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Abstract
Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for

some systemic diseases and some eye diseases. The performances of existing methods

for segmenting small vessels which are usually of more importance than the main vessels

in a clinical diagnosis are not satisfactory in clinical use. In this paper, we present a method

for both main and peripheral vessel segmentation. A local gray-level change enhancement

algorithm called gray-voting is used to enhance the small vessels, while a two-dimensional

Gabor wavelet is used to extract the main vessels. We fuse the gray-voting results with the

2D-Gabor filter results as pre-processing outcome. A Gaussian mixture model is then used

to extract vessel clusters from the pre-processing outcome, while small vessels fragments

are obtained using another gray-voting process, which complements the vessel cluster ex-

traction already performed. At the last step, we eliminate the fragments that do not belong to

the vessels based on the shape of the fragments. We evaluated the approach with two pub-

licly available DRIVE (Staal et al., 2004) and STARE (Hoover et at., 2000) datasets with

manually segmented results. For the STARE dataset, when using the second manually seg-

mented results which include much more small vessels than the first manually segmented

results as the “gold standard,” this approach achieved an average sensitivity, accuracy and

specificity of 65.0%, 92.1% and 97.0%, respectively. The sensitivities of this approach were

much higher than those of the other existing methods, with comparable specificities; these

results thus demonstrated that this approach was sensitive to detection of small vessels.

Introduction
Retinal fundus images are used to diagnose certain eye diseases and some systemic diseases.
Blood vessels are one of the most important components in the retina, and abnormal vessels
can indicate the presence of various diseases such as diabetes, glaucoma, retinopathy, obesity,
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vascular occlusion and hypertension [1]. Observing the morphological characters of vessels
can help a physician to diagnose certain diseases. Manual vessel segmentation in retinal fundus
images is a preliminary step to the clinical diagnosis of such diseases. However, manual seg-
menttation is time-consuming and subjective, and thus, segmentation results are highly depen-
dent on the physician skill [2].

With the development of computer-assisted diagnosis (CAD) [3], segmentation of anatomic
structures is highlighted, including automatic retinal blood vessel segmentation. Various meth-
ods for retinal blood vessel segmentation have been reported And these methods can be divid-
ed into three categories. 1) Methods based on image processing. These methods are traditional
and effective methods. Morphological and/or wavelet transform is a typical technique used in
the methods. Fathi et al. [1] proposed a vessel diameter estimation method to extract blood ves-
sels. Complex continuous wavelet transform (CCWT) was used as a multi-scale vessel en-
hancement operation. Shahbeig et al. [2] proposed a mathematical-morphology-based method
to extract blood vessels, and a morphology function with multi-directional structural elements
was used to extract blood vessels. D. Saleh et al. [4] proposed a histogram-equalization-based
method to extract blood vessels. Kose et al. [5] proposed a circular sampling method, which
sampled pixels in the circular area around the current pixel at a depth relative to the current
pixel’s intensity value to detect blood vessels. 2) Methods based on a kernel function classifier.
These methods are widely used in the image segmentation field. Zheng et al. [6] proposed a
graph-cut method to extract blood vessels. A multi-scale Hessian-based filter was used to en-
hance different widths of blood vessels and a nonlocal mean filter was adopted to suppress
noise. Radial gradient symmetry transformation was used to initialize the graph-cut segmenta-
tion. Xiao et al. [7] proposed a Bayesian model for vessel segmentation with a modified level
set to minimize the energy function. Yin et al. [8] proposed a Bayesian probabilistic tracking
method for vessel boundary point detection. 3) Methods based on artificial neural networks.
These methods are one of the most popular methods to deal with complex problems. V. B.
Soares et al. [9] proposed a supervised Bayesian classification method to extract blood vessels.
Feature vectors were composed by multiple scales of Gabor wavelet transform. T. V. Nguyen
et al. [10] proposed a supervised framework for vessel segmentation; in this method, the near-
est neighbor, decision tree, random forest, support vector machines and Bayesian models were
used to compose a bagging classifier. You et al. [11] divided vessels by size into small and wide
ones, and used radial projection to locate the centerlines of the vessels; then, they used semi-su-
pervised self-training for vessel extraction.

