
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 2, FEBRUARY 2014 943

Technical Correspondence
Configuration-Transition-Based
Connected-Component Labeling

Lifeng He, Senior Member, IEEE, Xiao Zhao, Yuyan Chao,
and Kenji Suzuki, Senior Member, IEEE

Abstract— This paper proposes a new approach to label-
equivalence-based two-scan connected-component labeling. We
use two strategies to reduce repeated checking-pixel work for
labeling. The first is that instead of scanning image lines one
by one and processing pixels one by one as in most conventional
two-scan labeling algorithms, we scan image lines alternate lines,
and process pixels two by two. The second is that by considering
the transition of the configuration of pixels in the mask, we
utilize the information detected in processing the last two pixels
as much as possible for processing the current two pixels. With
our method, any pixel checked in the mask when processing
the current two pixels will not be checked again when the next
two pixels are processed; thus, the efficiency of labeling can be
improved. Experimental results demonstrated that our method
was more efficient than all conventional labeling algorithms.

Index Terms— Pattern recognition, image analysis, connected
component, labeling.

I. INTRODUCTION

LABELING of connected components in a binary image
is one of the most fundamental operations in pattern

analysis, pattern recognition, computer (robot) vision, and
machine intelligence [1], [3], [6]. By use of the labeling
operation, a binary image is transformed into a symbolic
image in which all pixels belonging to a connected component
are assigned a unique label. Labeling is required whenever a
computer or a system needs to recognize independent objects
(connected components) in binary images as separate objects.

Many algorithms have been proposed for addressing this
issue. For ordinary computer architectures (in contrast to, e.g.,

Manuscript received October 23, 2012; revised April 3, 2013; accepted
October 17, 2013. Date of publication November 7, 2013; date of current
version January 13, 2014. This work was supported by the Ministry of Edu-
cation, Science, Sports and Culture, Japan, through Grant-in-Aid for Scientific
Research (C) under Grant 23500222. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was
Prof. Ton Kalker.

L. He is with the Artificial Intelligence Institute, College of Electrical
and Information Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China, and also with the Faculty of Information Science and
Technology, Aichi Prefectural University, Aichi 480-1198, Japan (e-mail:
helifeng@ist.aichi-pu.ac.jp).

X. Zhao is with the Artificial Intelligence Institute, College of Electrical
and Information Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China (e-mail: zhaoxiao@sust.edu.cn).

Y. Chao is with the Graduate School of Environment Management, Nagoya
Sangyo University, Aichi 488-8711, Japan, and also with the College of
Mechanical and Electrical Engineering, Shaanxi University of Science and
Technology, Xi’an 710021, China (e-mail: chao@nagoya-su.ac.jp).

K. Suzuki is with the Department of Radiology, Division of the Biological
Sciences, The University of Chicago, Chicago, IL 60637 USA (e-mail:
suzuki@uchicago.edu).

Digital Object Identifier 10.1109/TIP.2013.2289968

Fig. 1. Mask used in the block-based labeling algorithm, where the pixels
in bold face are pixels that should be considered for processing the pixels in
the current block.

parallel architectures) and 2D pixel-based images (in contrast
to run-based or hierarchical-tree-based images), there are
mainly two classes of labeling algorithms: label-equivalence-
based algorithms and label propagation algorithms.

Label-equivalence-based labeling algorithms process an
image in the raster-scan way, and complete labeling by the
following four basic processing steps:

(1) Provisional label assigning, i.e., assigning to each fore-
ground pixel a provisional label;

(2) Label equivalence recording, i.e., recording all provi-
sional labels that are found to belong to the same connected
component as equivalent labels;

(3) Label equivalence resolving, i.e., finding a unique rep-
resentative label for all equivalent labels;

(4) Label replacing, i.e., replacing each provisional label
with its representative label.

According to the number of times of scanning an image
for labeling, there are multi-scan algorithms [5], [15]
two-scan algorithms [7]–[10], [18], and one-and-a-half-scan
algorithms [11].

