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Abstract  This paper presents an improvement of Herbrand’s theorem. We propose a method for specifying a sub-
universe of the Herbrand universe of a clause set S for each argument of predicate symbols and function symbols in S.
We prove that a clause set S is unsatisfiable if and only if there is a finite unsatisfiable set of ground instances of clauses
of § that are derived by only instantiating each variable, which appears as an argument of predicate symbols or function
symbols, in S over its corresponding argument’s sub-universe of the Herbrand universe of S. Because such sub-universes are
usually smaller (sometimes considerably) than the Herbrand universe of S, the number of ground instances may decrease
considerably in many cases. We present an algorithm for automatically deriving the sub-universes for arguments in a given
clause set, and show the correctness of our improvement. Moreover, we introduce an application of our approach to model
generation theorem proving for non-range-restricted problems, show the range-restriction transformation algorithm based

on our improvement and provide examples on benchmark problems to demonstrate the power of our approach.
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1 Introduction

Herbrand’s theorem!!! is the basis for most mod-
ern automatic proof procedures in mechanical first-order
theorem proving. By Herbrand’s theorem, for a given
clause set S, a special universe, called Herbrand umni-
verse, can be mechanically created. S is unsatisfiable
if and only if there is an unsatisfiable set of ground in-
stances of clauses of S, where a ground instance of a
clause is derived by instantiating variables in the clause
with elements of the Herbrand universe of S.

Herbrand’s theorem enables us to make theorem
proving mechanically. However, theorem proving meth-
ods based directly on Herbrand’s theorem, e.g., the
multiplication method[?!, are usually inefficient, because
there may be too many ground instances need to be
considered. Therefore, various efficient strategies were
developed to enhance their performances. For example,
SATCHMO®4 a model generation (forward chaining)
theorem prover, is usually inefficient in cases where vari-
ables in a given clause set S need to be instantiated over
the Herbrand universe of SI°, and was improved in var-
ious ways[6~12l,

In this paper, we propose an improvement on Her-
brand’s theorem. Instead of establishing the standard
Herbrand universe for a given clause set S, we specify

Herbrand’s theorem, Herbrand universe, model generation theorem proving, SATCHMO, really non-propositi-

a sub-universe of the Herbrand universe for each argu-
ment of predicates or functions in S. We prove that
S is unsatisfiable if and only if there is a finite unsat-
isfiable set of ground instances of clauses of S derived
by instantiating each variable, which appears as an ar-
gument of predicate symbols or function symbols, in
S over its corresponding arguments’ sub-Herbrand uni-
verses. Because such sub-universes are usually smaller
(sometimes considerably) than the Herbrand universe of
S, the number of ground instances need to be consid-
ered for reasoning can be reduced in many cases. For
model generation theorem proving, this means that the
number of forward chaining clauses used for reasoning
is reduced, thus, leading to efficiency.

Some methods were proposed to reduce the number
of ground instances used for theorem proving. Schulz*3!
presented a method to reduce the number of the neces-
sary instances in cases where Herbrand universes are fi-
nite. Lee and Plaisted[**! presented the so-called Hyper-
Linking Strategy to avoid generating unnecessary in-
stances during theorem proving. Yu et al.['] developed
a heuristic method to cut off branches unnecessary for
reasoning. Our method can be considered as a general-
ization of such approaches.

The rest of the paper is organized as follows. In the
next section, we introduce terminology and notations,
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review Herbrand’s theorem and resolution principle, de-
fine range-restricted clauses, and recall SATCHMO, the
basic model generation theorem prover. Section 3 con-
siders how to specify sub-Herbrand universes for argu-
ments of predicate symbols and function symbols in a
clause set, and Section 4 shows the correctness of our
approach. We introduce our range-restriction transfor-
mation algorithm in Section 5, and report the experi-
mental results on benchmarks in Section 6. Lastly, we
give our conclusion in Section 7.

2 Preliminaries and Background Material

We assume familiarity with the basic concepts re-
lating to first-order theorem proving, e.g., presented in
[16, 17], and limit ourselves to briefly recalling the basic
material needed for our presentation.

