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Abstract

Computer-aided diagnosis (CAD) has been an active area of study in medical
image analysis. A filter for the enhancement of lesions plays an important
role for improving the sensitivity and specificity in CAD schemes. The
filter enhances objects similar to a model employed in the filter; e.g. a blob-
enhancement filter based on the Hessian matrix enhances sphere-like objects.
Actual lesions, however, often differ from a simple model; e.g. a lung nodule is
generally modeled as a solid sphere, but there are nodules of various shapes and
with internal inhomogeneities such as a nodule with spiculations and ground-
glass opacity. Thus, conventional filters often fail to enhance actual lesions.
Our purpose in this study was to develop a supervised filter for the enhancement
of actual lesions (as opposed to a lesion model) by use of a massive-training
artificial neural network (MTANN) in a CAD scheme for detection of lung
nodules in CT. The MTANN filter was trained with actual nodules in CT
images to enhance actual patterns of nodules. By use of the MTANN filter,
the sensitivity and specificity of our CAD scheme were improved substantially.
With a database of 69 lung cancers, nodule candidate detection by the MTANN
filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section,
whereas nodule candidate detection by a difference-image technique achieved
a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were
applied for further reduction of the FPs. The classification-MTANNs removed
60% of the FPs with a loss of one true positive; thus, it achieved a 96%
sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on
the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs
per section was achieved.
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1. Introduction

Computer-aided diagnosis (CAD) (Giger and Suzuki 2007) has been an active area of study in
medical image analysis, because evidence suggests that CAD can help improve the diagnostic
performance of radiologists in their image interpretations (Li et al 2004, 2005, Dean and
Ilvento 2006). Many investigators have participated in and developed CAD schemes for
detection/diagnosis of lesions in medical images, such as detection of lung nodules in
chest radiographs (Giger et al 1988, van Ginneken et al 2001, Suzuki et al 2005b) and in
thoracic CT (Armato et al 1999, 2002, Suzuki et al 2003a, Arimura et al 2004), detection of
microcalcifications/masses in mammography (Chan et al 1987), breast MRI (Gilhuijs et al
1998) and breast US (Horsch et al 2004, Drukker et al 2005), and detection of polyps in CT
colonography (Yoshida and Nappi 2001, Suzuki et al 2006b, 2008b).

A generic CAD scheme consists of segmentation of the target organ, detection of lesion
candidates, feature analysis of the detected candidates and classification of the candidates into
lesions or non-lesions based on the features. For CT images, thresholding-based methods
such as multiple thresholding (Giger et al 1988, Xu et al 1997, Aoyama et al 2002, Bae
et al 2002) are often used for detection of lesion candidates. With such methods, the
specificity can generally be low, because normal structures of gray levels similar to those
of lesions could be detected erroneously as lesions. To obtain a high specificity as well
as sensitivity, some researchers employ a filter for the enhancement of lesions before the
lesion-candidate-detection step. Such a filter aims at enhancement of lesions and sometimes
suppression of noise. The filter enhances objects similar to a model employed in the filter.
For example, a blob-enhancement filter based on the Hessian matrix enhances sphere-like
objects (Frangi et al 1999). A difference-image technique employs a filter designed for the
enhancement of nodules and suppression of noise in chest radiographs (Xu et al 1997).

Actual lesions, however, are not simple enough to be modeled accurately by a simple
equation in many cases. For example, a lung nodule is generally modeled as a solid sphere,
but there are nodules of various shapes and with internal inhomogeneities such as spiculated
opacity and ground-glass opacity. A polyp in the colon is modeled as a bulbous object, but
there are also polyps which exhibit a flat shape (Lostumbo et al 2007). Thus, conventional
filters often fail to enhance actual lesions. Moreover, such filters enhance any objects similar
to a model employed in the filter. For example, a blob-enhancement filter enhances not only
spherical solid nodules, but also any spherical parts of objects in the lungs such as vessel
crossing, vessel branching and a part of a vessel, which leads to a low specificity. Therefore,
methods which can enhance actual lesions accurately (as opposed to enhancing a simple model)
are demanded for the improvement of the sensitivity and specificity of the lesion-candidate
detection and thus of the entire CAD scheme.

