positives
were obtained for determination of the initial pick-up
rules from CT slices with 131 nodules by eliminating the
candidates with the effective diameters smaller than 3
mm. The minimum circularity rule for the nodules in-
creased from 0.6 to 0.8 with an increase in the percentage
threshold level. At a 15% threshold level, the minimum
circularity rule for the nodules was 0.9. On the other
hand, the circularities of false-positives were frequently
lower than those of nodules at each percentage threshold
level, and the effective diameters of some false-positives
were larger than those of the nodules. Therefore, by using
the cut-off rules of the circularity and the effective diame-
ter by the dashed lines shown in Figure 5, we removed a
number of false-positives at each percentage threshold
level and picked up initial nodule candidates. Because, as
a result, the number of nodules which emerged at high
percentage threshold levels of 18%, 21%, 24%, and 27%
was only one, all nodule candidates at these levels were
removed, and we examined nodule candidates only at
percentage threshold levels of 3%, 6%, 9%, 12%, and
15%. After the initial pick-up of candidates, the two rule-
based schemes were applied for removal of false-positives
among the initial nodule candidates. Figure 6 shows one
of the rules used in the first rule-based scheme in the re-
lationship between the contrasts of nodule candidates on
the original image and the difference image. Although
“large” parallel vessels, vertical vessels, and lung edge
regions were also enhanced, the contrasts of some false-
positives such as “small” parallel vessels were suppressed
on the difference image. Consequently, the difference be-
tween the contrasts of such false-positives in the original
image and the difference image was greater than that of
nodules. Thus, many false-positives were removed by the
rule, as shown by the dashed line in Figure 6. Figure 7
shows one of rules used in the second rule-based scheme
in the relationship between the effective diameter and the

overlap measure, which is the overlap area between histo-
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Figure 5. Relationship between the effective diameter and the circularity of
nodules and false-positives (detected in the 127 slices with 131 nodules) at
threshold levels of 3% (a) and 6% (b). Closed and open circles represent
missed cancers and detected cancers, respectively, whereas small pluses rep-
resent false-positives. Rules are indicated by dashed lines.
624
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grams of the inside and outside regions for nodule candi-
dates. These data were obtained in the inside regions of
the divided lung regions. At each effective diameter, the
overlap measures of some false-positives were greater
than those of nodules. In the case of the candidates such
as the branching point of parallel vessels, because the
vessels extended from the inside region of the candidate
to the outside region, the pixel-value histograms of the
inside region for the branching point candidates were
largely overlapped with those of the outside region com-
pared with those of the nodules.

The sensitivity for all nodules and the number of false-
positives per scan in the computerized detection of lung
nodules at various steps are summarized in Table 1. The
detection sensitivity for all nodules decreased from 93%
to 81% with the three steps of false-positive removal,
whereas the number of false-positives per scan was
greatly decreased by each step. In the two rule-based
schemes for false-positive removal, the number of false-
positives per scan for all nodules decreased by 92% (316/

Figure 6. Relationship between the cont
127 slices with 131 nodules) on the origin
and open circles represent missed cancer
whereas small pluses represent false-posi
343). Figure 8 shows the FROC curves for the overall
performance of our scheme by use of multi-MTANN or
LDA. The sensitivity with LDA gradually decreased with
a decrease in the number of false-positives, whereas the
sensitivity with multi-MTANN remained constant until
the number of false-positives per slice was reduced to
0.22 for all cancers or 0.28 for all nodules. Our scheme,
by use of multi-MTANN or LDA, provided a sensitivity
of 81% or 67% for all nodules, respectively, with 0.28
false-positives per slice. Therefore, multi-MTANN would
be more appropriate for false-positive removal than LDA.
Finally, 73% (19.7/27.0) of the remaining false-positives
per scan were removed by using the multi-MTANN. As a
result, our CAD scheme achieved a sensitivity of 83%
(91/109) for all cancers with 5.8 false-positives per scan,
and 81% (106/131) for all nodules with 7.3 false-positives
per scan. The 84% (32/38) of missed cancers and 83%
(59/71) of detected cancers were detected correctly with
5.9 and 5.8 false-positives per scan, respectively. Further-
more, it may be important to note that our CAD scheme
detected 17 (74%) of 23 missed cancers, which were not

of nodule candidates (detected in the
ge and the difference image. Closed
detected cancers, respectively,
Rule is indicated by dashed line.
rasts
al ima
s and
tives.
mentioned in radiologists’ clinical reports.
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DISCUSSION

Recently, Suzuki et al (23) applied the MTANN to the
results obtained from a computerized scheme by Armato
et al (11) by use of a database of 63 LDCT scans (a part
of our database), where a gray-level thresholding tech-

Figure 7. Relationship between the effec
tween histograms of inside and outside re
127 slices with 131 nodules) in the inside
circles represent missed cancers and dete
pluses represent false-positives. Rules are

