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Abstract—We propose a feature selection method based on a se-
quential forward floating selection (SFFS) procedure to improve
the performance of a classifier in computerized detection of polyps
in CT colonography (CTC). The feature selection method is cou-
pled with a nonlinear support vector machine (SVM) classifier. Un-
like the conventional linear method based on Wilks’ lambda, the
proposed method selected the most relevant features that would
maximize the area under the receiver operating characteristic
curve (AUC), which directly maximizes classification performance,
evaluated based on AUC value, in the computer-aided detection
(CADe) scheme. We presented two variants of the proposed method
with different stopping criteria used in the SFFS procedure. The
first variant searched all feature combinations allowed in the SFFS
procedure and selected the subsets that maximize the AUC val-
ues. The second variant performed a statistical test at each step
during the SFFS procedure, and it was terminated if the increase
in the AUC value was not statistically significant. The advantage
of the second variant is its lower computational cost. To test the
performance of the proposed method, we compared it against the
popular stepwise feature selection method based on Wilks’ lambda
for a colonic-polyp database (25 polyps and 2624 nonpolyps). We
extracted 75 morphologic, gray-level-based, and texture features
from the segmented lesion candidate regions. The two variants of
the proposed feature selection method chose 29 and 7 features, re-
spectively. Two SVM classifiers trained with these selected features
yielded a 96 % by-polyp sensitivity at false-positive (FP) rates of 4.1
and 6.5 per patient, respectively. Experiments showed a significant
improvement in the performance of the classifier with the proposed
feature selection method over that with the popular stepwise fea-
ture selection based on Wilks’ lambda that yielded 18.0 FPs per
patient at the same sensitivity level.

Index Terms—Colonic polyps, computer-aided detection
(CADe), feature selection, support vector machines (SVMs).

1. INTRODUCTION

OLORECTAL cancer is one of the leading causes of mor-
C tality due to cancer in the United States [1]. Early detection
is critical in reducing the risk of death due to colon cancer. How-
ever, early detection of polyps in CTC is difficult because of the
similar appearance of various nonlesions. Therefore, there has
been a great interest in the development of computer-aided de-
tection (CADe) schemes for early detection of polyps in CTC
to improve the detection sensitivity and specificity [2]-[4].
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A CADe scheme generally consists of candidate detection
followed by supervised classification [5]. The task of candidate
detection is to achieve high detection sensitivity by including
as many suspicious lesions as possible. A common approach
to classification in a CADe scheme is to extract many texture,
gray-level-based, geometric, and other features based on domain
knowledge. However, not all of these extracted features might be
helpful in discriminating lesions from nonlesions. Therefore, in
the design of an effective classifier, it is critical to select the most
discriminant features to differentiate lesions from nonlesions.

Feature selection has long been an active research topic in
machine learning [6]-[8], because it is one of the main factors
that determines the performance of a classifier. In the context of
the CADe research field, one of the most popular feature selec-
tion methods is the stepwise feature selection based on Wilks’
lambda coupled with linear discriminant analysis (LDA). The
method has been applied in various CADe schemes because of
its simplicity and effectiveness [9], [10]. Recently, feature rank-
ing techniques have been applied for selection of relevant and
informative features in CADe schemes [11], [12]. Campadelli
et al. used the univariate Golub statistics to order individual
features extracted from chest radiographs and chose a certain
number of features with the highest positive and negative val-
ues [11]. Mutual information has been used to identify features
that were highly correlated with the pathologic state of tissues
from the trans-rectal ultrasound images in CADe of prostate can-
cer [12]. On the other hand, deterministic and stochastic feature
selection methods were extensively employed for searching fea-
ture subset in the machine learning field. One of the most widely
used deterministic feature searching approaches is the sequen-
tial forward floating selection (SFFS) and sequential backward
floating selection (SBFS) [13]. SBFS has been used for select-
ing input features for artificial neural networks [14], [15]. SFFS
has been used to search relevant features combined with various
classifiers such as Naive Bayes, a k-nearest-neighbor classi-
fier, support vector machines (SVMs) [16], and AdaBoost [17],
in different CADe schemes. Stochastic searching methodology
consists of a genetic algorithm, particle swarm optimization,
and others. A genetic algorithm has been used in lung nod-
ule CADe [18] and in detecting pulmonary embolisms in CT
images [19]. Mohamed and Salama applied particle swarm op-
timization in spectral multifeature analysis CADe of prostate
cancer in trans-rectal ultrasound images [20].