Recently, some new labeling algorithms were proposed.
He et al. [9] proposed a new two-scan labeling algorithm,
which uses equivalent label sets to record and resolve label
equivalences. They also proposed a one-and-a-half scan algo-
rithm [11], which is an improvement on the run-based two-
scan algorithm proposed in [8]. On the other hand, Grana et al.
proposed a block-based two-scan algorithm [4], which resolves
connectivity among 2 ×2 blocks, as shown in Fig. 1. Because
all foreground pixels in a 2×2 block are certainly 8-connected,
they belong to the same connected component and thus will

1057-7149 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

944 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 2, FEBRUARY 2014

Fig. 2. Mask used in the HCS algorithm.

be assigned the same label. Therefore, instead of assigning
to each foreground pixel a provisional label, this algorithm
assigns to each foreground-pixel-contained block a provi-
sional label. It uses equivalent-label sets, the same method
as proposed in [7], for recording and resolving label equiv-
alences among blocks. In the second scan, it assigns to all
foreground pixels in each block the representative label of
the block. However, for the current block, the number of
neighbors to be considered becomes 16, much larger than
pixel-based two-scan algorithms (which is 4), and the decision
tree generated by this algorithm contains 210 nodes, with
211 leaves sparse over 14 levels.

On the other hand, search and label propagation algorithms
first search an unlabeled foreground pixel from a given image.
If found, they label the foreground pixel with a new label;
then, in the later processing, they assign the same label to all
foreground pixels connected to the foreground pixel. All such
algorithms access an image in an irregular way. Therefore,
they are not suitable for pipeline processing, parallel imple-
mentation, or systolic-array implementations. Although they
are called one-scan algorithms, they usually need to process
the background pixels around the foreground pixels twice, and
all or some of the foreground pixels at least twice (perhaps
more); they are really not a one-scan algorithm. There are also
run-based algorithms [1] and contour-tracing algorithms [2].
According to the experimental results reported in [9], these
algorithms are inferior to label-equivalence-based algorithms.

This paper presents a new two-scan labeling algorithm. We
scan image lines alternate lines, and process pixels two by
two. By considering configuration transition in the mask, for
processing the current two pixels, we utilize the information
detected during processing the last two pixels as much as
possible. By our method, we can avoid checking the pixels
in the mask repeatedly; thus, the efficiency of labeling can be
improved. Experimental results demonstrated that our method
was more efficient than all conventional two-scan labeling
algorithms for most images.

II. PRELIMINARIES

The two-scan labeling algorithm proposed by He, Chao,
and Suzuki in [9] first uses equivalent-label sets to record
and resolve label equivalences. For convenience, we call this
algorithm the HCS algorithm. At any moment in the first scan,
all equivalent labels found so far are combined in an equivalent
label set, and the minimal label in an equivalent label set is
called the representative label of the set as well as all the
labels in the set. Moreover, an equivalent label set with the
representative label t is denoted as S(t), and the representative
label of a provisional label b is represented by r [b].

In the first scan, the HCS algorithm uses the mask shown in
Fig. 2 for processing the current pixel a. If it is a background
pixel, nothing needs to be done. Otherwise, the HCS algorithm
processes it as follows: if there is no foreground pixel (label)
in the mask, this means that the foreground pixel does not
connect to any foreground pixel processed up to now. At this
point, in the processed image area, the current foreground pixel
belongs to a new connected component consisting of itself
only. The HCS algorithm assigns a new provisional label m,
which is initialized to 1, to the current pixel a, establishes
the equivalent label set S(m) = {m} for the new connected
component, sets the representative label of m as itself, i.e.,
r [m] = m, and increases m by 1 for later processing.

On the other hand, if there are some foreground pixels
(labels) in the mask, then all such foreground pixels and the
current foreground pixel are 8-connected, and they belong to
the same connected component. In other words, all provisional
labels in the mask are equivalent labels, and they should be
combined. Suppose that u and v are equivalent labels that
belong to S(r [u]) and S(r [v]), respectively. If r [u] = r [v], the
two equivalent label sets are the same, and thus, they belong to
the same equivalent label set already; therefore, nothing needs
to be done. Otherwise, without loss of generality, suppose that
r [u] < r [v], i.e., r [u] is the smallest label in the two equivalent
label sets; then the combination of the two equivalent label sets
can be completed by the following operations:

S(r [u]) = S(r [u]) ∪ S(r [v]); (∀s ∈ S(r [v]))(r [s] = r [u]).
In this way, at any processing point in the first scan, all

equivalent provisional labels found so far are combined in an
equivalent label set with the same representative label.

As soon as the first scan is finished, all equivalent labels
of each connected component will have been combined in an
equivalent label set with a unique representative label. In the
second scan, by replacement of each provisional label with its
representative label, all foreground pixels of each connected
component will be assigned a unique label.

