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Kenji Suzuki and Kunio Doi

Rationale and Objectives. To demonstrate that a massive training artificial neural network (MTANN) can be adequately
trained with a small number of cases in the distinction between nodules and vessels (non-nodules) in thoracic computed
tomography (CT) images.

Materials and Methods. An MTANN is a trainable, highly nonlinear filter consisting of a linear-output multilayer artifi-
cial neural network model. For enhancement of nodules and suppression of vessels, we used 10 nodules and 10 non-nod-
ule images as training cases for MTANNs. The MTANN is trained with a large number of input subregions selected from
the training cases and the corresponding pixels in teaching images that contain Gaussian distributions for nodules and zero
for non-nodules. We trained three MTANNs with different numbers (1, 9, and 361) of training samples (pairs of the sub-
region and the teaching pixel) selected from the training cases. In order to investigate the basic characteristics of the
trained MTANNs, we applied the MTANNs to simulated CT images containing various-sized model nodules (spheres)
with different contrasts and various-sized model vessels (cylinders) with different orientations. In addition, we applied the
trained MTANNs to nontraining actual clinical cases with 59 nodules and 1,726 non-nodules.

Results. In the output images for the simulated CT images by use of the MTANNs trained with small numbers (one and
nine) of subregions, model vessels were clearly visible and were not removed; thus, the MTANNs were not trained prop-
erly. However, in the output image of the MTANN trained with a large number of subregions, various-sized model nod-
ules with different contrasts were represented by light nodular distributions, whereas various-sized model vessels with dif-
ferent orientations were dark and thus were almost removed. This result indicates that the MTANN was able to learn,
from a very small number of actual nodule and non-nodule cases, the distinction between nodules (spherelike objects) and
vessels (cylinder-like objects). In nontraining clinical cases, the MTANN was able to distinguish actual nodules from ac-
tual vessels in CT images. For 59 actual nodules and 1,726 non-nodules, the performance of the MTANN decreased as
the number of training samples (subregions) in each case decreased.

Conclusions. The MTANN can be trained with a very small number of training cases (10 nodules and 10 non-nodules) in
the distinction between nodules and non-nodules (vessels) in CT images. Massive training by scanning of training cases to
produce a large number of training samples (input subregions and teaching pixels) would contributed to a high generaliza-
tion ability of the MTANN.
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Lung cancer is the leading cause of cancer deaths among
Americans (1). Low-dose helical computed tomography
(LDCT) has been used for early detection of lung cancer
(2–6). Radiologists, however, may fail to detect lung nod-
ules in CT images that are visible in retrospect (7,8).
Therefore, a computer-aided diagnostic (CAD) scheme for
detecting lung nodules in CT images (9–15) has been
investigated as a tool for improving radiologists’ detection
accuracy. A major problem with current CAD schemes is
a relatively large number of false positives, which is
likely to lower radiologists’ efficiency in using a CAD
scheme. Therefore, it is important to reduce the number
of false positives as much as possible while a high sensi-
tivity is maintained. It is difficult, however, to eliminate
false positives without removal of any true-positive nod-
ules, because variations in patterns of nodules and non-
nodules are large (eg, there are various-sized nodules with
different contrasts and various-sized lung vessels with
different orientations in CT images; actually, the major
source of false positives are lung vessels) (16).

Artificial neural networks (ANNs) have been applied
for distinction between lesions and nonlesions (false posi-
tives) (17,18) and for distinction between malignant and
benign lesions (19–22) in CAD schemes, and they have
been shown to be useful for various CAD schemes (17–
24). For achieving a high and reliable performance for
nontraining cases, a large number of training cases (eg,
400–800 cases) are commonly required (25,26). If an
ANN is trained with only a small number of cases, the
generalization ability (performance for nontraining cases)
will be lower (ie, the ANN may fit only the training
cases); this is known as “overtraining” (or “overfitting”)
(27). Because diagnostic radiology is progressing rapidly
as technology advances, the timely development of CAD
schemes is important. However, it is very difficult to col-
lect a large number of abnormal cases for training, partic-
ularly for a CAD scheme with a new modality, such as
lung cancer screening with multidetector-row CT
(MDCT).

Massive training ANNs (MTANNs) have been devel-
oped for reducing the number of false positives in CAD
schemes for LDCT images (16) and chest radiographs
(28). With an MTANN, 54% of 1,726 false positives
were removed without eliminating any of 58 true-positive
nodules in a database of 63 LDCT scans containing 63
primary lung cancers (16). The MTANN was trained with
only 10 nodules and 10 non-nodules (29), whereas other
ANNs usually require training with a large number of

cases because ANNs generally have a large number of
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parameters to be determined. However, it was not clear
how and why the MTANN can be trained with a small
number of cases and can provide a high performance
even for nontraining cases.