We believe that enhancing actual lesions requires some form of ‘learning from examples’;
thus, machine learning plays an essential role. To enhance actual lesions accurately, we
develop a supervised filter based on a machine-learning technique called a massive-training
artificial neural network (MTANN) (Suzuki et al 2003a) filter in a CAD scheme for detection
of lung nodules in CT in this study. By the extension of ‘neural filters’ (Suzuki et al 2002)
and ‘neural edge enhancers’ (Suzuki et al 2003b, 2004), which are ANN-based (Rumelhart
et al 1986) supervised nonlinear image-processing techniques, MTANNs (Suzuki et al 2003a)
have been developed for accommodating the task of distinguishing a specific opacity from
other opacities in medical images. MTANNs have been applied for the reduction of false
positives (FPs) in the computerized detection of lung nodules in low-dose CT (Suzuki et al
2003a, Arimura et al 2004) and chest radiography (Suzuki et al 2005b), for distinction between
benign and malignant lung nodules in CT (Suzuki et al 2005a), for the suppression of ribs in
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Figure 1. Architecture of a MTANN consisting of a LOR-ANN model with sub-region input and
single-pixel output. All pixel values in a sub-region extracted from an input CT image are entered
as input to the LOR-ANN. The LOR-ANN outputs a single pixel value for each sub-region, the
location of which corresponds to the center pixel in the sub-region. Output pixel value is mapped
back to the corresponding pixel in the output image.

chest radiographs (Suzuki et al 2006a) and for the reduction of FPs in computerized detection
of polyps in CT colonography (Suzuki et al 2006b, 2008b). The MTANN filter is trained with
actual lesions in CT images to enhance the actual patterns of the lesions (Suzuki et al 2008a).
We evaluate and compare the performance of our CAD scheme incorporating the MTANN
filter with that of a CAD scheme with a conventional filter.

2. Materials and methods

2.1. A supervised ‘lesion-enhancement’ MTANN filter

2.1.1. Architecture of a MTANN filter. The architecture of a MTANN-supervised filter is
shown in figure 1. A MTANN filter consists of a linear-output regression ANN (LOR-ANN)
model (Suzuki et al 2003b), which is a regression-type ANN capable of operating on pixel data
directly. The MTANN filter is trained with input CT images and the corresponding ‘teaching’
images that contain a map for the ‘likelihood of being lesions’. The pixel values of the
input images are linearly scaled such that −1000 Hounsfield units (HU) corresponds to 0 and
1000 HU corresponds to 1 (values below 0 and above 1 are allowed). The input to the MTANN
filter consists of pixel values in a sub-region, RS, extracted from an input image. The output
of the MTANN filter is a continuous scalar value, which is associated with the center pixel in
the sub-region, and is represented by

O(x, y) = LORANN{I (x − i, y − j)|(i, j) ∈ RS}, (1)

where x and y are the coordinate indices, LORANN{·} is the output of the LOR-ANN
model and I(x, y) is a pixel value in the input image. The LOR-ANN employs a linear
function, fL(u) = a · u + 0.5, instead of a sigmoid function, fS(u) = 1/{1 + exp(−u)}, as the
activation function of the output layer unit because the characteristics and performance of
an ANN are improved significantly with a linear function when applied to the continuous
mapping of values in image processing (Suzuki et al 2003b). Note that the activation function
in the hidden layers is still a sigmoid function. For processing of the entire image, the
scanning of an input CT image with the MTANN is performed pixel by pixel, as illustrated in
figure 2(b).
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Figure 2. Training and application of a MTANN filter for enhancement of lesions. (a) Training of
a MTANN filter. The input CT image is divided pixel by pixel into a large number of overlapping
sub-regions. The corresponding pixels are extracted from the ‘teaching’ image containing the
‘likelihood of being a lesion.’ The MTANN filter is trained with pairs of the input sub-regions
and the corresponding teaching pixels. (b) Application of the trained MTANN filter to a new CT
image. Scanning with the trained MTANN filter is performed for obtaining pixel values in the
entire output image.

2.1.2. Training of a MTANN filter. For the enhancement of lesions and suppression of non-
lesions in CT images, the teaching image T(x, y) contains a map of the ‘likelihood of being
lesions’, as illustrated in figure 2(a). To create the teaching image, we first segment lesions
manually for obtaining a binary image with 1 being lesion pixels and 0 being non-lesion pixels.
Then, Gaussian smoothing is applied to the binary image for smoothing down the edges of the
segmented lesions, because the likelihood of being lesions should gradually be diminished as
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the distance from the boundary of the lesion decreases. Note that the ANN was not able to be
trained when binary teaching images were used.