Feature searching methods are classifier- and criterion-
dependent. Different classifiers would select different sets of
features given the same criterion. On the other hand, different
selection criteria could result in distinctive feature sets even
based on the same classifier. In the literature, classification
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accuracy [16], false-positive (FP) elimination rate [18], mean
sensitivity of the free-response receiver operating characteristic
(FROC) curve [21], pseudo-loss in the AdaBoost algorithm [17],
and other general performance measures have been employed
as the selection rules. However, a low FP rate at a high sen-
sitivity region is necessary in order for a CADe scheme to be
useful in clinical practice. The AUC value has been widely
used in evaluation of CADe schemes in the literature [5]. The
mean sensitivity criterion only measures the average sensitiv-
ity value in a predefined specificity range [21], which does not
quantify how a CADe scheme performs in general as the AUC
criterion does. In the machine learning community, the AUC
value has also been used as a criterion for optimizing classifiers.
Rakotomamonjy has proposed a novel form of an SVM by ap-
proximately maximizing the AUC value [22]. Marrocco et al.
used a nonparametric linear classifier to maximize the AUC
value [23]. These two methods did not involve feature selection.
All features were used in the optimization of classifiers. Feature
selections based on ranking [24] and perturbation [25] have been
employed for the maximization of the AUC value in microarray
and gene expression applications. However, feature ranking and
perturbation considered only individual feature characteristics
and did not take into account the collective discriminative power
of feature combinations. In the classification, the collective dis-
criminative power of combining multiple features matters most.

In this paper, we propose a feature-selection method that
directly maximizes the AUC value for a CADe scheme coupled
with a nonlinear SVM classifier. To test the performance of the
proposed feature selection method, we compared it against the
popular stepwise feature selection based on Wilks’ lambda in
CADe of polyps in CTC.

II. MATERIALS

The CTC cases used in this study were acquired retrospec-
tively at the University of Chicago Medical Center. The database
consisted of 206 CTC datasets obtained from 103 patients.
Each patient followed the standard CTC procedure with pre-
colonoscopy cleansing and colon insufflation with room air or
carbon dioxide. Fecal tagging was not employed in the CTC
protocol. Both supine and prone positions were scanned with
a multi-detector-row CT scanner (LightSpeed QX/i, GE Med-
ical Systems, Milwaukee, WI) with collimations between 2.5
and 5.0 mm, reconstruction intervals of 1.25-5.0 mm, and tube
currents of 60—120 mA with 120 kVp. Each reconstructed CT
section had a matrix size of 512 x 512 pixels, with an in-plane
pixel size of 0.5-0.7 mm. Optical colonoscopy was also per-
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Representative polyp and nonlesion detections and their corresponding segmented regions. (a) A true polyp; (c) a nonpolyp (rectal tube); (e) a nonpolyp

formed for all patients. In this study, we used 5 mm as the lower
limit on the clinically important size of polyps. The locations of
polyps were confirmed by an expert radiologist based on CTC
images, and pathology and colonoscopy reports. Fourteen pa-
tients had 25 colonoscopy-confirmed polyps, 11 of which were
5-9 mm and 14 were 10-25 mm in size. The dataset has been
used in a previous study [10].

A lesion candidate detection algorithm was applied to the
database. The initial detection algorithm was composed of 1) au-
tomatic knowledge-guided colon segmentation and 2) detection
of polyp candidates based on the shape index and curvedness
of the segmented colon [10]. The initial detection step missed
one polyp and detected two polyps only in one view (supine
or prone), yielding 24 detected lesions with 46 views, while
detected 2624 nonlesions. The major sources of nonlesions in-
cluded rectal tubes, stool, haustral folds, colonic walls, and the
ileocecal valve. Therefore, the initial candidate detection algo-
rithm achieved a 96% (24/25) by-polyp sensitivity with 25.5
(2624(103) FPs (i.e., nonlesions) per patient. Fig. 1 shows a
representative polyp and two typical nonlesion detections and
their corresponding segmented regions. Because the detection
criterion was based on the shape index and curvedness, rectal
tubes and haustral folds were typical FPs because of their sim-
ilar shape appearances. A part of a rectal tube often exhibits a
cap-like shape that is very similar to a part of a small polyp in
appearance as shown in Fig. 1(c). Part of the rectal tube was
falsely detected as a polyp with the segmented contour given in
Fig. 1(d). A haustral fold produces large curvedness values, as
does a polyp. Fig. 1(e) shows a typical haustral fold that was
falsely detected as a polyp candidate because of its large curved-
ness. Fig. 1(f) presents the corresponding segmented region that
has large curvedness values.