2.1 Terminology and Notations

In this paper, a clause = A;V---V-A4,VCV---VC,, is
also represented by means of positive implicational form
Ay, ..., A, = C1;...;Cpy (n,m > 0). We refer to the
implicit conjunction Ayq,..., A, as the antecedent of the
clause, with each A; being an antecedent atom. The im-
plicit disjunction C4;...; C), is referred to as the conse-
quent of the clause, and each C; a consequent atom. A
clause with an empty consequent, i.e., m = 0, is writ-
ten as Ay,..., A, — L, where | means falsity. On the
other hand, for a clause with an empty antecedent, i.e.,
n = 0, the antecedent atom T, that indicates truth, is
added.

The lower-case letters are used to represent predi-
cate symbols, function symbols and constants, while the
upper-case letters are used for variables. On the other
hand, the Greek letters are used to represent arbitrary
predicate symbols, function symbols, terms, substitu-
tions, and other necessary information.

A predicate (function) o with n arguments is called
n-place predicate (function), and the i-th (1 <7 < n) ar-
gument of « is denoted to a™(3). (0 is denoted the empty
set, A € 7 means that A is a member of Z. Moreover,
we view clauses as sets and assume that there is no the
same variable symbol in different clauses of the set of
clauses under consideration.

2.2 Herbrand’s Theorem

Definition 1 (Herbrand Universe). Let S be a set
of clauses, C and F, the sets of constants and function
symbols occurring in S, respectively. Let

C, if C # 0;
m={ 0 7o
{a}) ch = (D;
where a is an artificial constant, and for i =0,1,2,...,

Hi+1 =H; U {f(Tl, ..

-aTn)|
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feF,m; €Hs, 1<j<n}

Then, Heoo, or lim;_ .o H;, is called the Herbrand uni-
verse of S.

According to the above definition, the Herbrand uni-
verse of S depends only on the constants and functions
in §. In other words, all clause sets that contain the
same constants and functions have the same Herbrand
universe, regardless their occurring positions and pred-
icates in the clause sets. Notice that, if a clause set
contains a function, then its Herbrand universe is infi-
nite.

FEzample 1. Let S; be the following set of clauses:

T = p(f(a),c).
Let Sy be the following set of clauses:

pi(c) = L,
pa(a) — L,

p1(X) = p2(f(X)),
T = pi(Y);p2(Y).

Because S; and Sy contain exactly the same
constants and functions, they have the same Her-
brand universe: H = {a,c, f(a), f(c), f(f(a)), f(f(c)),
F(f(f(a))), F(f(£(c))),-- }-

Definition 2 (Ground Atom and Ground In-
stance). An atom or a clause is said to be ground if it
contains no vartable. A ground instance of a clause C
of a set S of clauses is a clause obtained by replacing
variables in C by elements of the Herbrand universe of
S.

Theorem 1 (Herbrand’s Theorem). A set S of
clauses is unsatisfiable if and only if there is a finite
unsatisfiable set of ground instances of clauses of S.

2.3 Resolution Principle

An atom A or the negation of an atom —A is called
literal, and they are said to be each other’s complement.

Definition 3 (Factor). If two or more literals with
the same sign of a clause C' have a most general unifier
o, then Co is called a factor of C'.

Definition 4 (Binary Resolvent). Let C; and Cy
be two clauses, L1 and Lo, two literals that can be uni-
fied to complementary literals by a most general unifier
o in Cy; and Cy. Then the clause

(Cro0 — Lio) U (Cqyo — Lso)

s called a binary resolvent of C1 and Cs. The literals
Ly and Ly are called the literals resolved upon.
Definition 5 (Resolution). Let S be a set of
clauses, and T = S. Resolution extends T by adding
a following clause recursively:
1. a factor® of a clause in T,

2. a binary resolvent of Cy and Cs, where Cy, Cs
are two arbitrary clauses in T .

D yor convenience, we consider a factor as a derived clause in resolution.
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A set S of clauses is unsatisfiable if and only if the
empty clause can be derived by resolution!*™],

2.4 Range-Restriction

Definition 6 (Range-Restriction). A variable is
said to be range-restricted if it occurs in the antecedent
of a clause. Contrastingly, a variable that only occurs
in the consequent of a clause is said to be mon-range-
restricted. A clause is said to be range-restricted if all
of its variables are range-restricted. A set of clauses is
range-restricted if all of its clauses are range-restricted.