Table 1
Sensitivity and Number of False-Positives in Computerized
Detection of Lung Nodules at Various Steps for 131 Nodules

Sensitivity

No. of
FPs Per

Slice

No. of
FPs Per

Scan

Initial pick-up 93% 13.1 343
First rule-based scheme 85% 3.9 103
Second rule-based scheme 81% 1.0 27
Multi-MTANN 81% 0.28 7.3
LDA 67% 0.28 7.3
Note.—FPs � false-positives.
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nique was applied to CT images. The number of false-
positives per scan was improved from 27.4 to 4.8 at a
sensitivity of 80.3%. However, the difference between our
method in this study and the method by Armato et al (11)
was that the difference image technique by our method
can enhance the nodules relative to normal background
including small vessels, and thus the overall performance
with our method without the multi-MTANN has been
improved. For clarification, Table 2 shows the comparison
of the performances together with databases used in this
study and previous studies (11,23). According to Table 2,
for the same database of 50 nodules with 38 “missed”
cancers, our method achieved a sensitivity of 88% with
0.61 false-positives per slice before the multi-MTANN,
and 88% with 1.9 false-positives per scan after the multi-
MTANN, whereas the result by Armato et al (11) indi-
cated a sensitivity of 80% with 1.0 false-positives per
slice before the multi-MTANN, and 80% with 2.2 false-

diameter and the overlap measure be-
of nodule candidates (detected in the

ns of the lung regions. Closed and open
cancers, respectively, whereas small

cated by lines.
tive
gions
regio
cted
indi
positives per scan after the multi-MTANN (23).
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The performance of multi-MTANN was superior to that
of LDA, probably because multi-MTANN can learn various
image features related to morphology and gray level directly
from the images of typical nodules and false-positives, and

Figure 8. FROC curves of our CAD scheme for two databases
(all cancers and all nodules) by use of multi-MTANN or LDA. All
candidates in 2,768 slices were used for determination of this
FROC curve.

Table 2
Comparison of the Performances Together with the Methods a
and Colleagues (11,23)

Current Study with
Missed Cancer Database

Previous
Miss

Databas

Test database 38 scans with 50 nodules
(38 missed cancers
and 12 other nodules)

38 scans
nodule
cance
other n

Training cases for
detection scheme

all cases all cases

Method for detection difference-image
technique

gray-leve

Sensitivity with number of
FPs per slice before
Multi-MTANN

88% with 0.61 FPs per
slice

80% wit
slice (R

Training cases for Multi-
MTANN

10 nodules from 9 scans;
150 FPs from 51 scans
in a large database

10 nodu
from m
databa

Sensitivity with number of
FPs per slice (scan)
after Multi-MTANN

88% with 0.07 FPs per
slice (1.9 FPs per scan)

80% wit
per sli
per sc
works as an image-based ANN filter with nodule enhance-
ment and false-positive suppression to distinguish between
nodules and false-positives. Furthermore, the multi-MTANN
is a robust classifier for unknown cases. Figure 9 shows the
comparison of FROC curves of our CAD scheme with the
multi-MTANN obtained by use of the database with and
without training cases. The FROC curve for the database
without the training cases was similar to that for all cases,
where the sensitivities at 0.28 false-positives on two FROC
curves were almost the same. However, the use of multi-
MTANN requires expertise for selection of typical nodules
and typical false-positives and a considerable central pro-
cessing unit (CPU) time for training (29.8 hours for a
MTANN on a CPU; Pentium IV, 1.7 GHz), although the
CPU time for testing was negligibly small. On the other
hand, because LDA is based on a limited number of image
features related to morphology and gray level, the amount of
information used for LDA would be less than that for multi-
MTANN; nevertheless, LDA is a simple and easily available
classifier for most researchers compared with multi-
MTANN.

Based on the 2-dimensional image features alone, our
CAD scheme achieved a sensitivity of 83% for 109 can-

atabases used in this Study and Previous Studies in Armato

dies with
ancer
ferences
)

Current Results with a
Large Database

Previous Results with a
Database Smaller than
our Current Database

(Reference 23)

50
missed

d 12
les)

106 scans with 71
confirmed cancers and
38 missed cancers
(131 nodules: 109
cancers and 22 other
nodules)

63 scans with 66
confirmed cancers

all cases all cases

sholding difference-image
technique

gray-level thresholding

FPs per
11)

81% with 1.0 FPs per
slice

82% with 1.0 FPs per
slice

0 FPs
d cancer

10 nodules from 9 scans;
150 FPs from 51
scans in a large
database

10 nodules; 90 FPs from
missed can cer
database

8 FPs
.2 FPs
ef. 23)

81% with 0.28 FPs per
slice (7.3 FPs per
scan)

80% with 0.18 F Ps per
slice (4.8 FPs per
scan) (Ref. 23)
nd D

Stu
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cers with 5.8 false-positives per scan, which appears to be
superior to results obtained in recent studies (11–13) in
terms of the number of false-positives, where some false-
positives such as lung vessels were removed by use of
3-dimensional image features. Therefore, by incorporating
3-dimensional image features in our scheme, the number
of false-positives can be reduced further in the future.