III. METHODS

The structure of our proposed feature selection method cou-
pled with a linear/nonlinear classifier is depicted in Fig. 2. The
classification step consists of three major components: feature
extraction from lesion candidates, SFFS feature selection based
on the maximal AUC value criterion, and an SVM classifier op-
erated on the optimal feature subset. The feature selection stage
only occurred in the design stage. Once the optimal feature set
was selected, the classification stage only consisted of feature
extraction and the SVM classifier. The SVM classifier would
classify each suspicious candidate into a lesion or a nonlesion,
so that nonlesions from the previous detection step could be
reduced while a high sensitivity would be maintained.
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Fig. 2. Proposed feature selection in classification and the initial lesion candidate detection in a CADe scheme.
A. Feature Extraction be written as
Feature extraction is one of the most important steps in a clas- N
sification stage. We extracted 75 two-dimensional (2-D) and f(x) = E : oy K (i, ) + . ()]
i=1

three-dimensional (3-D) morphologic, gray-level-based, and
texture features from detected lesion candidates in CT images
to form an initial feature set. 2-D features were calculated in the
axial slice where the segmented candidate region had the largest
area. 3-D features were computed in the overall segmented
volume.

To compute features such as the contrast between a segmented
candidate region and its outside, we created a ring structure for
a 2-D case and a shell structure for a 3-D case surrounding a
detected candidate, denoted as the band region. We performed
a binary dilation operation on the detected candidates with a
square-structuring element of 21 x 21 pixels and 11 x 11 pixels
(acube of 21 x 21 x 21 and 11 x 11 x 11 voxels for a 3-D
case) [26]. The difference between the output dilated regions
would be the final band regions. Therefore, the outside region
was defined as a ring (a shell for a 3-D case) with a width of
5 pixels and 5 pixels away from the boundary of the detected
candidate.

Gray-level information characterized lesion intensity infor-
mation. Shape information such as radial and tangential gra-
dient indices inside the lesions and in the band regions were
computed. To make these features meaningful and discrimi-
nant, the delineation of the candidates is required to correspond
closely to the real object boundaries. This, in turn, requires the
accuracy of the hysteresis thresholding and clustering method
employed in the detection of polyps. Histogram-based features
were extracted to specify the range, distribution, and overlap of
the voxel values in gray-level and edge-enhanced images inside
and outside the delineated candidates.

B. Support Vector Machines

We used SVMs [27] as the classifier in our CADe scheme.
SVMs are a machine-learning technique that maximizes the
margin of separation between positive and negative classes.
Given a set of N training data points {(arl,y)}fi 1> where z;
is the feature vector with z;; € RL, and v; 1s the class label with
Y; € { 1,1 }, the decision function for the SVM classifier can

The parameters «; > 0 are called Lagrange multipliers that
are optimized through quadratic programming. K (x;,z;) is a
symmetric nonnegative inner-product kernel. In the applications
of SVMs, popular kernel functions include

dth degree polynomial function:
d
K(mi,xj): (1+II?;FIE]) (2)
Gaussian kernel function:

K(zi,2;) = exp(—|la; —a;]*/20%). (3)

The optimal Lagrange multipliers a;; > 0 in the optimal de-
cision boundary (1) is computed through the maximization of
the following objective function:

N

1

max E o — —

;g X 2
i=1

subject to the following constraints:

N
Z a;y; =0

i=1
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“

C>aq; >0, fori=1,2,...,N

where C' is a user-specified positive parameter. As the SVM
can be reformulated through the regularized function estimation
problem with a hinge loss criterion [27], it can be shown that
the SVM classifier has property of large margin and is robust
against outliers.