The MTANN filter involves training with a large number of pairs of sub-regions and
pixels; we call it a massive-sub-region training scheme. For the enrichment of the training
samples, a training image, RT, extracted from the input CT image is divided pixel by pixel into
a large number of sub-regions. Note that close sub-regions overlap each other. Single pixels
are extracted from the corresponding teaching image as teaching values. The MTANN filter is
massively trained by use of each of a large number of input sub-regions together with each of
the corresponding teaching single pixels; hence the term ‘massive-training ANN’. The error
to be minimized by training of the MTANN filter is given by

E = 1

P

∑

c

∑

(x,y)∈RT

{Tc(x, y) − Oc(x, y)}2, (2)

where c is a training case number, Oc is the output of the MTANN for the cth case, Tc is the
teaching value for the MTANN for the cth case and P is the number of total training pixels
in the training images, RT. The MTANN filter is trained by a linear-output back-propagation
algorithm where the generalized delta rule (Rumelhart et al 1986) is applied to the LOR-ANN
architecture (Suzuki et al 2003b). After training, the MTANN filter is expected to output the
highest value when a lesion is located at the center of the sub-region of the MTANN filter,
a lower value as the distance from the sub-region center increases and zero when the input
sub-region contains a non-lesion.

2.2. Experiments

2.2.1. Database of lung nodules in CT. To test the performance of the MTANN filter, we
applied it to our CT database consisting of 69 lung cancers in 69 patients (Li et al 2002).
The scans used for this study were acquired with a low-dose protocol of 120 kVp, 25 mA or
50 mA, 10 mm collimation and a 10 mm reconstruction interval at a helical pitch of two. The
reconstructed CT images were 512 × 512 pixels in size with a section thickness of 10 mm.
The 69 CT scans consisted of 2052 sections. All cancers were confirmed either by biopsy or
surgically. The locations of the cancers were determined by an expert chest radiologist.

2.2.2. Enhancement of nodules in the lungs in CT. To limit the processing area to the lungs,
we segmented the lung regions in a CT image by use of thresholding based on Otsu’s threshold
value determination (Otsu 1979). Then, we applied a ‘rolling-ball’ technique (Hanson 1992),
which is a mathematical morphology operator, along the outlines of the extracted lung regions
to include a nodule attached to the pleura in the segmented lung regions (Armato et al 2001).

To enhance lung nodules in CT images, we trained a MTANN filter with 13 lung nodules
in a training database which was different from the testing database and the corresponding
‘teaching’ images that contained maps for the ‘likelihood of being nodules’, as illustrated in
figure 2(a). To obtain the training regions, RT, we applied a mathematical morphology opening
filter to the manually segmented lung nodules (i.e. binary regions) such that the training regions
sufficiently covered nodules and surrounding normal structures (i.e. a nine times larger area
than the nodule region, on average). A three-layer structure was employed for the MTANN
filter, because any continuous mapping can be approximated by a three-layer ANN (Funahashi
1989). The number of hidden units was selected to be 20 by use of a method for designing
the structure of an ANN (Suzuki et al 2001, Suzuki 2004). The method is a sensitivity-
based pruning method, i.e. the sensitivity to the training error was calculated when a certain
unit was removed experimentally, and the unit with the smallest training error was removed.
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Figure 3. Comparison of a standard CAD scheme with a MTANN-based CAD scheme.
(a) Schematic diagram of a standard CAD scheme. (b) Schematic diagram of a MTANN-based
CAD scheme.

Removing the redundant hidden units and retraining for recovering the potential loss due to
the removal were performed alternately, resulting in a reduced structure where redundant units
were removed. The size of the input sub-region, RS, was 9 by 9 pixels, which was determined
experimentally in our previous studies, i.e. the highest performance was obtained with this
size (Suzuki et al 2003a, Arimura et al 2004, Suzuki and Doi 2005); thus, the number of input
units in the MTANN filter was 81. The slope of the linear function, a, was 0.01. With the
above parameters, the training of the MTANN filter was performed by 1 000 000 iterations.
To test the performance, we applied the trained MTANN filter to the entire lungs. We applied
thresholding to the output images of the trained MTANN filter to detect nodule candidates.
We compared the results of nodule-candidate detection with and without the MTANN
filter.