However, in general, small vessels contains more disease information and are of more value
for early preclinical diagnosis [12]. Although the methods mentioned above demonstrated the
effectiveness of main vessel detection, the performance of these methods with small vessels are
limited, because small vessels have fewer pixels and lower vessel-background contrasts than do
main vessels. Keith A. Goatman et al. [13] used retinal photography to detect new vessels, and
it primarily focused on the vessels in the optic disc. Considering the publicly available retinal
image databases, the STARE database contains quality physician updated manual segmenta-
tion results; the database’s second manually segmented results contain much more small vessel
information than the first manually segmented results. Although several studies have investi-
gated small retinal vessel segmentation [14], studies that using the second manually segmented
results to evaluate their algorithms are rare. However, small vessels play an important role in
the clinical diagnosis and may be of great value in diagnosis of blood vessel related diseases in
their early stages.

The goal of this study is to extract small vessel fragments from retinal fundus images and
use these fragments to complement the main vessel structure. This approach considers both
main and peripheral small vessels during retinal image segmentation. We propose a gray-
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voting and Gaussian mixture model (GMM) method to segment the vessels in fundus retinal
images. First, we obtain a vessel-enhanced image by combining a 2D-Gabor filter result with a
gray-voting result. Second, we classify the pixels of the vessel-enhanced image into different
groups using a GMM. The group that contains vessel information is regarded as the prelimi-
nary vessel segmented results. Then, the result of another gray-voting process on the enhanced
image is used to complement the preliminary vessel segmented result. Finally, we use a frag-
ments elimination algorithm to remove the pixels that do not belong to vessel fragments. The
block diagram for the steps of the proposed method is shown in Fig 1.

The remainder of the paper is organized as follows: the method proposed for blood vessel
detection is presented in Section 2; the method to identify the vessel complement is presented
in Section 3; the experimental results and comparison are given in Section 4; and the final con-
clusions are given in section 5.

Proposed Method

Preprocessing
There are red, blue and green channels in an RGB fundus retinal image. The green channel
shows the best background/vessel contrast [9], and its signal noise ratio is higher than the
other channels. In this study, the green channel of a fundus retinal image is used as the input to
the subsequent step in the image preprocessing stage. The green channel can be divided into
the background and the foreground. Optic disk and fovea all belong to background; however,

Fig 1. Block diagram of the proposedmethod.

doi:10.1371/journal.pone.0127748.g001
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an optic disk has a higher mean gray value than that of the entire image, whereas fovea has a
lower mean gray value. The foreground is primarily considered to be a vessel that shows a dif-
ferent gray value in a different region of a retinal image.

1) 2D-Gabor filter. To extract the primary structure of a vessel, the original green channel
of the image is passed through a 2D Gabor filter [9]. The 2D Gabor filter uses a Gaussian kernel
function modulated by a sinusoidal plane wave, which is very sensitive to a retinal vessel be-
cause changes in the gray level between the vessel and the background are shown as a Gaussian
distribution. Designing of the 2D-Gabor filter is accomplished as follows.

First, a continuous wavelet transform Tψ(b,θ,a) is defined as the scalar product of f with the
transformed wavelet ψb,θ,a:

Tcðb; y; aÞ ¼ C�1=2
c hcb;y;ajf i

¼ C�1=2
c a�1

R
c�ða�1r�yðx� bÞÞf ðxÞd2x

ð1Þ

Where the parameters b, θ and a describe the translations, rotations and dilations, respec-
tively: ψ

�
is the complex conjugate of 10°: and Cψ and 10° denote a normalizing constant and

an analyzing wavelet, respectively.
The 2-D Gabor wavelet is defined in formula (2):

cðxÞ ¼ expðjk0xÞexpð�
1

2
jAxj2Þ ð2Þ

The fast Fourier transform is used to implement the 2-D Gabor wavelet transform:

Tcðb; y; aÞ ¼ Cc
�1=2a

Z
expðjkbÞc�^

ðar � ykÞ f^ ðkÞd2k ð3Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

, A = diag[ε−1/2, 1](ε� 1) is a 2×2 diagonal matrix, and k0 is a vector that
defines the frequency of the complex exponential. Next, for each pixel in the retinal image, we
extract the maximum modulus of all orientations based on formula (4):

Mcðb; aÞ ¼ max
y

jTcðb; y; aÞj ð4Þ

where θ in the Gabor wavelet transform spans from 0 to 170° at steps of 10°. In this study,
we set the parameter a to be constant and equal to 3, which was determined by comparing ex-
perimental data. Finally, we obtain the result of 2D-Gabor filteringMψ(b,a) which is denoted
as IGabor in this study, as shown in Fig 2(C), from which it is shown that the primary structure
of the vessel was extracted, and little noise is present in the background.

2) Gray-vote algorithm. Although a 2D-Gabor filter can extract the main vessel structures
in a retinal image, details, especially small vessels, are often lost. To obtain more small vessel in-
formation from the green channel retinal image Igreen, we propose a gray-voting method, which
is described below. Because the gray values of the vessel pixels change dramatically in different
regions, a local gray analysis is necessary. The gray-voting method can enhance small vessels
that have a similar gray level distribution to the background. Parameter k is a gray transition
scale, which is used to obtain the small vessel information from the gray-voting process. For
each pixel, we used a window in size ofm ×m (i.e., m is the pixel number in a row or column),
where the gray value of the center point in the window is denoted as Center(i, j). Comparison is
the value that is used to compare with the other pixels’ gray values in the window. In Eq (6)
below, Neighbor is a set of the other pixels except the center pixel in them ×m window, where
the initial value of Num1 and Num2 is zero; Num1 is the pixel number where the gray value is
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larger than Comparison in them ×m window; and Num2 is the pixel number where the gray
value is smaller than Comparison in them ×m window. Pvote(i, j) is the outcome of the gray-
voting process, and L and N are the maximum and minimum normalization gray values in the

Fig 2. Comparisons of (a) the original green channel retinal image Igreen, (b) the result of the proposed gray-voting algorithm Ivessel, (c) the result of
the 2D-Gabor filter IGabor, and (d) the fusing result Igv.

doi:10.1371/journal.pone.0127748.g002
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m ×m window, respectively. We obtain Pvote(i, j) using Eqs (5)-(8):

Pvoteði; jÞ ¼ Num1 � Lþ Num2 � N ð5Þ

�
Num1 ¼ Num1 þ 1 if Neighbor � Comparison

Num2 ¼ Num2 þ 1 if Neighbor < Comparison
ð6Þ

Comparison ¼ Centerði; jÞ � k: ð7Þ

L ¼ Mmax

ðm2 � 1Þ ; N ¼ � Mmin

ðm2 � 1Þ : ð8Þ

Because this gray-voting algorithm is sensitive to a slight change in the gray-level in the win-
dow, the outcome Pvote(i, j) can detect small vessel structures. Compared to the original green
image, this gray-voting algorithm, as shown in Fig 2(B), enhances small vessel details but also
noise fragments.

3) Image fusion. In the first two sections of this chapter, we obtain the 2D-Gabor result
IGabor and the gray-voting result Ivessel by using a 2D Gabor filter and the proposed gray-voting
algorithm. The 2D-Gabor result IGabor and the gray-voting result Ivessel contain the main vessel
structure and the small vessel information, respectively. To obtain an image with both the
main vessel structure and the details, we fuse IGabor and Ivessel. The fusing result Igv is obtained
by Eq (9):

Igv ¼ IGabor � ð1� IvesslÞ: ð9Þ

As shown in Fig 2(D), the fused image Igv, which shows a significantly smoother back-
ground, has better connectivity than the gray-voting result Ivessel (Fig 2(B)), and contains more
detail than IGabor (Fig 2(C)).