The HCS algorithm was improved in [10] by processing the
current foreground pixels following a background pixel and
those following a foreground pixel are processed in a different
way: for a foreground pixel following a background pixel, i.e.,
n4 in the mask shown in Fig. 2 is a background pixel, we do
not need to consider pixel n4 but the other three pixels in the
mask; for a foreground pixel following another foreground
pixel, i.e., n4 is a foreground pixel, we can assign pixel n4’s
provisional label to it, and then resolve the connectivity with
other foreground pixels (if any) in the mask. Because whether
the current foreground pixel follows a background pixel or
a foreground pixel can be known without any additional
computing cost, this algorithm is more efficient than the HCS
algorithm. For convenience, we call this algorithm the HCSI

algorithm.

III. OUTLINE OF OUR PROPOSED FIRST-SCAN METHOD

In the first scan, unlike most pixel-based two-scan labeling
algorithms, which scan image lines one by one and process
pixels one by one, our proposed algorithm uses the mask

HE et al.: CONFIGURATION-TRANSITION-BASED CONNECTED-COMPONENT LABELING 945

Fig. 3. Mask used in our algorithm.

Fig. 4. Three cases need to be considered for the two current pixels a and b.

shown in Fig. 3 to scan the given image alternate lines, and
to process pixels two by two.

A great merit in doing this is that the current pixel b can be
processed efficiently in cases where the current pixel a in the
scan line is a foreground pixel. If pixel b is a background pixel,
nothing needs to be done; otherwise, because the existence of
the pixel could not connect any two independent foreground-
pixel parts in the mask,1 after processing pixel a, we only
need to assign to pixel b pixel a’s provisional label (without
checking any of the other pixels and considering any label
equivalence resolving). For simplicity, in the case where the
pixel a is a foreground pixel, we will not mention how to
process pixel b hereafter.

The combinations that the two current pixels a and b should
be considered are the following three cases (see Fig. 4):

C1 – both pixel a and pixel b are background pixels;
C2 – pixel a is a foreground pixel and pixel b is either a

foreground pixel or a background pixel;
C3 – pixel a is a background pixel and pixel b is a foreground

pixel.

As we will show later, all configurations of the pixels in the
mask and the two current pixels that should be considered are
the nine configurations shown in Fig. 5, where a meaningless
pixel in the mask means whether it is a foreground pixel
or not does not affect the processing result, thus, can be
removed from consideration. For example, in the configuration
Cc shown in Fig. 5, for processing the two current pixels
a and b, we do not need to check pixel n1. When we go
to process the following two current pixels, pixel n1 will be
shifted out of the mask. Therefore, in this case, we do not
need to consider n1, it is a meaningless pixel.

For convenience, hereafter we use a shorthand notation,
{n1, n2, n3, n4, n5, a, b}, to denote the configuration consist-
ing of the pixels in the mask and the two current pixels.

1According to the analysis given in [12], only when two independent
foreground-pixel parts in the mask become connected by a foreground pixel
being processed, we need to consider resolving the label equivalence of the
two parts.

Fig. 5. Configurations of the mask and the two current pixels a and b.

Fig. 6. Transition of the configuration Ca .

Moreover, we use lower-case letters except a and b to denote
labels in the mask, # to denote a background pixel, $ to denote
a pixel which is either a foreground pixel or a background
pixel, and – to denote a meaningless pixel.

For case C1, we need to do nothing; the configuration is
Ca , i.e., {−, $, $, −, −, #, #}, shown in Fig. 5. Because the
next two pixels to be processed will be one of the three cases
C1, C2, and C3, as shown in Fig. 6, the configuration Ca will
transit to one of three configurations {$, $, $, #, #, a, b},
{$, $, $, #, #, #, b}, and {$, $, $, #, #, #, #}, i.e., Cb, Cc,
and Ca shown in Fig. 5.

For a case C2 that follows a case C1, whose configura-
tion is Cb as shown in Fig. 5, i.e., {$, $, $, #, #, a, b},
we need to consider the pixels n1, n2, and n3. According to
the strategy proposed in [9], we will check n2 first. If n2 is a
foreground pixel, it has been assigned a label u. We assign
u to the current pixel a,2 thus, the configuration becomes

2As mentioned above, because all of the foreground pixels in the mask such
that they are connected to the current foreground pixel(s) belong to the same
connected component, all provisional labels assigned to the foreground pixels
will be combined in the same equivalent label set. Therefore, the current
foreground pixel(s) can be assigned any provisional label of its foreground-
pixel neighbors.