2.2.3. A CAD scheme incorporating the MTANN lesion enhancement. A previously reported
CAD scheme (Arimura et al 2004) for lung nodule detection in CT is shown in figure 3(a). The
CAD scheme employs a standard approach which consists of lung segmentation, a difference-
image technique for enhancing nodules (Xu et al 1997), multiple thresholding for detection of
nodule candidates, feature extraction of the detected nodule candidates, a rule-based scheme
for the reduction of FPs and linear discriminant analysis (LDA) for the final FP reduction. The
difference-image technique uses two different filters: a matched filter is used for enhancing
nodule-like objects in CT images and a ring-average filter is used for suppressing nodule-like
objects.

We incorporated the MTANN lesion-enhancement filter in our CAD scheme to improve
the overall performance. A schematic diagram of our MTANN-based CAD scheme is shown
in figure 3(b). In the MTANN-based CAD scheme, nodule candidates are detected (localized)
by the MTANN lesion-enhancement filter followed by thresholding. The detected nodule
candidates generally include true positives and mostly FPs. (If the distance between the
center of a nodule and the centroid of a nodule candidate is less than or equal to 10 mm, the
candidate is considered a true positive, otherwise an FP.) For the reduction of the FPs, we used
the previously reported multiple MTANNs (Suzuki et al 2003a, 2008b) for classification of
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Figure 4. Architecture and training of a MTANN for classification of candidates into a nodule or
a non-nodule. A teaching image of a nodule contains a Gaussian distribution at the center of the
image, whereas that of a non-nodule contains zero (i.e. it is completely dark).

the detected nodule candidates into nodules or non-nodules, i.e. the multiple MTANNs were
used as a classifier. The architecture and training of the classification-MTANN are shown in
figure 4. For distinction between nodules (i.e. true positives) and non-nodules (i.e. FPs), the
teaching image contains a 2D distribution of values that represents the ‘likelihood of being a
nodule’. We used a 2D Gaussian distribution, the peak of which is located at the center of a
nodule, as a teaching image for a nodule and an image that contains zero (i.e. completely dark)
for a non-nodule. We trained six classification-MTANNs with ten typical nodules and six
different types of non-nodules such as medium-sized vessels, small vessels and large vessels
from a training database, because these six types were six major sources of FPs based on
the visual judgment and knowledge gained from our previous studies (Suzuki et al 2003a,
Arimura et al 2004, Suzuki and Doi 2005). The trained classification-MTANN provided some
distribution similar to the teaching 2D Gaussian distribution for a nodule and darker pixels for a
non-nodule. A scoring method was applied to the output images of the classification-MTANNs
to combine pixel-based output responses into a single score for each nodule candidate. The
scores indicating the likelihood of being a nodule from the six classification-MTANNs were
combined with LDA to form a mixture of expert classification-MTANNs, i.e. a decision
boundary in the six-dimensional score space was determined by using LDA. To compare the
performance of the MTANN-based CAD scheme with that of the previously reported CAD
scheme (Arimura et al 2004), we applied the two schemes to the same database. We used a
leave-one-out cross-validation test for testing the LDA in the mixture of expert MTANNs and
the LDA in the standard CAD scheme. We evaluated the performance by using free-response
receiver-operating-characteristic (FROC) analysis (Egan et al 1961).

3. Results

3.1. Enhancement of nodules in the lungs on CT images

We applied the trained MTANN filter to original CT images. The results of enhancement
of nodules in CT images by the trained MTANN filter (Suzuki et al 2008a) are shown in
figures 5–7. The MTANN filter enhances nodules and suppresses most of the normal structures
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Figure 5. Enhancement of a lesion by the trained lesion-enhancement MTANN filter for a non-
training case (case A). (a) Original image of the segmented lung with a nodule (indicated by
an arrow). (b) Output image of the trained lesion-enhancement MTANN filter. The nodule is
enhanced, whereas most of the normal structures are suppressed. (c) Nodule candidates detected
by the trained lesion-enhancement MTANN followed by thresholding. (d) Nodule candidates
detected by simple thresholding only.