Obviously, if the antecedent of a range-restricted
clause is satisfied (or instantiated) by a set of ground
atoms, then every consequent atom of the clause is
ground.

A non-range-restricted clause set can be transformed
into a range-restricted one, which is satisfiability equiv-
alent to the original onel34,

Definition 7 (Range-Restriction Transforma-
tion Algorithm). Let S be a non-range-restricted
clause set. Its range-restriction form S’ is transformed
from S as follows:

1. Every range-restricted clause A — C is transfo-
rmed into itself.

2. Every non-range-restricted clause A — C that con-
tains non-range-restricted variables X, ..., X, is trans-
formed into A, dom(X4),...,dom(X,) — C. However,
A is omitted if it is T.

3. For every constant ¢ in S, a clause T — dom(c)
is added. If S contains no constant, a single clause
T — dom(a) is added, where a is an artificial constant.

4. For every m-place function symbol f occur-
ring in S, a clause dom(Yy),...,dom(Y,,) — dom
(f(Y1,...,Y,,)) is added.

In Definition 7, dom is an introduced unary predicate
symbol. Obviously, by the range-restriction transforma-
tion, non-range-restricted variables are instantiated over
the Herbrand universe of the set of clauses under con-
sideration.

FEzample 2. Let & be the following non-range-
restricted clause set:

pi(c) = L,

p2(f(c)) = L,
T = p1(X); p2(X).
The transformed range-restricted clause set S’ of S
is:
pi(c) — L,
p2(f(c)) = L,
dom(X) — p1(X); p2(X),
T — dom(c),
dom(Y) — dom(f(Y)).
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The non-range-restricted variable X in S is instan-
tiated over the whole Herbrand universe of S in S'.

2.5 SATCHMO

SATCHMOP! is a model-generation based theorem
prover applicable to the class of range-restricted clause
sets.

Suppose that M be a set of ground atoms, then a
conjunction (disjunction) of ground atoms is satisfied in
M if all (some) of its members belong to M.

Let S be a set of clauses. For a ground instance
Ay, — C4 of clause A — C in S, A; — C, is said to be
satisfied in M, if C, is satisfied or A is not satisfied in
M, and else violated. If every ground instance of clauses
in S is satisfied in M, then S is satisfiable and M is said
to be a model of S.

Accordingly, to check whether a given clause set S is
satisfiable, SATCHMO goes to construct a model for the
clause set: from the empty model candidate M = 0, it
satisfies each violated clause in M by adding one of the
consequent atoms of the clause into the model candidate
M (in this way, the violated clause becomes satisfiable
in M) in turn. If it succeeds with no violated clause
in M anymore, M is a model of S. Then, the given
clause set is proved to be satisfiable. Otherwise, if we
run out of possibilities to establish a model for S, then
S is unsatisfiable.

Given a clause set S, the reasoning procedure of
SATCHMO can be graphically illustrated by construct-
ing a proof tree as follows.

Definition 8 (SATCHMO). Starting from the root
node T, for the current node D, where D is an atom,
let Ip be the set of atoms on the path from the root node
to node D:

1. If D is L, the branch is said to be closed, which
means that S UZp is unsatisfiable.

2. If D is not L, select a ground clause from S that

is violated in Ip. @ If no such clause exists, Ip is a
model of S, S is satisfiable.

3. Let Ao — Cyo;...;C,,0 be the selected violated
clause, where o is a ground institution. For each ground
consequent atom C;o in the clause, create a node C;o
under node D. Then, take node C;o as the current node,
call this procedure recursively in the depth-first strategy.

Let S be a set of clauses. For a node D in a proof
tree of S, if all branches below node D are closed, it
means that Zp cannot be extended to a model of S, i.e.,
S U Zp is unsatisfiable. If all branches below the root
node are closed, then S is unsatisfiable (at root node,
Ip=0).