C. Maximal AUC SFFS Feature Selection

The proposed maximal AUC SFFS feature selection method
adopted the wrapper approach where the searching procedure
was coupled with an SVM classifier to yield the AUC value
for evaluation in each step [28]. We used the AUC value from
the ROC as the selection criterion, because it directly measures
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TABLE I
MAXIMAL AUC SFFS FEATURE SELECTION METHOD I

Maximal AUC SFFS Feature Selection I

Initialization:
Full feature set from CT images X, selected feature set at step
F={@}, predefined feature number /=75, k=0.

while k<=/
x* =arg max J(F, + {x}) ®
xeX-Fy
Fro=F +{x"}
k=k+1
if k>2
x~ =arg max J(F, —{x}) ©

xeFy
while J(Fy- {x})>J(Fy.,) and k>2
Fr=Fo-x~
k=k-1
if ki>2
x~ =arg max J(F, —{x})

xeF;
end
end
end

end

Output:
Selected feature set Y,

how a CADe scheme performs in general. It has been shown
that the AUC value corresponds to the probability of correctly
identifying if a case is normal or abnormal [29]. From a sta-
tistical perspective, the AUC value is also equivalent to the
well-known nonparametric Wilcoxon statistic [29]. These con-
nections provide alternative views of the AUC value and make
it a suitable measure of the performance of a CADe scheme.
The SFFS procedure selects features based on the collective
discriminative power of a combination of features. This is dif-
ferent from the feature ranking or perturbation approach, where
the selection is based on the individual discriminative power of
features [24], [25].

In this study, we proposed two variants of the maximal AUC
SFFS feature selection method. The first variant, denoted as
MaxAUCSVM, selects features and stops the procedure until all
combinations of features allowed in the SFFS procedure have
been examined. On the other hand, the second variant, denoted
as MaxAUCSVMStat, applies the statistical test between AUC
values obtained from adding or deleting features to determine
the stopping criterion. We provide detailed descriptions in the
following.

Table I outlines the main procedure of the first variant of the
proposed feature selection method. MaxAUCSVM starts with
an empty selected feature set Fy. Then it begins to include
one feature at a time that would maximize the AUC value,
calculated via an SVM classifier, of the selected feature subset
given a subset size. This is given in (5) where the criterion
J(Fr+{x})is the AUC value of the SVM classification with the
selection feature set (Fj,+{x}). Therefore, (5) guarantees that

the selected feature would produce the maximal AUC value with
the combination of the existing features in the subset. However,
this step only includes features without removing any existing
ones. [t might be possible to increase the AUC value by removing
some features from the selected subset. This is realized in (6) and
onward. It starts with the selected feature subset, and removes
one feature at a time if the remaining feature subset performs
better than the one containing the feature to be removed. The
procedure continues until the number of features in the selected
subset reaches the total number of available features. The feature
subset with the maximal AUC value would be selected as the
final output of the procedure.

One characteristic of the first variant is that the inclusion or
exclusion of a particular feature is judged by the difference of
two AUC values, regardless of whether the difference is sta-
tistically significant or not. Therefore, the procedure does not
stop until it finishes searching all necessary combinations that
are allowed in the SFFS framework. However, this approach
inevitably increases the computational time. Moreover, it tends
to include more features even though the increase in the AUC
value is not statistically significant. Hence, the selected feature
set makes the classifier less reliable, given the relatively small
dataset usually used in the development of CADe schemes. To
mitigate these two issues associated with the first variant, we
proposed a second variant of our feature selection method, de-
noted as MaxAUCSVMStat. The main difference is the criterion
used to include a particular feature into the selected set. Only if
the increase in the AUC value by including a particular feature is
statistically significant, the method chooses that feature. On the
other hand, we do not impose this condition for feature deletion,
i.e., if the decrease or increase in the AUC value is not statis-
tically significant, we will delete that feature from the selected
subset, because the feature subset becomes more compact by
doing so.