946 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 2, FEBRUARY 2014

Fig. 7. Transition of the configuration Cb: (a) in the case where n2 is a
foreground pixel u; (b) in the case where n2 is a background pixel and n3 is
a foreground pixel ν; (c) in the case where both n2 and n3 are background
pixels.

{$, u, $, #, #, u, b}. Here, we do not need to check pixel n1
and pixel n3, because, if they are foreground pixels, they are
known to be eight-connected with pixel n2 before processing
the current two pixels; thus, they should belong to the same
equivalent-label set already. Because the next two pixels to
be processed will be one of the three cases C1, C2, and C3,
the configuration will transit to one of {u, $, $, u, $, a, b},
{u, $, $, u, $, #, b}, and {u, $, $, u, $, #, #} as shown
in Fig.7(a), i.e., the configurations Cd , Cg , and Ca shown in
Fig. 5, respectively.

Secondly, if pixel n2 is a background pixel and pixel n3 is
a foreground pixel, then n3 has been assigned a label v, and
we assign the label v to the current pixel a; thus, configuration
becomes {$, #, v, #, #, v, $}. If pixel n1 is a foreground pixel,
we resolve the label equivalence between the label of pixel
n1 and v. Because the next two pixels to be processed will
be one of the three cases C1, C2 and C3, the configuration
{$, #, v, #, #, v, $} will transit to one of the configurations

{#, v, $, v, $, a, b}, {#, v, $, v, $, #, b} and {#, v, $, v, $, #, #}
as shown in Fig.7(b); i.e., the configurations Ce, Cg , and Ca

shown in Fig. 5, respectively.
Lastly, if both pixel n2 and pixel n3 are background pixels,

the configuration is {$, #, #, #, #, a, $}. We assign to the
current pixel a the same provisional label assigned to pixel n1
if pixel n1 is a foreground pixel; otherwise, we assign to the
pixel a a new provisional label. Let w be the label assigned to
pixel a. Because the next two pixels to be processed will also
be one of the three cases C1, C2, and C3, this configuration
will transit to one of the three configurations {#, #, $, w, $,
a, b}, {#, #, $, w, $, #, b}, and {#, #, $, w, $, #, #} as shown
in Fig.7(c); i.e., the configurations C f , Cg , and Ca shown in
Fig. 5, respectively.

All other configurations shown in Fig. 5 can be analyzed
in a similar way. The configuration transition diagram for our
method is shown in Fig. 8, where, for simplicity, all transitions
from each configuration to the configuration Ca are omitted.

IV. COMPARATIVE EVALUATION

We mainly compared our algorithm with the HCSI algo-
rithm and the block-based algorithm proposed in [4]. For
convenience, we denote the block-based algorithm as BL
algorithm.

An experiment was performed on a Dell Optiplex GX745
Intel(R) Core(TM)2 CPU 6300, 1.86 GHz & 1.86 GHz,
1.99 GB RAM with Microsoft Windows XP Professional Ver-
sion 2002 Service Pack, using a single core for the processing.
All algorithms used for our comparison were implemented in
C++ language by use of the OpenCV library and compiled
on Windows by use of Visual Studio 2008. The program
related to the HCSI algorithm was provided by its authors, and
that of the BL algorithm was downloaded from the authors’
providing website [19]. All experimental results presented in
this section were obtained by selecting the minimum time over
10 runs in order to remove possible outliers due to other tasks
executed by the operating system. Moreover, for any image,
the labeling result obtained by any algorithm is exactly the
same.

Images used for testing were composed of four types:
artificial images, natural images, texture images, and medical
images.

Artificial images contain specialized patterns (stair-
like, spiral-like, saw-tooth-like, checker-board-like, and
honeycomb-like connected components) [9] and noise images.
The dataset of noise images was also downloaded from [19];
these consisted of six different image sizes (128 × 128,
256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048, and
4096×4096 pixels) with 6 different foreground densities (from
0.1 to 0.9). For every combination of size and density, there
are 10 images; thus, there are 540 images in total. Because
connected components in such noise images have complicated
geometric shapes and complex connectivity, severe evaluations
of labeling algorithms can be performed with these images.

On the other hand, 50 natural images, including landscape,
aerial, fingerprint, portrait, still-life, snapshot, and text images,
obtained from the Standard Image Database (SIDBA) devel-
oped by the University of Tokyo [20] and the image database

HE et al.: CONFIGURATION-TRANSITION-BASED CONNECTED-COMPONENT LABELING 947

Fig. 8. Configuration transition diagram.