If a clause set S is non-range-restricted, before ap-
plying it to SATCHMO, we should transform S to its
corresponding range-restricted one, S’. Because non-
range-restricted variables in S are instantiated over the

@y find a ground clause violated in Zp from S, for each clause A — C in S, we unify A with elements of Zp. If it succeeded
with ground unifier o (i.e., Ao is satisfied in Zp.) such that Co is not satisfied in Zp, then Ao — Co is a ground clause violated in

Ip. Otherwise, other unification will be tested.
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whole Herbrand universe in ', some (maybe infinite) in-
stantiated clauses introduced by range-restriction trans-
formation might be unwanted redundant for reasoning,
but would be used for reasoning. Therefore, model gen-
eration based theorem provers are often inefficient on
S’[5N7].

Ezample 3. Let S and S’ be the clause sets and the
range-restricted form of S derived in Example 2, respec-
tively.

The proof tree of S’ constructed by SATCHMO is
shown in Fig.1.

p1(f(c))
|
dom(f(f(c)))
e T
p1(f(f(c))) p2(f(f(c)))
I
dom(f(f(f(c))))

p2(f(c))

Fig.1. Proof tree constructed by SATCHMO in Example 3.

The proof of SATCHMO on &’ does not ter-
minate. The branch T — dom(c) — pa(c),
dom(f(c)) — p1(f(c)), dom(f(f(c))) — p1(f(f(c))),
dom(f(f(f(c)))) = --- is open.

In the above example, the reason that SATCHMO
failed to terminate is that the non-range-restricted vari-
able X is instantiated over the whole Herbrand universe
of S. However, to prove S unsatisfiable, not all in-
stances are necessary. In fact, we need only consider
the instances ¢ and f(c) for X, other instances do not
contribute to derive 1, and therefore are unnecessary.

It would be nice if we could find the necessary in-
stances for variables. That is just the motivation of this

paper.

3 Specification of Sub-Herbrand Universes for
Arguments of Predicate Symbols and
Function Symbols

Let S be a set of clauses. Because variables in S oc-
cur as arguments of predicate symbols or function sym-
bols, we generalize our work to specify a sub-universe
of the Herbrand universe (SHU for short) for each ar-
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gument in S. For convenience, the fact that a term
T appears as a value of an argument a”(i) in § is
denoted by app(r,a™(i)). For example, suppose that
there is p(f(a),X) in S, then we have app(a, f1(1)),
app(f(a),p*(1)), and app(X,p*(2)).

Definition 9 (Algorithm for Computing a Pre-
liminary SHU). Let S be a set of clauses, and a™(3),
an argument in S. The selected constant c is a constant
arbitrarily selected from S if there is any, otherwise, it
18 an artificial constant.

The preliminary SHU for a™(i) is a set H derived as
follows:

Step 1. Initially, set H =0, M = {a" (i)}, and N = 0.

Step 2. If M s empty, then H is the preliminary
SHU for a™(i). However, if H contains no constant, then
H = HU{c}. On the other hand, if M is not empty, con-
tinue.

Step 3. Move the first element 3™(j) of M to N. 9 For
each app(e, B (7)) in each clause C of S:

Case 1. € is a constant c. Let H =H U {c};

Case 2. € is a functional term with function symbol f.
Let H = H UV(f), where V(f) is the possible value set cor-
responding to f, whose definition will be given later;

Case 3. ¢ is a variable X . For each argument ~* (k) such
that there exists app(X,v“(k)) in C, add the argument v* (k)
into M if v*(k) & MUN.

Step 4. Go to Step 2.

In the above algorithm, M is the set of arguments
to be processed and N is the set of arguments having
been processed. M is expanded only when Case 3 of
Step 3 is executed. In that case, let 3™(j) be the argu-
ment being processed, and C a clause in which there is
app(X, ™ (j)). A new argument y*(k) is added into M
if and only if there is app(X,y“(k)) in C. Intuitively, by
any substitution in resolution, 8™(j) and v*“(k) in the
clause always take the same term. Thus, the two argu-
ments are considered to have the same SHU. This con-
clusion can be extended to all elements in MUN". There-
fore, when the algorithm terminates, all arguments in
N have the same SHU. Such arguments are called the
same SHU arguments. Especially, for a variable X in
a clause C, all arguments of a™(i) such that there is
app(X, a™(i)) in C, called the arguments corresponding
to variable X, are the same SHU arguments.