To perform statistical testing on the difference of two AUC
values, we used a binormal model to estimate the AUC value
from the outputs of the SVM classifier [30]. Given the null
hypothesis that the two outputs from the SVM classifier with two
different selected feature subsets arose from ROC curves with
equal areas beneath them, we calculated the z-score statistic [29],
defined as

Azl - Az2

z =
\/V&I'(Azl) + var(A,9) — 2cov(A.1, A.2)

(7

where A,; and var(A,;) refer to the estimated AUC value and
variance associated with the case of selected feature subset one,
respectively, A, and var(A,») are the corresponding quantities
for feature subset two, and cov(A,1, A.9) is the estimated co-
variance between two cases. These quantifies were estimated via
maximum likelihood estimation method [25]. The z-score statis-
tic is then referred to tables of the standard normal distribution.
The value of z above a threshold, e.g., z > 1.96, is considered as
evidence that the null hypothesis has to be rejected, and hence
the difference between two AUC values is statistically signifi-
cant (two-tailed p-value < 0.05). We estimated the AUC value
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based on the binormal model as [30]

a
A= (m) ®)

where @ is the cumulative probability function of a standard
normal distribution function, a and b are the intercept and
slope parameters, respectively, that specify an ROC graph in the
normal-deviate coordinate. The maximum likelihood method
was employed to estimate the two parameters.

The two variants of the proposed maximal AUC SFFS feature
selection methods have their own merits. The first variant, Max-
AUCSVM, is able to explore all possible feature combinations
allowed in the SFFS procedure and select the one that achieves
the maximum AUC value. However, this is obtained at the ex-
pense of excessive computational time. On the contrary, the
second variant, MaxAUCSVMStat, aims at reducing the com-
putational time with the selected feature subset of possibly a
smaller AUC value, because it can happen that the increase
in the AUC value becomes statistically significant by includ-
ing more features as the SFFS procedure continues. There-
fore, it is a tradeoff between performance and computational
time.

D. Study Design and Performance Evaluation Criteria

The proposed feature selection method consists of parameter
optimization for an SVM classifier in the training phase. Given
the small sample size of our database, it is critical to apply appro-
priate strategies for training and testing the proposed method in
order to avoid over-fitting. Cross-validation is a popular method
to reduce the bias and overcome over-fitting in machine learning
when the sample size is small. Based on the number of avail-
able cases in the database, we used a fivefold cross-validation
method to estimate the AUC value for the candidate feature
subsets chosen by the SFFS procedure at each step, and also
to optimize the parameters in the SVM classifier. All of the
lesions and nonlesions obtained from one case appeared in ei-
ther training data or testing data. There was no crossover of
one case (patient) belonging to both training and testing sam-
ples. The purpose was to eliminate the bias that results from
testing of a classifier trained with data samples from the same
patient.

After we optimized the kernel parameter for the SVM
classifier, we applied the leave-one-lesion-out cross-validation
method to perform feature selection and reported the final re-
sults of the trained SVM classifier with the selected feature set.
We compared the proposed method to the popular stepwise fea-
ture selection method based on Wilks’ lambda coupled with
an LDA classifier. The proposed feature selection framework is
very generic. In fact, other classifiers, such as an LDA classifier
or an artificial neural network, can be used instead of an SVM
classifier. Therefore, we replaced the SVM classifier with an
LDA classifier in Fig. 2 and denoted the method as MaxAU-
CLDA, based on the first variant of the SFFS procedure [31].

TABLE II
AUC VALUES FOR DIFFERENT KERNEL FUNCTIONS WITH DIFFERENT
PARAMETERS IN THE SVM CLASSIFIER FOR COLON DATABASE

Model parameters AUC Value
2 0.89
4

Polynomial | d 0.90
6 0.91
8 0.87
0.05 0.92
0.1 0.93
0.2 0.94

Gaussian | 0.7 0.92
1 0.9
5 0.91
10 0.85

IV. RESULTS

A. Optimization of the SVM Classifier

We used a fivefold cross-validation method to choose an op-
timal kernel function with suitable parameters in the SVM clas-
sifier. In this study, we only focused on the polynomial (3) and
Gaussian (4) kernel functions. Feature vectors were normalized
to a range between 0 and 1. Table II presents the AUC values
indicating the performance of the SVM with different kernel
functions and parameters for the colon database. For each pa-
rameter, we applied the feature selection method, MaxAUCSVM,
to choose an optimal set of feature vectors. The AUC values were
obtained for the SVM classifier with the optimal feature sub-
set in the fivefold cross-validation procedure. We experimented
with four different values for the d parameter in the polynomial
kernel function and seven different kernel widths for o in the
Gaussian function. The SVM classifier with a Gaussian kernel
function performed better than that with a polynomial kernel
function, which suggested that the decision boundaries between
lesions and nonlesions were highly nonlinear. The AUC values
reached a maximum with a Gaussian kernel function with o =
0.2. We used the Gaussian kernel function with the optimal
parameters for the SVM classifier in the following experiments.