GMM classifier
As shown in Fig 2(D), the fused result Igv may be composed of pixels of both vessels and noise.
Because vessel pixels usually have higher gray-levels than noise, we use GMM [15] to classify
the pixels in the fused result Igv. In this process, GMM is adopted to analyze the gray level dis-
tributions of the pixels in the fused result Igv. First, we apply the K-means clustering method to

calculate the K centers μi (m = 11) and the variances k = −3 (L ¼ Mmax
ðm2�1Þ) of the pixels, which are

used to initialize the Gaussian mixture distributions. Then, each distribution is labeled with a
weight as specified below. The expectation of GMM is represented by Eq (10):

N ¼ Mmin

ðm2 � 1Þ ; ð10Þ

wherem2 is the number of pixels to be classified; andMmax,Mmin andm ×m describe the
weight, mean and variance of the ith Gaussian distribution, respectively. Next, the EM algo-
rithm is used to obtain the maximum likelihood estimate of the GMM parameters, including
the weights, means, and variances. In the EM process, the GMM parameters are iteratively
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updated using Eq (11) from their initial values, which were derived using K-means clustering:

otþ1
i ¼ 1

N

XN
j¼1

piðxjjmt
i ; s

t
iÞ; ð11Þ

mtþ1
i ¼

XN

j¼1
piðxjjmt

i ; s
t
iÞxjXN

j¼1
piðxjjmt

i ; s
t
iÞ

; ð12Þ

stþ1
i ¼

XN

j¼1
piðxjjmt

i ; s
t
iÞðxj � mtþ1

i Þ2XN

j¼1
piðxjjmt

i ; s
t
iÞ

ð13Þ

where N is the number of pixels to be classified and t denotes the tth iteration. This iterative

update is performed until the log likelihood log
YN
j¼1

Pðxjjm; dÞ is convergent. Then, the cluster is

built from each of the K Gaussian distributions under the parameters derived by the EM algo-
rithm. For a pixel, if it generates the maximum likelihood in the ith Gaussian distribution, it is
assigned into the ith cluster Ci using Eq (14) and (15):

Xi ¼ fxj 2 xj8k 2 ½1; k�; piðxjjmk; dkÞ � pkðxjjmk; dkÞg: ð14Þ

CiðpÞ ¼
1; if xp 2 Xi

0; otherwise
: ð15Þ

(

Furthermore, the expected value μi of the ith Gaussian distribution provides a center of all
the pixels in layer Ci. Fig 3 shows the cluster results of Fig 3(D) from the GMM-based cluster-
ing method. Fig 3(C) is the vessel cluster, which is denoted as IGMM.

Post-Processing
In the proposed method, the post-processing of the vessel segmentation can mainly be divided
into two parts. The first part complements the GMM classifier result using a gray-vote image
that contains rich small vessel details. The second part eliminates the fragments that do not be-
long to the vessel using morphological characteristics.

Vessel complementation
As shown in Fig 3(C), the vessel cluster IGMM contains the main vessel structure and some
small vessel branches. However, some small vessel branches are broken into fragments. To ad-
dress this issue, we used another gray voting processing on the fusion result Igv with different
parameters to obtain a complementary image Ic (Fig 4(B)), which contains the details of the
rich small vessel; we then used the fragments to link the broken vessels of the vessel cluster
IGMM. Icom (Fig 4(C)) is the binary result of the complement image Ic. The binary image Icom
shows rich details of the vessels that are used to complement the vessel cluster IGMM.

Icom and IGMM are the complementary image and a marker image, respectively, in the image
complementation process. In this section, Tseed is the threshold that is used to estimate a broken
vessel fragment using the number of pixels in the fragment. Tfragment is the threshold for esti-
mating the complementing fragments. First, we search the vessel fragments in the marker
image. If the number of pixels in a fragment is less than Tseed, the fragment is considered to be
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a broken vessel fragment; then, we set these pixels to be the seed points and count the number
of pixels in the fragments that have the same seed labels in the complementary image. If the
number of pixels in a fragment is less than the value of Tfragment, then the fragment is regarded
as a vessel fragment and complemented in the marker image.