Fig. 9. Execution time (ms) versus the number of pixels in an image.

of the University of Southern California [21], were used
for realistic testing of labeling algorithms. In addition, seven
texture images, which were downloaded from the Columbia-
Utrecht Reflectance and Texture Database [22], and 25 medical
images obtained from a medical image database of The Uni-
versity of Chicago, were used for testing. All of these images
were 512 × 512 pixels in size, and they were transformed
into binary images by means of Otsu’s threshold selection
method [14].

A. Execution Time Versus the Size of an Image

We used all noise images to test the linearity of the
execution time versus image size. The results are shown in
Fig. 9. We can see that both the maximum execution time
and the average execution time for all of the four algorithms
have the ideal linear characteristics versus image size. The
maximum execution time of the BL algorithm was almost
the same as that of the HCSI algorithm, and the execution
time of the BL algorithm was a little shorter than that of the
HCSI algorithm. Moreover, the maximum execution time of
our algorithm was even smaller than the minimum execution
times of the other two algorithms.

Fig. 10. Execution time (ms) versus the density.

B. Execution Time Versus the Density of an Image

Noise images with a size of 4096 × 4096 pixels were used
for testing the execution time versus the density of an image.
The results are shown in Fig. 10, where the value for each
density is the average execution time on the ten images of that
density. The performance of the HCSI algorithm was better
than that of the BL algorithm for the images with densities
lower than 0.5, but worse for the images with densities larger
than 0.5. For all density images, our algorithm was faster than
the two others.

C. Comparisons in Terms of the Maximum, Average, and
Minimum Execution Times

Natural images, medical images, texture images, and artifi-
cial images with specialized shape patterns were used for this
test.

The maximum, average, and minimum execution times for
each kind of image of the algorithms used for comparison are
shown in Table 1, where σ indicates the standard deviation.
We find that, in most cases, the efficiency of the BL algorithm
was better than that of the HCSI algorithm, and that of
our algorithm was much better than those of the other two.
Moreover, in any case, the standard deviation of our algorithm
is the smallest one.

The execution time (in ms) for the selected six images
is illustrated in Fig. 11, where the foreground pixels are
displayed in black, and where the value of D indicates the
density of an image.

V. DISCUSSION

A. Comparisons With the HCSI Algorithm

For processing a foreground pixel, the HCS algorithm needs
to consider four pixels in the mask. Because there are common
pixels in the mask of two sequential foreground pixels, a pixel
might be checked several times. For example, when processing
the pixel f shown in Fig. 10 (thus, pixel f is checked), the
HCS algorithm will check the pixels a, b, c, and e. When
continuing to process the pixel g, it will check the pixels
f , b, c, and d . Thus, the pixels f , b, and c are checked

948 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 2, FEBRUARY 2014

Fig. 11. The density and execution time (ms) for the selected six images:
(a) a fingerprint image; (b) a portrait image; (c) a text image; (d) a snapshot
image; (e) a medical image; (f) a texture image.

repeatedly. Moreover, when processing the pixel j later in the
next line, the pixel f will be checked again.

The HCSI algorithm improved the HCS algorithm by
processing foreground pixels following a background pixel,
and those foreground pixels following a foreground pixel are
processed in a different way. By use of this idea, the pixel
followed by the current foreground pixel can be removed
from the mask [10]. In other words, for processing the current
foreground pixel, the algorithm does not need to check its left
neighbor. Thus, for processing a foreground pixel, the average
number of times for checking the processed neighbor pixels
in the first scan can be reduced. Because whether the current

TABLE I

VARIOUS EXECUTION TIMES (IN ms) FOR VARIOUS TYPES OF IMAGES

foreground pixel follows a background pixel or a foreground
pixel can be known without any additional computational
cost, this algorithm is more efficient than the HCS algorithm
for all images.

However, the improvement made by the HCSI algorithm is
not sufficient. For example, when processing the foreground
pixel f shown in Fig. 12, it will check the pixels a, b,
and c; thus, the pixel c is known as a background pixel.
When continuing to process the foreground pixel g, the pixel c
will be checked again. In other words, the information that
the pixel c is a background pixel obtained during processing
the pixel f is not utilized for processing the pixel g, and
repeated checking work is done. Moreover, when processing
the pixel j later, the same as the HCS algorithm, the HCSI

algorithm will check the pixel f , and the information that
pixel f is a foreground pixel is not utilized. This is also a
repeated checking.