B. Comparison of Different Feature Selection Methods

After the parameter optimization of the SVM classifiers, we
applied the proposed feature selection methods in a leave-one-
lesion-out cross-validation procedure. To have a fair compari-
son, we used the same cross-validation procedure for the feature
selection based on Wilks’ lambda and MaxAUCLDA. The fea-
ture selection procedure shown in Fig. 2 produced one set of
features. Then, we applied cross-validation to report the classi-
fication performance.

Fig. 3 plots the AUC values versus different selected fea-
ture subset sizes from the first variant of our proposed feature
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Fig. 3. AUC values versus different feature subsets selected by the proposed
feature selection method, MaxAUCSVM.

selection method, MaxAUCSVM. As the number of selected fea-
tures increases, the AUC value first increases, and it reaches its
maximum when the feature subset size is 29. Then, the AUC
value starts to decrease, which suggests that the added features
cause the classifier performance to deteriorate. If we used all
the extracted features without performing feature selection, the
AUC value would be 0.51, which is slightly better than random
guessing. This clearly illustrates the importance and necessity
of feature selection in the classifier design to improve the over-
all performance of a CADe scheme. The first variant of the
proposed feature selection method, MaxAUCSVM, explored all
feature combinations in the SFFS procedure. The second vari-
ant, MaxAUCSVMStat, stopped the process at a feature subset
size of 7, because the increase in the AUC value with a feature
subset size of 8 was not statistically significant. The selected
feature subset size and the corresponding AUC value achieved
by the second variant of our proposed feature selection method
were relatively smaller than those from the first variant. How-
ever, the advantage of the second variant over the first is a much
lower computational cost.

To compare different selected feature subsets from different
feature selection methods, we present the individual selected
features, subset sizes, AUC values, and nonlesion reduction rate
without removal of any lesion in Table III. The “X” mark denotes
individual features selected by the method. The first variant of
the proposed feature selection method, MaxAUCSVM, chose
29 features in total, out of which 25 were 3-D features and 4
were 2-D features. They include gray-level-based (such as fea-
ture numbers 3-7), shape-based (such as feature numbers 13
and 15), geometry-based (such as feature numbers 17 and 18),
histogram-based (such as feature numbers 22 and 40), and other
features. On the other hand, of the 7 features selected by the
second variant, MaxAUCSVMStat, all were 3-D features, which
suggests that 3-D features contain the most relevant and discrim-
inatory information in distinguishing polyps from nonpolyps in
CTC. These seven 3-D features include gray-level-based fea-
tures on the contour of the candidate, sphere irregularity, and
features derived from the edge-enhanced CT images. Note that

14 common features appear in the selected feature subsets by
MaxAUCSVM and MaxAUCLDA. This accounts for around half
of the selected features. However, their performance in terms of
AUC values and nonlesion reduction rate without removal of any
lesion is very different, which shows the substantial difference
between a nonlinear SVM classifier and a LDA classifier. By
comparing the feature subsets selected by MaxAUCLDA and the
method based on Wilks’ lambda, we observe that there are 11
common features in total. The feature selection method, Max-
AUCLDA, resulted in more than twice the features compared
to that based on Wilks’ lambda. This observation suggests that
different search procedures with different cost functions would
have very different outcomes, even when the same classifiers
were used.