The pseudocode of this vessel complement method is presented below.
input: Icom (complement image), (marker image)

Fig 3. Four clusters from the GMM classifier; (a) and (b) the background clusters, (c) the vessel cluster IGMM and (d) the retinal disc cluster.

doi:10.1371/journal.pone.0127748.g003
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output: IC−GMM

[L,NUM] = bwlabel(Icom);
[N,num] = bwlabel(IGMM);
IC−GMM = IGMM;
for i = 1:num %(Searching all fragments in marker image according to the label N)
for kk = 1: Tseed % (Setting the pixel number of fragments)

Fig 4. Vessel complementation results: (a) the fused result Igv, (b) Ic the result of the gray-voting processing on Igv, and (c) Icom is the binary image of the
complementary image Ic.

doi:10.1371/journal.pone.0127748.g004
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[x, y] = find(N = = i); % (Acquiring the pixel coordinate)
if length(x) = = kk % (Judging whether the number of pixel equal to kk)
t = L(x(1),y(1));% (Acquiring the label of these points)
[xx, yy] = find(L = = t); % (Searching the pixel points in complement image according to

label)
if length(xx)< = Tfragment % (Judging whether the number of complement image frag-

ment pixels less than Tfragment)
for j = 1:length(xx)
IC−GMM (xx(j),yy(j)) = 1; % (Complementing the fragment to the output)
end
end
end
end
end

Fragments elimination
The result of vessel complementation IC−GMM, is shown in Fig 5(C), and it contains many frag-
ments; however, not all of the fragments belong to the vessel. Because the image complementa-
tion process is based on the number of pixels in the fragments, some tiny noise fragments of
the binary image Icom are considered vessel fragments. Thus, we used the Cemal Kose and
Cevat Ikibas’s fragments elimination method [5] to solve this problem. First, we search the
fragments in the complementary vessel IC−GMM and apply the seed fill algorithm to calculate
the number of pixels in the fragments. Then, we calculate the maximum coordinate values
along the x—and Y—axes and use the larger of these two values. The number of pixels in a
fragment is used to calculate the squareness rate of the fragment, which is described by Eq (16).
We determine whether the fragment belongs to a vessel or not using Eq (17).

S Rcs ¼ 100 � F Scs=ð1þmx �mxÞ; ð16Þ
where S_Rcs is the squareness rate, F_Scs is the number of pixels in a fragment andmx is the

larger of the two maximum coordinate values on the x—and y-axes:

I
FINAL

¼ non� vessel fragment if ½ðF Scs < 14000ÞandðS Rcs > 0:2Þ�
vessel fragment Otherwise

: ð17Þ
(

Fig 5(A) shows the complementary image obtained in Section 2.2, which contains many
small vessel fragments that could be used to complement the broken vessels. Fig 5(B) shows
the outcome of the GMM classifier; the fragments of this image could be regarded as the vessel
seed fragments, which are used to locate the vessel position and search the other vessel frag-
ments in the binary image Icom. Fig 5(C) shows the outcome of the complementary processing,
and Fig 5(D) shows the result after fragments elimination.

Experiments and Discussion

Experimental parameters
In the gray-voting process, parameter k has a significant influence on the gray-voting result.
Fig 6A–6D show the gray-voting results when k is set to 0, 3, 5 and 10, respectively. As shown
in Fig 6, when k is set to 0, both noise and small vessel pixels are detected. As k increases, the
noise decreases; however, the pixels of small vessels cannot be detected. We perform the pro-
posed gray-voting algorithm on each pixel of the green channel image Igreen, as shown in

Gray-Voting and GMM to Segment Retinal Vessels

PLOS ONE | DOI:10.1371/journal.pone.0127748 June 5, 2015 10 / 22



Fig 2(A), and obtain the gray-voting result Ivessel, as shown in Fig 2(B); this figure shows that
the structure of the vessel, the branch details and some noise are all contained in the gray-vot-
ing result Ivessel. From multiple experiments, we found that in order to capture more small ves-
sel pixels while suppressing noise, it is a suitable choice that k is set to be 3. The proposed gray-
voting algorithm parameters are thus set as follows:

Fig 5. Complementation process output: (a) the binary image Icom, (b) the main vessel structure IGMM, (c) the result of vessel complementing IC−GMM, and
(d) the final outcome of the proposed method IFINAL.

doi:10.1371/journal.pone.0127748.g005
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m = 11; k = 3; L ¼ Mmax
ðm2�1Þ; and N ¼ � Mmin

ðm2�1Þ, whereMmax andMmin are the maximum and

minimum gray levels of them ×m window, respectively.
In the complementary image Ic, the gray-voting algorithm parameters were set as follow to

obtain more small vessel fragments:

m = 11; k = −5; L ¼ Mmax
ðm2�1Þ; N ¼ � Mmax

ðm2�1Þ;

Fig 6. (a-d) Blood vessel detection using the proposed gray-voting algorithm with different values of k: (a) k = 0; (b) k = 3; (c) k = 5; and (d) k = 10.

doi:10.1371/journal.pone.0127748.g006
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whereMmax is the maximum gray level of them ×m window.
Fig 7. shows the effects of the different values of k (e.g., -10, -5, -3, 0). In the vessel comple-

mentation process, Tseed is the threshold of the seed fragment’s number of pixels. In this study,
we set Tseed to be a constant value of 30 and Tfragment to be a constant value of 100.

Dataset
The two publicly available databases (S1 File), DRIVE (Staal et al., 2004) [16] and STARE
(Hoover et at., 2000) [17] were used to test the proposed methods. The DRIVE dataset contains
40 images that were obtained from a diabetic retinopathy screening program in The Nether-
lands. In the database, 33 images do not show any sign of diabetic retinopathy, and 7 show
signs of mild early diabetic retinopathy. These 40 images have been randomly selected from
the screening population, which consists of 400 diabetic subjects between the ages of 25 and 90
reported by Staal et al. (2004). Each image consists of 584 x 565 pixels. The STARE dataset con-
tains 20 retinal fundus images, which consist of 605 x 700 pixels. Both datasets contain manual
segmentation results. For the STARE dataset, we used two sets of manual segmentation results
to evaluate the proposed algorithm. In the first manual segmentation dataset, 10.4% of the pix-
els were marked as vessels; while 14.9% of the pixels were marked as vessels in the second man-
ual segmentation dataset, which contains more small vessel details than the first one.

Algorithm evaluation
We evaluated the proposed algorithm’s accuracy, sensitivity and specificity of segmentation re-
sults. These evaluation measures are widely used in the vessel segmentation field. The primary
concept of the evaluation method is to count the number of pixels that are true positives (TP),
which describes the number of pixels that the algorithm segmented as vessel correctly; false
positives (FP), which describes the number of pixels that the algorithm segmented as vessels in-
correctly; true negatives (TN), which describes the number of pixels that the algorithm seg-
mented as background pixels correctly; and false negatives (FN), which describes the number
of pixels that the algorithm segmented as background incorrectly. These values can be obtained
by comparing the algorithm’s segmentation results with the “gold-standard”manual segmenta-
tion results. The evaluation method is defined by the formulae (18–20):

Accuracy ¼ TN
TP þ FN þ TN þ FP

; ð18Þ

Sensitivity ¼ TP
TP þ FN

; ð19Þ

Specificity ¼ TN
FP þ TN

: ð20Þ

Fig 8 compares the different vessel segmentation method results in the DRIVE dataset. Fig 8
(A) shows the original RGB image; Fig 8(B) shows the manual segmentation result; Fig 8C and
8D show the vessel segmentation results reported by Soares et al. [9] and Zhang et al.[18]; and
Fig 8(E) shows the results of the proposed algorithm.

Fig 9 compares the different vessel segmentation method results in the two manually seg-
mented STARE datasets. Fig 9(A) shows the original RGB image, and Fig 9B and 9C show the
first and the second manually segmented results. The second manually segmented result
shown in Fig 9(C) contained more small vessel details than Fig 9(B). Fig 9D and 9E) are the
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vessel segmented results by Soares et al.[9] and Zhang et al.[18]. Fig 9(F) shows the result of
the proposed algorithm.