Our purpose in this study was to demonstrate and to
verify that an MTANN can be trained with a small num-
ber of cases in the distinction between nodules and ves-
sels (non-nodules) in a CAD scheme for detecting nod-
ules in thoracic CT images.

MATERIALS AND METHODS

Database
Our database in this study consisted of 68 LDCT scans

acquired from 68 patients who participated voluntarily in
a lung cancer screening program between 1996 and 1999
in Nagano, Japan (2). The CT examinations were per-
formed on a mobile CT scanner (CT-W950SR; Hitachi
Medical, Tokyo, Japan). The CT scans were acquired
with a low-dose protocol of 120 kVp, 25 mA or 50 mA,
10-mm collimation, and a 10-mm reconstruction interval
at a helical pitch of 2. The pixel size was 0.586 mm or
0.684 mm. Each reconstructed CT slice had an image
matrix size of 512 � 512 pixels, and the number of gray
levels was 4,096. The number of CT slices per scan was
31 or 33. The 68 scans included 71 lung cancers that
were determined by biopsy or surgery. The size (effective
diameter) of the 71 cancers ranged from 6 mm to 24 mm,
with a mean of 14 mm. These cancer cases included nod-
ules in three different categories—pure ground glass
opacity (GGO or non-solid) nodules (24% of nodules),
mixed GGO (or part-solid) nodules (30%), and solid nod-
ules (46%). A training set for the MTANNs used in this
study included 10 LDCT scans containing 10 nodules
obtained from our “missed” cancer database (8), in which
38 cancers were not reported or misreported during the
initial clinical interpretation and were identified retrospec-
tively.

Our CAD scheme
Our CAD scheme for detecting lung nodules in CT

(30) consisted of a difference-image technique, a multiple
gray-level–thresholding technique, extraction of image
features, and a rule-based scheme. To summarize the
methodology, lung segmentation was performed by use of
thresholding. Nodules in the segmented lungs were en-
hanced by use of the difference-image technique. Nodule

candidates were identified by application of the multiple
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gray-level–thresholding technique to the nodule-enhanced
images. Morphologic and gray-level–based features were
extracted from nodule candidates. Each candidate was
analyzed for distinction between a nodule and a non-nod-
ule by use of a rule-based scheme with the extracted fea-
tures. When our scheme was applied to the database, a
sensitivity of 83.1% (59 of 71 nodules) with 25.4 false
positives per scan (1,726/68) was achieved. We used the
59 true-positive nodules and 1,726 false positives (non-
nodules) for evaluating MTANNs in this study.

MTANN

The architecture and the training of an MTANN are
shown in Fig 1 (see Appendix for details). The MTANN
is considered to be a trainable, highly nonlinear filter con-
sisting of a linear-output multilayer ANN model (31–35)
that is capable of operating on image data directly. The
MTANN is trained with input images and the correspond-
ing teaching images for enhancement of a specific type of
opacities and suppression of other types of opacities. For
enhancement of nodules and suppression of non-nodules
in CT images, the teaching image contains the distribu-
tion for a “likelihood of being a nodule” (ie, the teaching
image for a nodule contains a two-dimensional [2D]
Gaussian function, and that for non-nodules contains
zero). It is important to note that the teaching with “zero”
for non-nodules is intended to remove non-nodules by use
of the MTANN.

For training of the MTANN, a large number (361 �

19 � 19) of overlapping subregions (9 � 9 pixels) is ob-
tained by scanning pixel by pixel over the training region
(27 � 27 pixels) in an input CT image. The pixel values
in each subregion are entered as input to the MTANN.
The output of the MTANN is a single pixel value, where
the teaching single pixels are obtained by scanning pixel
by pixel over the teaching image (19 � 19 pixels), and
are entered as teacher to the MTANN. The MTANN is
trained by presenting each of the input subregions to-
gether with each of the corresponding teaching single pix-
els. A modified back-propagation algorithm (31–35),
which was derived for the linear-output multilayer ANN
model in the same way as the back-propagation algorithm
(36,37), is used for the training. The MTANN is trained
by adjustment of the weights between layers iteratively so
that the error between the output values and the teaching

values becomes small.
After the training of the MTANN is completed, the
output image is obtained by scanning of an input CT im-
age with the trained MTANN. The trained MTANN is
expected to provide higher values for nodules and lower
values for non-nodules. The distinction between a nodule
and a non-nodule is determined by use of a score defined
as the product of the output image of the trained MTANN
and a 2D Gaussian weighting function. This score repre-
sents the weighted sum of the estimate for the likelihood
that the image contains a nodule near the center (ie, a
higher score would indicate a nodule and a lower score a
non-nodule).