In comparison, in our algorithm, the information that the
pixel c is a foreground pixel obtained during processing the
foreground pixel f is used for processing the foreground
pixel g, since we just assign the provisional label of the fore-
ground pixel f to the foreground pixel g without checking any
pixel. Moreover, in our method, the foreground pixels f and j
will be processed simultaneously, where the foreground pixel j
is assigned the same provisional label assigned to the pixel f

HE et al.: CONFIGURATION-TRANSITION-BASED CONNECTED-COMPONENT LABELING 949

Fig. 12. An example for explaining the problem of the HCSI algorithm.

Fig. 13. Execution time (ms) versus the density of foreground pixels in an
image: (a) second scan, and (b) first scan.

without checking any pixel. Thus, the repeated checking work
made by the HCSI algorithm is avoided in our algorithm.

Because the second scan made by the HCSI algorithm
and that by our proposed method are exactly the same, the
execution time of the second scan of the HCSI algorithm and
that of our proposed algorithm are almost the same for each
image, as shown in Fig. 13 (a); thus, the efficiency of our
proposed algorithm related to the HCSI algorithm is achieved
in the first scan (see Fig. 13 (b)) by avoiding checking pixels
repeatedly.

B. Comparisons With the BL Algorithm

The main idea of the BL algorithm is to consider each
2 × 2 pixel block as a “super pixel”. Because all foreground
pixels in a block are certainly 8-connected, and will thus be
assigned the same label, the connectivity of the foreground
pixels in a block need not be resolved. Instead of assigning
to each foreground pixel a provisional label, it assigns to
each foreground block3 a provisional label,4 and resolves
label equivalences among foreground blocks by use of the
equivalent-label-set technique proposed in [6], [9]. During
the second scan, it assigns to each foreground pixel in a
block the representative label of the block. Thus, it can
reduce provisional label assignment work in the first scan.
Moreover, it can avoid repeatedly checking the pixels in the
block.

The main problems with the BL algorithm are: (1) the
number of neighbor pixels to be considered for processing
a block becomes 12, i.e., the average number of the pixels
checked for processing a pixel in the block is 12/4 = 3, equal
to that in the HCSI algorithm. Moreover, the decision tree gen-
erated by this algorithm contains 210 nodes, with 211 leaves
sparse over 14 levels. The length of its program source codes
provided by the authors is over 1600 lines. Thus, this algorithm
has too many rules for a reader to understand and verify.
(2) Although this algorithm can avoid repeatedly checking
the pixels in the block, similar to the HCSI algorithm, many
pixels will still be checked repeatedly. For example, in the BL
algorithm, the pixels d , e, i , j , and k in the mask shown in
Fig. 1, which are checked for processing the current block,
together with the pixels o, p, and t in the current block
might be checked again when the next block is processed.
In comparison, our algorithm is much simpler than the BL
algorithm, and easy to follow. The length of the codes of our
algorithm is less than 600 lines. In our algorithm, when a pixel
is checked for processing the current pixels, the information
that the pixel is a foreground pixel or a background pixel
will be utilized for processing the next pixel. In other words,
any pixel in the mask checked in processing the current two
pixels will not be checked again when processing the next
two pixels. Thus, the repeated work for checking pixels has
been reduced as much as possible. For any image used in
our experimental test, our algorithm is faster than the BL
algorithm.

Moreover, the second scans of both the HCSI algorithm
and our proposed algorithm just replaces the value of each
pixel a with its representative value r [a] without checking
its value. Therefore, for all images with the same size, the
execution times are almost the same (see Fig. 13 (a)). However,
when the BL algorithm processes a block in the second scan,
it first needs to check the value of the representative label
of a block. If the value is 0, it means that there is no
foreground pixel in the block, and the BL algorithm assigns
0 to each pixel of the block. Otherwise, it means that there

3A foreground block is a block such that there is at least one foreground
pixel in the block.

4In fact, this idea is similar to that proposed in [11], where each run
(the maximum set of continuous foreground pixels in a row) is assigned a
provisional label.

950 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 2, FEBRUARY 2014

Fig. 14. An example for explaining the application of our strategy.

is at least a foreground pixel in the block. In this case,
the BL algorithm checks each pixel in the block. For each
foreground pixel in the block, it assigns to the pixel the
representative label of the block, and for each background
pixel, it assigns 0 to the pixel. Therefore, in the second scan,
the BL algorithm usually does more work than the other
two algorithms, and the more of foreground block an image
is, the more time the BL algorithm will take to process it
(see Fig. 13 (a)).