Some of the nodules were not detected by our CAD
scheme for two reasons. One was that some of the large
and high-contrast nodules adjacent to the pleura were ex-
cluded during the initial segmentation process of the
lungs. In the future, the initial segmentation process of
the lungs should be improved so that such pleural nodules
can be detected. It should be noted that all nodules with
small size or low contrast were included in the segmented
lungs obtained by use of our current scheme. Another
reason was that some of the small and low-contrast nod-
ules adjacent to or overlapped with the pleura or large
vessels were not enhanced appreciably by use of the dif-
ference-image technique. For detecting such nodules, fur-
ther study will be required for improving the filters used
for enhancement of such nodules.

Recently, multidetector CTs with a thin slice thickness
(eg, less than 2.5 mm or 1.0 mm) have been used for
lung cancer screening, and many smaller nodules have
been detected, compared with thick-slice CT. However,
according to recent findings at the Mayo Clinic (25),
2,792 (98.6%) of 2,832 nodules detected by a multidetec-
tor CT were benign, 40 (1.4%) nodules were malignant,

Figure 9. Comparison of FROC curves of our CAD scheme with
the multi-MTANN obtained by use of the database with and with-
out training cases.
and four (0.14%) cancers were less than 6 mm. More-
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over, only one (0.06%) of 1,735 nodules less than 4 mm
was malignant. Therefore, we believe that, if our scheme
based on the difference-image technique would be applied
to such a database, small parallel vessels and background
noise would be suppressed in the same way as that in
thick-slice CT images, and the number of cancers “unde-
tected” by our CAD scheme would be very small com-
pared with all nodules “detected.” Thus, the clinical im-
plication would be almost the same. Because a large
number of small benign nodules detected by the multide-
tector CT is likely to produce many false-positives with a
computerized detection scheme, whether a multidetector
CT with thin slices should be used instead of thick-slice
CT for early detection of lung cancer in screening pro-
grams is not obvious to us at present, and further investi-
gation would be necessary.

In our scheme, 18 image features related to morphol-
ogy and gray levels were determined, and a large number
of physically understandable and logical rules were de-
signed based on the relationships between image features.
We believe that we were able to use a large number of
rules in this study because we were able to define many
additional features, because the difference image was cre-
ated and because lung regions were divided into two ar-
eas, where rules were established in each region. For ex-
ample, 60% of rules were based on two-feature rules in
the relationship between an understandable image feature,
ie, the effective diameter or the starting percentage
threshold level (related to contrast) and the other image
feature. We selected the useful relationship from many
relationships for false-positive removal. We believe that it
is important to present such new methods and/or new ap-
proaches to show the potential improvement in the perfor-
mance of a CAD scheme. However, the generalization of
a method is almost always a difficult issue in scientific
papers. Although our study is based on a large screening
program, it is still uncertain whether our scheme can per-
form at a level comparable to the result shown in this
study when our scheme might be applied to another large
screening program. Although some modifications would
be necessary in the future for application to a general
population, we believe that our scheme presented in this
study would be useful as a foundation for further devel-
opment. Nevertheless, we believe that a newly developed
CAD system should be tested ideally with a large inde-
pendent database that is different from the training cases.
It should be noted that the performance of our CAD
scheme derived from a consistency test may be overesti-

mated, and the magnitude of the overestimate tends to be
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larger with a complex classifier, as shown by Chan et al
(29). However, it is very difficult at present to secure a
large number of cancer cases for development and evalua-
tion of CAD schemes for detection of lung nodules in CT
images. This is one of the reasons that the Lung Image
Database Consortium (30) has been established by the
National Cancer Institute for creation of a large database
that is available publicly. To our knowledge, our con-
firmed cancer database of LDCT acquired from a lung
cancer screening is currently one of the largest databases
available in this field. However, the number of cancers is
still not adequate for an independent test. Thus, we recog-
nize the need to test our CAD scheme in a clinical envi-
ronment in the future.

In conclusion, we have developed a computerized
scheme based on a difference-image technique for auto-
mated detection of lung nodules in LDCT images for lung
cancer screening. By use of a database with 109 cancers
including 38 missed cancers acquired from a lung cancer
screening program, our CAD scheme achieved a sensitiv-
ity of 83% (91/109) of all cancers with 5.8 false-positives
per scan. Furthermore, 84% (32/38) of all missed cancers
were detected by our scheme with 5.9 false-positives per
scan. Therefore, we believe that this computerized scheme
would be useful for radiologists in detecting lung cancers
on LDCT images for lung cancer screening.
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