Tables 1 and 2 compare the results obtained using the proposed algorithm with those ob-
tained by the other known algorithms with DRIVE and STARE datasets. It is shown that the
proposed algorithm has a higher sensitivity than most of the other algorithms when using the

Fig 7. (a-d) Results of the gray-voting algorithm applied to vessel fragment detection with different value of k: (a) k = -10; (b) k = -5; (c) k = -3; and
(d) k = 0.

doi:10.1371/journal.pone.0127748.g007
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Fig 8. Results of the different methods applied to the DRIVE dataset: (a) original images; and (b) manually segmented images. (c-d) Results of methods
reported in reference [9] and [18]. (e) Results of the proposedmethod.

doi:10.1371/journal.pone.0127748.g008
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DRIVE dataset; the sensitivity of the proposed algorithm is only lower than You’s method [11]
and Fraz’s method [19]), the proposed algorithm also has the highest sensitivity using the
STARE dataset.

Compared to the other methods, the results of the proposed algorithm contains more small
vessel details, which agree with the fact that the proposed algorithm achieved a higher sensitivi-
ty when all methods segment the main vessels relatively well. It is also clear that the accuracy

Fig 9. Results of the different methods applied to the STARE dataset: (a) original image; (b) manually segmented images; (c) Manually segmented
image with more small vessels. (d-e) Result of the methods reported in references [9] and [18]. (f) Results of the proposedmethod.

doi:10.1371/journal.pone.0127748.g009
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and specificity of the proposed algorithm is below the average levels shown in Tables 1 and 2.
There are two primary reasons for this.

First, with the improvement of the retinal vessel segmentation algorithm, the problem about
small vessel segmentation which ever to be a further step of vessel segmentation turn out to be
realizable. Compared to a main vessel, a small vessel has fewer pixels and a lower vessel/back-
ground contrast; thus more sensitive filters are required for small vessel segmentation, which
will increase the over-segmentation rate. Over-segmentation will decrease the signal
<javascript:void(0);> to<javascript:void(0);> noise<javascript:void(0);> ratio<javascript:
void(0);> (SNR<javascript:void(0);>) of the small vessel segmentation results, which lowers
the accuracy and specificity of the proposed method.

Second, the evaluation results could be different according to different “gold-standard.”
With the STARE dataset, there are two manually segmented results. The first manually

Table 1. Performance of multiple vessel segmentation methods using the DRIVE dataset.

Method Sensitivity Accuracy Specificity

Niemeijer et al. [20] 0.6898 0.9417 0.9696

Martinez-Perez et al. [21] 0.7246 0.9344 0.9655

Ramlugun et al. [14] 0.6413 0.9341 0.9767

Fraz et al. [22] 0.7152 0.9430 0.9768

Mendonca et al. [23] 0.7344 0.9452 0.9764

Zhang et al. [18] 0.7120 0.9382 0.9724

Li et al. [24] 0.7154 0.9343 0.9716

Soares et al. [9] 0.7230 0.9446 0.9762

You et al. [11] 0.7410 0.9434 0.9751

Fraz et al. [19] 0.7406 0.9480 0.9807

Staal et al. [16] 0.7194 0.9442 0.9773

Ricci et al. [25] - 0.9595 -

Marin et al. [26] 0.7067 0.9452 0.9801

Proposed Method 0.7359 0.9418 0.9720

doi:10.1371/journal.pone.0127748.t001

Table 2. Performance of multiple vessel segmentation methods using the STARE dataset (i.e., the first manually segmented dataset).