Training for Nodule Enhancement and Vessel
Suppression

For training cases of an MTANN, we used 10 differ-
ent-sized nodules with various contrasts and 10 non-nod-
ule images including medium and small vessels (Fig 2).
The nodules in our database included three groups of
nodule patterns (i.e., pure GGO, mixed GGO, and solid
opacity) (8). The 10 nodules were selected from the three
groups so that various-sized nodules with various con-
trasts were included. The size of the nodules ranged from
small to large enough to cover the size range in our data-
base. The false positives reported by our CAD scheme
included a group of small or medium-sized vessels (about
70% of false positives) and another group of various
opacities. The 10 vessels with relatively high contrast
were selected from the group of small or medium-sized
vessels, because the majority of vessels were of these
sizes. The vessels were oriented in various directions,
such as horizontal, vertical, and diagonal. Parameters such
as the size of the subregion of the MTANN, the standard
deviation of the 2D Gaussian function in the teaching
image, and the size of the teaching image were deter-
mined by experimental analysis (16) to be 9 � 9 pixels,
5.0 pixels, and 19 � 19 pixels, respectively. We em-
ployed a three-layer structure for the MTANN, because it
has been proved theoretically that a three-layer ANN can
approximate any continuous mapping (38,39). The num-
ber of hidden units in the MTANN was determined to be
20 by use of a method for determining the structure of an
ANN (40,41). Thus the numbers of input, hidden, and
output units were 81, 20, and 1, respectively. With these
parameters, the training of the MTANN was performed
500,000 times, and it converged with a mean absolute
error of 0.112.

To gain insight as to how the MTANN can be trained

only with a small number of cases, we trained MTANNs
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with two different numbers of subregions selected from
the same training region (27 � 27 pixels): only one sub-
region (and the corresponding teaching pixel) for each
case and nine (3 � 3) subregions, as shown in Fig 3A
and 3B, respectively. The training of the MTANNs with
one and nine subregions converged with mean absolute
errors of 0.031 and 0.022, respectively. It should be noted
that the use of one training sample for each case corre-

Figure 1. Architecture and training of a
(MTANN) for the distinction between nod
is trained with a large number of subregio
corresponding teaching single pixels in th

Figure 2. Ten nodules and 10 non-nodu
a massive training artificial neural networ
images of the trained MTANN. The nodul
The non-nodule images include medium-
tions, which are the majority of non-nodu
sponds to a conventional method for training an ANN.
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Simulated CT Images
To investigate the basic characteristics of the trained

MTANNs, we created simulated CT images that con-
tained model nodules and model vessels. A nodule was
modeled as a sphere, and a vessel as a cylinder. The sim-
ulated images included various-sized model nodules (8.0
mm, 14.0 mm, and 20.0 mm in diameter) with low, me-
dium, and high contrast (200 Hounsfield units [HU], 400

ive training artificial neural network
and non-nodules (vessels). The MTANN
elected from the input images and the
ching images.

ages including vessels used for training
ANN), and the corresponding output
e various-sized with different contrasts.
and small vessels with various orienta-
the lungs.
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3.0 mm, and 4.0 mm in diameter) with different orienta-
tions such as horizontal, vertical, and diagonal, and model
nodules overlapping with model vessels, as shown in Fig
3A. We created the same-sized model nodules with dif-
ferent contrasts, because solid opacity and GGO of the
same size have different contrasts. The background level
was –900 HU, which corresponds to the average back-
ground level in the lungs.