C. Performance Comparisons Among Different Feature
Selection Methods

Both variants of the proposed feature selection method
yielded a much higher performance than did the ones based
on Wilks’ lambda and MaxAUCLDA. The proposed feature se-
lection methods achieved AUC values of 0.96 and 0.95, respec-
tively, for the two variants, whereas the popular feature selection
method based on Wilks’ lambda yielded an AUC value of 0.89.
MaxAUCLDA produced an AUC value of 0.92. We performed
statistical tests among different feature selection methods, as
shown in Table IV. The results show that the differences in
AUC values between the proposed feature selection methods
and the other two (i.e., MaxAUCLDA and Wilks’ lambda) were
statistically significant (with two-sided p-values < 0.05). How-
ever, the difference in AUC values between the two variants of
the proposed feature selection methods was not statistically sig-
nificant (with a two-sided p-value = 0.06). The FROC analysis
provides more insights into the performance of different feature
selection methods. Fig. 4 indicates that the first variant of the
proposed feature selection method, MaxAUCSVM, was able to
reduce 83.9% (2202/2624) of nonpolyps without removing any
of the 24 polyps in a leave-one-lesion-out cross-validation test,
i.e., a 96% (24/25) by-polyp sensitivity was achieved at an FP
rate of 4.1 (422/103) per patient, whereas the second variant,
MaxAUCSVMStat, eliminated 74.5% of nonpolyps without re-
moval of any polyps and yielded a performance of 6.5 (669/103)
FPs per patient at the same sensitivity. Although the difference
in AUC values between the two variants was not statistically
significant, the first variant was able to achieve a higher perfor-
mance in terms of an FP rate per patient at the same sensitivity.
The feature selection method based on Wilks’ lambda yielded a
performance of 18.0 (1854/103) FPs per patient by eliminating
29.5% of nonpolyps. The feature selection method, MaxAU-
CLDA, yielded a performance in between, i.e., 10.0 (1030/103)
FPs per patient by reducing 60.7% of nonpolyps. It is evident
from these results that our proposed feature selection performed
much better than did the popular one based on Wilks’ lambda
and MaxAUCLDA.

We compared the computational costs of the proposed feature
selection methods on a workstation (Intel, Xeon, 2.7 GHz, 1 GB
RAM). The MaxAUCSVM took 23 h. The MaxAUCSVMStat,
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TABLE III
COMPARISON OF SELECTED FEATURE SUBSETS BY DIFFERENT FEATURE SELECTION METHODS FOR THE COLON DATABASE
Feature subsets selected by different methods
Feature # Features MaxAUC MaxAUC MaxAUC Wilks’
SVM SVMStat LDA lambda
1 Maximum gray levels inside the lesion X
3 Mean gray levels inside the lesion X
4 Median gray levels inside the lesion X
5 Standard deviation of gray levels inside the lesion X X X
6 Maximum gray levels on the contour of the lesion X X
7 Minimum gray levels on the contour of the lesion X X
8 Mean gray levels on the contour of the lesion X X
9 Median gray levels on the contour of the lesion X X
10 Standard deviation of gray levels on the contour of the lesion X X
11 Summation over perimeter values of each 2D slice X X
12 Sphericity X X
13 Segmented lesion volume X X
14 Surface area of the candidate X X
Ratio of the overlapping volume between the candidate and a sphere X X
15 (of the same volume) to the overall volume
16 Radial gradient index (RGI) inside the lesion X X
17 Radial gradient index outside the lesion X X
18 Tangential gradient index inside the lesion X X
20 Thresholds of top 10% histogram inside the lesion X X
22 Thresholds of bottom 10% histogram inside the lesion X X X
25 Minimum range of the histogram inside the lesion X
26 Maximum range of the histogram outside the lesion X
27 Minimum range of the histogram outside the lesion X X
Maximum/minimum range of the histogram of pixel values in Sobel
28/30 images inside the candidate
Minimum range of the histogram of pixel values in Sobel images
31 outside the candidate X
32 Full width at half of the histogram in gray scale image X X X
39 Full width at 10% maximum of the histogram in Sobel image X
40 Histogram overlap in the gray scale images X
41 Histogram overlap in the Sobel images X
42 Voxel intensity difference X
44 Absolute distance between normalized histograms X
45 Shannon entropy of normalized histogram X
47 Matsutsita distance of normalized histograms X X
49 Voxel intensity difference in Sobel image X X
50 Voxel separation in Sobel image X X
52 Shannon entropy of normalized histogram in Sobel image X X X
55 Mean voxel intensity in the Sobel image X X X
57 Relative standard deviation in the Sobel image X
59 Average Sobel power value inside the 2D contour X X X
60 Mean gray levels inside the 2D lesion X
61 Mean gray levels outside (band region) the 2D lesion X X
62 Standard deviation of gray levels inside the 2D lesion X
64/66 Area of the 2D contour and Circularity X
67 Ratio of overlapping area X
69/74 RGI and entropy texture feature inside the 2D lesion X X
Feature subset size 29 7 30 14
AUC value 0.96 0.95 0.92 0.89
Non-polyp reduction rate without removal of any polyp 83.9% 74.5% 60.7% 29.3%

on the other hand, only took 5 h. The results show that Max-
AUCSVMStat is able to save computational cost during the train-
ing stage by performing a statistical test for an early stop. The
difference in training time for the two variants is substantial.
However, this is compensated for by a better performance of the
MaxAUCSVM.