Method Sensitivity Accuracy Specificity

Martinez-Perez et al. [21] 0.7506 0.9410 0.9569

Fraz et al. [22] 0.7311 0.9442 0.9681

Mendonca et al.[23] 0.6996 0.9440 0.9730

Hoover et al. [17] 0.6751 0.9267 0.9567

Zhang et al. [18] 0.7171 0.9483 0.9753

Li et al. [24] 0.7191 0.9407 0.9687

Soares et al. [9] 0.7103 0.9480 0.9737

You et al. [11] 0.7260 0.9497 0.9756

Fraz et al. [19] 0.7548 0.9534 0.9763

Staal et al. [16] 0.6970 0.9516 0.9810

Ricci et al. [25] - 0.9584 -

Marin et al. [26] 0.6944 0.9526 0.9819

Proposed Method 0.7769 0.9364 0.9550

doi:10.1371/journal.pone.0127748.t002
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Fig 10. Overview of vessel segmentation process: (a) original RGB retinal fundus image; (b) results of the proposed vessel segment method; (c) the first
manually segmented results; (d) image comparing the proposed approach with the first manually segmented results; (e) the second manually segmented
results; and (f) image comparing the proposed approach with the second manually segmented results.

doi:10.1371/journal.pone.0127748.g010
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segmented results, which are widely used for vessel segment evaluation, ignore many small ves-
sels. Thus, because this approach contains significant amounts of small vessel information, the
accuracy and specificity of the proposed method will be lower than the other vessel segment
methods when using the first manually segmented result dataset to evaluate this approach. To
develop this concept, we mark the TP, FP and FN in green, blue and red, respectively. Fig 10

Table 3. Performance of vessel segmentation methods using STARE dataset (i.e., the secondmanually segmented dataset as the “gold
standard.”).

Method Sensitivity Accuracy Specificity

Zhang et al. [18] 0.5719 0.9131 0.9740

Soares et al. [9] 0.5796 0.9211 0.9838

Proposed Method 0.6502 0.9214 0.9704

doi:10.1371/journal.pone.0127748.t003

Fig 11. Accuracy and sensitivity of different algorithms with twomanually segmented results from the STARE dataset: (a) the accuracy comparison
of the different methods using the first manually segmented results of the STARE dataset; (b) the accuracy of the different methods using the second
manually segmented results of the STARE dataset; (c) the sensitivity comparison of the different methods using the first manually segmented results of the
STARE dataset; and (d) the sensitivity of the different methods using the second manually segmented results of the STARE dataset.

doi:10.1371/journal.pone.0127748.g011
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(D) and Fig 10(F) show the colored images using the first and the second manually segmented
results as “gold standard,” respectively. Compared to Fig 10(D), the blue region (i.e., overlap-
ping area) shrinks clearly in Fig 10(F). Fig 10(F) shows that the proposed algorithm can seg-
ment some small vessels correctly that do not exist in the first manually segmented results but
do exist in the second manually segmented results. In this case, some correctly segmented ves-
sel pixels are incorrectly identified as over-segmentation pixels when the first manually seg-
mentation results are used as the “gold standard.”

Table 3 shows the comparison of the other two methods with the proposed algorithm using
the second manually segmented results in the STARE dataset as the ”gold standard.“ The table
shows that the proposed algorithm achieved much higher sensitivity than the other methods,
and the highest accuracy; note that this accuracy is lower than those shown in Table 2.

Fig 11 shows the accuracy and sensitivity of different algorithms with the two manually seg-
mented results from 20 STARE dataset images. Compared to the other vessel segment meth-
ods, our approach achieved a substantially high sensitivity (Fig 11C and 11D)) and a relatively
stable accuracy (Fig 11A and 11D).

Small retinal vessel segmentation plays an important role in clinical diagnosis; however, as
mentioned above, small retinal vessel segmentation may lead to over-segmentation. Thus new
methods to solve this problem must be developed. Moreover, the evaluation algorithm using
accuracy, sensitivity and specificity is based on the pixel, yet the overlap rate may not indicate
the true topological structure which may be of more important than the pixel overlap rate. For
example, if the vessels’ structures are all segmented perfectly in topological structures, but the
vessels’ widths are all thinner than the manually segmented image, the evaluation methods
used in this study cannot accurately reflect the real vessel segment affection.

Compared with the other vessel segment methods, the proposed approach showed better
segmentation results for both main and small vessels with relatively stable accuracies and
high sensitivities.

Supporting Information
S1 File. Data used to test the algorithm.
(ZIP)

S2 File. Source code of the algorithm written in Matlab.
(ZIP)
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