RESULTS

Figure 2 shows the input images used for training the
MTANN and also the output images of the trained
MTANN. It is apparent that the nodules are represented
by light “fuzzy nodular” distributions in the output im-
ages, whereas the vessels are dark and thus “almost re-
moved.” Figure 4 shows (A) the simulated CT image, (B)
the output image of the MTANN trained with one train-
ing sample (a pair of an input subregion and a teaching
pixel) in each case, (C) the output image of the MTANN
trained with nine (3 � 3) training samples, and (D) the
output image of the MTANN trained with 361 (19 � 19)
training samples. In the output images of the MTANNs
trained with one and nine training samples in Fig 4B and

Figure 3. Illustration of two differen
region and the corresponding teachin
region (27 � 27 pixels in an input im
image). (a) One training sample in ea
training artificial neural network (MTA
image is shown. The location of a te
that corresponds to the center pixel
input image. (b) Nine (3 � 3) training
ing another MTANN.
4C, both model nodules and model vessels are clearly
recognizable, and it is important to note that vessels are
not removed. Therefore, it is apparent in Fig 4B and 4C
that the MTANNs were not trained properly with only
one subregion and also with nine subregions. In the out-
put image of the trained MTANN in Fig 4D, however,
the various-sized model nodules with different contrasts
are represented by light “nodular” distributions, whereas
various-sized model vessels with different orientations are
almost dark, and are thus removed. Therefore, it is appar-
ent in Fig 4D that model nodules can be distinguished
from model vessels. This result indicates that the
MTANN was able to learn from a very small number of
training actual cases (10 actual nodules and 10 actual ves-
sel images) to enhance spherelike objects (model nodules)
and suppress cylinder-like objects (model vessels), and
that the trained MTANN would be robust against a
change in scale and rotation. Thus the key to achieving a
high generalization ability of the MTANN would be re-
lated to scanning over the training cases, producing a
large number of training samples.

To investigate the performance for actual nodules and
vessels, we applied the trained MTANN to nontraining
cases. Figure 5 shows the output images of the trained
MTANN, where various-sized actual nodules with differ-

ning samples (pairs of an input sub-
gle pixel) selected from the training
nd 19 � 19 pixels in a teaching
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The training region in a teaching
g pixel is shown as a dark square
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tions, whereas medium-sized and small actual vessels
with different orientations are almost eliminated. The per-
formance of three MTANNs was evaluated by receiver
operating characteristic (ROC) analysis (42,43). Figure 6
shows the ROC curve of each MTANN for distinction
between nodules and non-nodules by use of nontraining
cases of 59 true-positive nodules and 1,726 false positives
(non-nodules). The Az values (areas under the ROC
curve) (44) for the MTANNs that were trained with 1, 9,
and 361 subregions were 0.60, 0.73, and 0.89, respec-
tively. This result indicates that a large number of train-
ing samples would be essential in providing a high gener-
alization ability of the MTANN, although the number of

Figure 4. Simulated computed tomogra
nodules with different contrasts and vario
tations, and the corresponding output im
networks (MTANNs) trained with 10 nodu
for the MTANNs. (b) Output image of the
each case. (c) Output image of the MTAN
(d) Output image of the MTANN trained w

Figure 5. Illustrations of non-training ac
sponding output images of the massive t
361 subregions.
training cases was rather small.
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DISCUSSION

The results of this study suggest that massive training
with a large number of training samples allowed an
MTANN to be trained with a very small number of cases
(10 nodules and 10 non-nodule images). By dividing a
case (image) into a large number of subregions (19 �
19), the MTANN can be trained not on a case basis, but
on a subregion basis. A large number of training subre-
gions (361 for each case) can include various parts of a
nodule and various parts of vessels in different sizes and
orientations. This would be the reason that the MTANN
was robust against the change in scale and rotation, as

image that contains various-sized model
ized model vessels with different orien-
of the massive training artificial neural
nd 10 vessel images. (a) Input image
NN trained with one training sample in

ained with nine (3 � 3) training samples.
61 (19 � 19) training samples.

odules and vessels, and the corre-
g artificial neural network trained with
phy
us-s
ages
les a
MTA
N tr

ith 3

tual n
rainin
shown in Fig 4, even when trained with a very small
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number of cases. The massive training with a large num-
ber of training samples (361 samples � 20 cases � 7,220
samples) allows an MTANN to avoid the “overfitting”
problem (27) of ANNs. This problem often occurs when
a number of training samples are too small for determin-
ing the parameters of an ANN. The required number of
training samples is, in general, greater than the number of
parameters of an ANN. For example, an ANN with a
9-9-1 structure (9 inputs � 9 input-hidden-layer weights
� 9 hidden-output-layer weights � 10 offsets � 100 pa-
rameters) required 400–800 training samples to achieve
an adequate performance for non-training cases (25). The
massive training with a large number of training samples
(7,22), which are not completely independent, however,
would contribute to the proper determination of the pa-
rameters (81 inputs � 20 input-hidden-layer weights �
20 hidden-output-layer weights � 21 offsets � 1,661 pa-
rameters) of the MTANN, and avoid the overfitting prob-
lem. This is probably the reason that the MTANN had a
high generalization ability, as shown in the results for the
simulated CT images in Fig 4 and also those for non-
training cases in Fig 5.