On the other hand, in the first scan, the BL algorithm
assigns a provisional label to each foreground block, whereas
both the HCSI algorithm and our proposed algorithm assign
a provisional label to each foreground pixel; thus, for high-
density images, the BL algorithm will do much less such
work than the other two. Therefore, when the density of an
image is large than 0.65, the first-scan method of the BL
algorithm will be more efficient than that of our proposed
algorithm, as shown in Fig. 12 (b), and when the density
of an image increases, the efficiency difference between our
algorithm and that of the BL algorithm will decrease, as shown
in Fig. 10.

In principle, our proposed method can be used for improv-
ing the BL algorithm to avoid checking pixels repeat-
edly; however, it will make the algorithm much more
complicated.

C. Application of Our Strategy to Other
Moving Window Operations

Our strategy, which reduces computational cost by utilizing
information obtained previously for currently processing, can
be applied to other moving window operations. For exam-
ple, by the moving average method for noise reduction, the
value of pixel e, say, Ve, in Fig. 14 can be calculated by
(a + b + c + d + e + f + g + h + i)/9. On the other
hand, if we record the information M1 = a + b + c and
M2 = d + e + f before processing pixel e, when processing
pixel e, after calculating M3 = g + h + i , then we can also
calculate Ve by (M1 + M2 + M3)/9. Obviously, the compu-
tational cost of the latter method is smaller than that of the
former one.

VI. CONCLUSION

In this paper, we presented two strategies for improving the
first scan of label-equivalence-based two-scan-labeling algo-
rithms. By processing image lines two by two, and considering

the transition of configurations of pixels in the mask, we
can reduce the repeated work for checking pixels and, there-
fore, achieve a more efficient processing than conventional
labeling algorithms. In future work, we plan to extend our
algorithm to include three-dimensional connected component
labeling [12], [13], [17].

ACKNOWLEDGMENT

We thank the anonymous referees for their valuable com-
ments that improved this paper greatly. We are grateful to
our editor, Prof. Ton Kalker, for his kind cooperation and a
lot of valuable advices. We also thank Ms. E. F. Lanzl for
proofreading this paper.

REFERENCES

[1] D. H. Ballard, Computer Vision. Upper Saddle River, NJ, USA: Prentice-
Hall, 1982.

[2] F. Chang, C. J. Chen, and C. J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Comput. Vis. Image Under-
stand., vol. 93, no. 2, pp. 206–220, 2004.

[3] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
MA, USA: Addison-Wesley, 1992.

[4] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based
connected components labeling with decision trees,” IEEE Trans. Image
Process., vol. 9, no. 6, pp. 1596–1609, Jun. 2010.

[5] R. M. Haralick, “Some neighborhood operations,” in Real Time/Parallel
Computing Image Analysis. New York, NY, USA: Plenum Press, 1981,
pp. 11–35.

[6] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, vol. 1.
Reading, MA, USA: Addison-Wesley, 1992, pp. 28–48.

[7] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling
algorithm,” in Proc. IEEE ICIP, Sep. 2007, pp. 241–244.

[8] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling
algorithm,” IEEE Trans. Image Process., vol. 17, no. 5, pp. 749–756,
May 2008.

[9] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-
component labeling,” Pattern Recognit., vol. 42, no. 9, pp. 1977–1987,
2009.

[10] L. He, Y. Chao, and K. Suzuki, “An efficient first-scan method for label-
equivalence-based labeling algorithms,” Pattern Recognit. Lett., vol. 31,
no. 1, pp. 28–35, 2010.

[11] L. He, Y. Chao, and K. Suzuki, “A run-based one-and-a-half-scan
connected-component labeling algorithm,” Int. J. Pattern Recognit. Artif.
Intell., vol. 24, no. 4, pp. 557–579, 2010.

[12] L. He, Y. Chao, and K. Suzuki, “Two efficient label-equivalence-based
connected-component labeling algorithms for three-dimensional binary
images,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2122–2134,
Aug. 2011.

[13] Q. Hu, G. Qian, and W. L. Nowinski, “Fast connected-component
labeling in three-dimensional binary images based on iterative recur-
sion,” Comput. Vis. Image Understand., vol. 99, no. 3, pp. 414–434,
2005.

[14] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62–66,
Jan. 1979.

[15] A. Rosenfeld, “Connectivity in digital pictures,” J. ACM, vol. 17, no. 1,
pp. 146–160, 1970.