V. DISCUSSIONS

The novelty of our approach is to use a nonlinear classifier to
select, train, and test relevant features directly and consistently.
Previous studies such as the one in [21] applied an LDA classi-
fier for selection of features during training, but used a nonlinear
neural network classifier for testing (i.e., actual classification).



592 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 2, MARCH 2014

TABLE IV
STATISTICAL TESTS AMONG THE PERFORMANCE (AUC VALUES) OF FOUR
DIFFERENT FEATURE SELECTION METHODS IN THE DISTINCTION
BETWEEN POLYPS AND NONPOLYPS

MaxAUC
MaxAUC SVMStat Wilks’ lambda
LDA
(AUC= (AUC=
(AUC=
0.95+0.01) 0.89+0.02)
0.92+0.01)
MaxAUC SVM
(AUC= 0.06 0.03 0.02
0.96+0.02)
MaxAUC SVMStat
- 0.02 0.04
MaxAUC LDA
- - 0.01

The AUC values with standard errors and two-sided p values are shown.

1
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Number of false positives per patient
Fig. 4. FROC curves for the CADe schemes incorporating four different fea-

ture selection methods for the colon database. The performance of the initial
candidate detection is shown on the far right with a 96.0% sensitivity at 25.5
FPs per patient.

This is not a principled approach towards feature selection be-
cause the features chosen by a linear classifier are not neces-
sary optimal for a nonlinear classifier. This would be the reason
why their method failed to achieve a higher performance against
Wilks’ lambda-based feature selection in their test [21]. Our pro-
posed technique is based on a consistent, principled approach
to feature selection and classification where both problems are
handled at the same time. Other studies also used two different
types of classifiers for feature selection and classifier testing
(i.e., actual classification). For example, Bhooshan et al. [32]
used the stepwise feature selection based on Wilks’ lambda
coupled with LDA for feature selection and Bayesian neural
networks for classification. Lee at al. [33] applied a Gaussian
kernel SVM for ranking individual features, but used a least-
square SVM instead for actual classification. Their approaches
were not optimal in terms of classification performance and
the computational relevance between algorithms for feature se-
lection and those for classification. Our technique presented a
consistent, principled manner for feature selection and classi-
fication such that the selected features are indeed optimal for
the final classifier used in the CADe scheme. Moreover, the
AUC criterion we used in the selection of features reflects how
a CADe scheme performs in general. It would be more suit-
able than the mean sensitivity of FROC used in [16] which only

measured the performance of a CADe scheme in a certain speci-
ficity range. Li proposed FloatBoost to minimize classification
error directly based on a backtrack mechanism [34]. The Float-
Boost learning is different from our proposed feature selection
method where SVM has been used for selection of an optimal
feature subset by maximization of AUC value. Another novelty
of our approach compared to other studies such as the ones
in [21]-[25] and [33] is that the second variant of our method
conducted statistical tests during the searching procedure that
makes the feature selection step more reliable and efficient.

We used fivefold and leave-one-lesion out cross validation
method to optimize the parameters in SVM and report perfor-
mance. This procedure provided a robust and principled way to
select a subset of optimal features while minimizing the risk of
over-fitting given the relatively small number of true positive
samples in the dataset.

VI. CONCLUSION

We have developed a maximal AUC SFFS feature selection
method coupled with a nonlinear SVM classifier for CADe of
polyps in CTC. The proposed method selected the most relevant
features that would maximize the AUC value of the ROC curve.
We presented two variants of the proposed method. Our fea-
ture selection method achieved a performance of 96% by-polyp
sensitivity with 4.1 and 6.5 FPs per patient, whereas the conven-
tional stepwise feature selection based on Wilks’ lambda yielded
the same sensitivity with 18.0 FPs per patient, and a maximal
AUC SFFS one coupled with a LDA classifier achieved 10.0 FPs
per patient at the same sensitivity level, in a leave-one-lesion-out
cross-validation test in a CADe scheme for detection of polyps
in CTC. One advantage of the second variant over the first one
is its much lower computational cost by a factor of 4.6.
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