In this study, we investigated how an MTANN can
be trained adequately with a small number of cases in

Figure 6. Receiver operating characteristic curves for massive
training artificial neural networks (MTANNs) trained with different
numbers of subregions for distinction between 59 true-positive
nodules and 1,726 false positives (non-nodules). The Az values
for the MTANNs trained with 1, 9, and 361 subregions were 0.60,
0.73, and 0.89, respectively.
the distinction between nodules and vessels. An
MTANN is, however, applicable to the distinction be-
tween nodules and other types of normal anatomic
structures other than vessels in a CAD scheme. In fact,
we have developed a multiple MTANN scheme (multi-
MTANN) that consisted of nine MTANNs for remov-
ing nine types of false positives (non-nodules) (ie, five
different types of vessels ranging from small to
medium-sized, large vessels in the hilum, relatively
large vessels with some opacities, soft-tissue opacities
caused by the partial volume effect, and focal intersti-
tial opacities) (16). Each of the MTANNs in the multi-
MTANN was able to be adequately trained with a
small number of cases (10 nodules and 90 non-nodules
in total). The results in an independent test showed that
the multi-MTANN removed 83% of the false positives
generated by our initial CAD scheme with the loss of
one true positive (ie, a classification sensitivity of
98.3%). With the multi-MTANN, the false-positive rate
of our original CAD scheme was improved from 27.4
to 4.8 false positives per scan at an overall sensitivity
of 80.3% for the database of 63 LDCT scans contain-
ing 71 nodules including 66 primary cancers. For test-
ing the versatility of a multi-MTANN, we applied it to
a different CAD scheme based on a difference-image
technique (30). Our CAD scheme incorporating the
multi-MTANN achieved a sensitivity of 83.5% with
5.8 false positives per scan for the database of 106
LDCT scans containing 109 cancers. Moreover, we
have investigated the feasibility of a multi-MTANN for
thin-slice CT, and developed a multi-MTANN for thin-
slice CT images (slice thickness was 1.25 or 2.5 mm)
acquired with a MDCT system (45). Our scheme incor-
porating the multi-MTANN trained with 10 nodules
and 80 non-nodules achieved a sensitivity of 95.2%
with 6.6 false positives per scan for the database of 32
MDCT scans containing 62 nodules. In addition, we
have investigated the application of a multi-MTANN to
the classification of abnormal lesions, and developed a
multi-MTANN for the distinction between malignant
and benign nodules in LDCT (46). The multi-MTANN
trained with 10 malignant nodules and 60 benign nod-
ules achieved an Az value of 0.882 for the database
consisting of 76 primary cancers and 413 benign nod-
ules. The multi-MTANN correctly identified 100% of
malignant nodules as malignant, whereas 48% of be-
nign nodules were identified correctly as benign. Thus
MTANNs are versatile and can be adequately trained
with a small number of cases in different tasks in CAD

schemes.
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APPENDIX

The inputs of the MTANN are the pixel values in a
subregion RS on an input CT image I(x,y). The output of
the MTANN is an estimate O(x,y) for a teaching value,
represented by

O(x, y) � NN�I(x � i, y � j)�i, j � RS� (1)

where x and y are the indices of coordinates, and NN{●}
is the output of a linear-output multilayer ANN. The
MTANN is trained with a large number of subregions

selected from input CT images together with the corre-
sponding teaching pixels in teaching images T(x,y). The
error to be minimized by training of the MTANN is de-
fined by

E �
1

P �
x,y�RT

�T(x, y) � O(x, y)�2 (2)

where P is the number of teaching pixels in the training
region RT. The output image is obtained by scanning of
an input CT image with the trained MTANN. For distinc-
tion between a nodule and a non-nodule, a scoring
method is applied to the output images of the trained
MTANN. The score is defined by use of the output image
and a 2D Gaussian weighting function, as described here:

S � �
x,y�RE

fG(�;x, y) � O(x, y) (3)

where S is the output score for a given nodule candidate
from the MTANN, RE is the region for evaluation, O(x,y)
is the output image of the MTANN where its center cor-
responds to the center of RE, and fG(�;x,y) is a 2D Gauss-
ian weighting function with standard deviation �, with its

center corresponding to the center of RE.
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