[16] Y. Shima, T. Murakami, M. Koga, H. Yashiro, and H. Fujisawa, “A high-
speed algorithm for propagation-type labeling based on block sorting
of runs in binary images,” in Proc. 10th Int. Conf. Pattern Recognit.,
Jun. 1990, pp. 655–658.

[17] J. K. Udupa and V. G. Ajjanagadde, “Boundary and object labeling
in three-dimensional images,” Comput. Vis., Graph., Image Process.,
vol. 51, no. 3, pp. 355–369, 1990.

[18] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Anal. Appl., vol. 12, no. 2,
pp. 117–135, 2008.

[19] (2012, Aug.). The BL Algorithm [Online]. Available:
http://imagelab.ing.unimore.it/imagelab/labeling.asp

[20] (2012, Aug.). The Standard Image Database [Online]. Available:
http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm

HE et al.: CONFIGURATION-TRANSITION-BASED CONNECTED-COMPONENT LABELING 951

[21] (2012, Aug.). The Image Database of the University of Southern
California [Online]. Available: http://sipi.usc.edu/database/

[22] (2012, Aug.). The Columbia-Utrecht Reflectance and Texture Database
[Online]. Available: http://www1.cs.columbia.edu/CAVE/software/curet/
index.php

Lifeng He (M’10) received the B.E. degree from
the Northwest Institute of Light Industry, China, in
1982, the second B.E. degree from Xian Jiaotong
University, China, in 1986, and the M.S. and Ph.D.
degrees in AI and computer science from the Nagoya
Institute of Technology, Japan, in 1994 and 1997,
respectively. He is a Professor with Aichi Prefec-
tural University, Japan, and a Guest Professor with
the Shaanxi University of Science and Technology,
China. From 2006 to 2007, he was with the Uni-
versity of Chicago, USA, as a Research Associate.

His research interests include intelligent image processing, computer vision,
automated reasoning, pattern recognition, string searching, and artificial
intelligence.

He has been serving as a referee for more than ten journals in computer
science fields, including the IEEE TRANSACTIONS ON NEURAL NETWORK,
the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTEL-
LIGENCE, the IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE
TRANSACTIONS ON COMPUTERS, Pattern Recognition, Computer Vision and
Image Understanding, and Pattern Recognition Letter. He is a member of
IPSJ, IEICE, and AAR.

Xiao Zhao received the B.E. and M.S. degrees
from the Shaanxi University of Science and Tech-
nology, China, in 2001 and 2006, respectively. From
2001 to 2006, she was an Assistant Professor with
the College of Electrical and Information Engineer-
ing, Shaanxi University of Science and Technology.
Since 2007, she has been a Lecturer. Her research
interests include image processing, artificial intelli-
gence, pattern recognition, and string searching.

Yuyan Chao received the B.E. degree from the
Northwest Institute of Light Industry, China, in
1984, and the M.S. and Ph.D. degrees from Nagoya
University, Japan, in 1997 and 2000, respectively.
From 2000 to 2002, she was a Special Foreign
Researcher of the Japan Society for the Promotion
of Science, Nagoya Institute of Technology. She is
a Professor with Nagoya Sangyo University, Japan,
and a Guest Professor with the Shaanxi University
of Science and Technology, China. Her research
interests include image processing, graphic under-

standing, CAD, pattern recognition, and automated reasoning.

Kenji Suzuki received the Ph.D. degree in informa-
tion engineering from Nagoya University in 2001.
From 1993 to 2001, he was with Hitachi Medical
Corporation, and then Aichi Prefectural University
as faculty. In 2001, he joined the Department of
Radiology, University of Chicago. Since 2006, he
has been an Assistant Professor of the Radiology,
Medical Physics, and Cancer Research Center. His
research interests include computer-aided diagnosis
and machine learning in medical imaging. He has
published 230 papers (including 95 peer-reviewed

journal papers). He has an h-index of 28. He is an inventor on 28 patents that
were licensed to several companies and commercialized. He has published
nine books and 18 book chapters. He was awarded and co-awarded 44 grants
including NIH R01. He served as a referee for 62 international journals, an
organizer of 16 international conferences, and a program committee member
of 112 international conferences. He has been serving as the Editor-in-Chief
and an Associate Editor of 28 leading international journals including Medical
Physics and Academic Radiology. He received the Paul Hodges Award, the
three RSNA Certificate of Merit Awards and Research Trainee Prize, the
Cancer Research Foundation Young Investigator Award, the SPIE Honorable
Mention Poster Award, the IEEE Outstanding Member Award, and the Kurt
Rossmann Excellence in Teaching Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