in CT images. Although some medium-sized vessels in cases A, B and C (figures 5–7) and
some of the large vessels in the hilum in cases B and C (figures 6 and 7) remain in the
output images, the nodules with spiculation in cases A and B (figures 5 and 6) and the nodule
attached to the pleura in case C (figure 7) are enhanced well. We applied thresholding with a
single threshold value (65% of the maximum gray scale) to the output images of the trained
MTANN filter. There is a smaller number of candidates in the MTANN-based images, as
shown in figures 5–7(c), whereas there are many nodule candidates in binary images obtained
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Figure 6. Enhancement of a lesion by the trained lesion-enhancement MTANN filter for a non-
training case (case B). (a) Original image of the segmented lung with a nodule (indicated by
an arrow). (b) Output image of the trained lesion-enhancement MTANN filter. The nodule is
enhanced, whereas most of the normal structures are suppressed. (c) Nodule candidates detected
by the trained lesion-enhancement MTANN followed by thresholding. (d) Nodule candidates
detected by simple thresholding only.

by use of simple thresholding without the MTANN filter, as shown in figures 5–7(d). Note
that the large vessels in the hilum can easily be separated from nodules by use of their area
information.

3.2. Performance of a CAD scheme

The MTANN filter followed by thresholding identified 97% (67/69) of cancers with 6.7 FPs
per section. The six classification-MTANNs were applied to the nodule candidates (true
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Figure 7. Enhancement of a lesion by the trained lesion-enhancement MTANN filter for a non-
training case (case C). (a) Original image of the segmented lung with a nodule (indicated by
an arrow). (b) Output image of the trained lesion-enhancement MTANN filter. The nodule is
enhanced, whereas most of the normal structures are suppressed. (c) Nodule candidates detected
by the trained lesion-enhancement MTANN followed by thresholding. (d) Nodule candidates
detected by simple thresholding only.

positives and FPs) for classification of the candidates into nodules or non-nodules. The scores
from the six classification-MTANNs are shown in figure 8. Although the distributions for
nodules and non-nodules overlap, each expert classification-MTANN removes different FPs;
thus, many more nodules can be separated from non-nodules by decision boundaries than does
a single classification-MTANN. The LDA in the mixture of expert classification-MTANNs
determined a hyper-plane for classifying them in the six-dimensional score space. The FROC
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Figure 8. Distributions of scores from the 6 classification-MTANNs for 67 nodules (white
circles) and 13 688 non-nodules (black dots) detected by the lesion-enhancement MTANN filter
followed by thresholding. (a) Distributions of scores from classification-MTANN nos 1 and 2. (b)
Distributions of scores from classification-MTANN nos 3 and 4. (c) Distributions of scores from
classification-MTANN nos 5 and 6.

curve indicating the performance of the mixture of expert MTANNs is shown in figure 9. The
mixture of expert MTANNs was able to remove 60% (8172/13 688) or 93% (12 667/13 688)
of non-nodules (FPs) with a loss of one true positive or ten true positives, respectively.
Thus, our MTANN-based CAD scheme achieved a 96% (66/69) or 84% (57/69) sensitivity
with 2.7 (5516/2052) or 0.5 (1021/2052) FPs per section, respectively, as shown in table 1.
The remaining true-positive nodules included a ground-glass opacity, a cancer overlapping
vessels and a cancer touching the pleura. In contrast, the difference-image technique followed
by multiple thresholding in the previously reported CAD scheme detected 96% (66/69) of
cancers with 19.3 FPs per section. Thus, the MTANN lesion-enhancement filter was effective
for improving the sensitivity and specificity of a CAD scheme. The feature analysis and the
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Figure 9. Performance of the mixture of expert MTANNs for classification between 67 nodules
and 13 688 non-nodules. The FROC curve indicates that the mixture of expert MTANNs yielded
a reduction of 60% (8172/13 688) or 93% (12 667/13 688) of non-nodules (FPs) with a loss of
one true positive or ten true positives, respectively, i.e. it achieved a 96% (66/69) or 84% (57/69)
sensitivity with 2.7 (5516/2052) or 0.5 (1021/2052) FPs per section, respectively.

Table 1. Comparison of the performance of the previously reported CAD scheme with that of the
MTANN-based CAD scheme at different stages.

Previously reported CAD scheme MTANN-based CAD scheme

Nodule candidate detection 96% sensitivity with Nodule candidate 97% sensitivity with
by multiple thresholding 19.3 FPs/section detection by MTANN 6.7 FPs/section

Feature analysis and 96% sensitivity with 96% sensitivity with
rule-based scheme 9.3 FPs/section 2.7 FPs/section

Classification by MTANN
Classification 84% sensitivity with 84% sensitivity with

by LDA 1.4 FPs/section 0.5 FPs/section

rule-based scheme removed FPs further and achieved 9.3 FPs per section. Finally, with
LDA, the previously reported CAD scheme yielded a sensitivity of 84% (57/69) with 1.4
(2873/2052) FPs per section (the difference between the specificity of the previously reported
CAD scheme and that of our new MTANN-based CAD scheme at the 84% sensitivity level was
statistically significant (P < 0.05) (Edwards et al 2002)). Table 1 summarizes the comparison
of the performance of the previously reported CAD scheme with that of the MTANN-based
CAD scheme at different stages. Therefore, MTANNs were effective for improving the
sensitivity and specificity of a CAD scheme.

4. Discussion

In this study, we used LDA in the mixture of MTANNs instead of the ANN used in our
previous studies (Suzuki et al 2006b, 2008b), because performing a leave-one-out cross-
validation test for an ANN with 13 755 samples (67 positive + 13 688 negative samples) takes
a tremendous amount of time (i.e. training of 13 755 ANNs is required). Because an ANN can
provide a nonlinear boundary as opposed to a linear boundary by LDA, the performance of an
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ANN-based mixture of expert MTANNs can potentially be higher than that of the LDA-based
mixture of expert MTANNs reported in this study. We will need to demonstrate this in the
future.

In a previous study (Suzuki et al 2006b), we investigated the effect of the intra- and inter-
observer variations in selecting training cases on the performance of a MTANN, because the
performance would depend on the manual selection of training cases. The differences in the
performance of the trained MTANNs with the three different sets selected by the same observer
at different times (i.e. the intra-observer variation) were not statistically significant (two-tailed
p-value > 0.05). The performance of the trained 3D MTANNs depended on which observer
selected the training cases (i.e. the inter-observer variation), although these differences were
not statistically significant (two-tailed p-value > 0.05). Therefore, changing training nodules
for MTANNs could change the performance of MTANNs, but we expect that these changes
would not be significant.

In our previous study (Suzuki et al 2005a), we performed an experiment to gain an insight
into the enrichment of the input information to a MTANN by the division of cases into sub-
regions. We examined the relationship between ten training lesions and 76 lesions in the
entire database in the input multidimensional vector space. We applied principal-component
analysis (also referred to as Karhune–Loeve analysis) (Oja 1983) on the input vector to the
MTANN. The result of our analysis showed that the ten training cases represented the entire
database of 76 cases very well in the input vector space, i.e. the ten training lesions covered,
on average, 94% of the components of each lesion. Because all components of each lesion are
combined with the scoring method in the MTANN, the non-covered 6% of components would
not be critical at all for the classification accuracy. Thus, the division of each lesion into a large
number of sub-regions enriched the input information on lesions for the MTANN. We believe
that this enrichment process would contribute to the generalization ability of MTANNs.

In our previous study (Suzuki et al 2005a), we did experiments to examine the effect of
the number of MTANNs and that of the number of hidden units on the performance of multiple
MTANNs. In the experiments, we used a relatively large database containing 76 malignant
nodules and 413 benign nodules in thoracic CT. The result showed that, as the number of
MTANNs increased from two to eight, the area under the ROC curve (AUC) value went up
from 0.81 and peaked at 0.88 when the number of MTANNs was six, and then declined to
0.84. As to the number of hidden units, as the number of hidden units increased from 2 to 7,
the AUC value went up from 0.84 and peaked at 0.88 when the number of MTANNs was 4,
and then declined to 0.86. Therefore, we expect that a similar trend would be observed for
MTANNs in this study.

A limitation of this study is the number of nodule cases: use of a larger database will
provide more reliable evaluation results for the performance of a CAD scheme. However, it
should be noted that 69 testing nodule cases are different from 13 training nodules used for
the MTANN lesion-enhancement filter or 10 training nodules for the classification MTANN.
Therefore, we believe that the results obtained in this study can be generalizable, and we
expect that the performance of the MTANN-based CAD scheme for a large database would
potentially be comparable to that obtained in this study.

5. Conclusion

The MTANN-supervised filter was effective for the enhancement of lesions and suppression
of non-lesions in medical images and was able to improve the sensitivity and specificity of a
CAD scheme substantially.
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