Because there are finitely many arguments of pred-
icate symbols and function symbols, constants and
clauses in a set of clauses, the above algorithm cer-
tainly finitely terminates. For convenience, we also use
H(a™(3)) to indicate the preliminary SHU correspond-
ing to a™(3).

Moreover, SHUs derived in the above algorithm are
said to be preliminary because there might be elements
like V(f), which need to be further extended (see Defi-
nition 11 later).

Ezample 4. Let S be the following set of clauses:

_'p(f(aaXl)aX2)a

® For convenience to describe, if a set M is presented to be {ai,...,an}, then a; is said to be the first element of M.
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pla, X3) V p(X4, X3),
_'p(X'c')vXG) \/p(f(X5,b),X6).

The preliminary SHU for p?(1), denoted as H;, is
calculated as follows:

1) Initially, H; = 0, My = {p*(1)}, N7 = 0.

2) Move the first element of My, i.e., p2(1), to N.
Then, M; = () and N; = {p?(1)}.

There are five appearances
app(f(a, X1),p*(1)),  app(a,p*(1)),
app(Xs,p*(1)) and app(f(Xs,b),p*(1)).

For app(f(a,X1),p*(1)) and app(f(Xs,b),p*(1)),
both are Case 2 in Definition 9. Therefore, H; =
Hi UV(f) = V().

For app(a,p?(1)), it is Case 1 in Definition 9, there-
fore, H1 = H1 U {a} =V(f) U {a}.

For app(X4,p*(1)) and app(Xs, p?(1)), both are Case
3 in Definition 9. Because X, does not appear any else-
where in C, nothing need to do. On the other hand,
because there is app(Xs, f2(1)) in C, f2(1) is added into
M. Therefore, M; = {f?(1)}.

3) Move the first element of My, i.e., f2(1), to Nj.
Then, M; = 0 and N7 = {p?(1), f2(1)}.

There are two appearances of f2(1)
app(a, f2(1)) and app(Xs, f2(1)).

For app(a, f2(1)), it is Case 1 in Definition 9. How-
ever, because a € H; is already true, H; does not
change.

For app(Xs, f2(1)), it is Case 3 in Definition 9.
There is app(Xs,p?(1)) in S. However, because p?(1) €
MU N, nothing need to do.

4) Because M; = (}, by Step 2 in Definition 9, the
calculation of the preliminary SHU for p?(1) terminates
with Hy = V(f) U {a}, and N7 = {p?(1), f2(1)}.

On the other hand, the preliminary SHU for p?(2),
denoted as Ho, is calculated as follows:

1) Initially, Ha = 0, M2 = {p?(2)}, Na = 0.

2) Move the first element of M, i.e., p?(2), to Ns.
Then, My = () and N> = {p?(2)}.

There are three appearances of p2(2) in S:
app(X2,p*(2)), app(X3,p*(2)), and app(Xe,p*(2)).
Each is Case 3 in Definition 9. Because none of Xs,
X3 and Xg appears any elsewhere in S, nothing need to
do.

3) Because My = ), by in Step 2 Definition 9, the
calculation of the preliminary SHU for p?(2) terminates
with Hy = 0, and N> = {p?(2)}. Because H; is empty,
from Step 2 in Definition 9, let a be the selected con-
stant, Ho is set to {a}.

For the preliminary SHU Hj for f2(2) is {b}, and the
corresponding set of the same domain arguments N3 is
{f?(2)}. Because the calculation is trivial, the detail is
omitted.

Definition 10 (Algorithm for Deriving all Pre-
liminary SHUs). Let S be a clause set. All prelimi-
nary SHUs for the arguments of predicate symbols and
function symbols in S can be established as follows:

of p*(1) in &:
app(X4,p*(1)),

in S:

Step 1. Let T be the set of all arguments of predicate
symbols and function symbols in S, j = 0.

Step 2. If T is empty, terminate; Hi,...,H; are the de-
rived preliminary SHUs. All arguments in Nj, (1 < k < j)
have the same SHUs Hy,. Otherwise, if T is not empty, con-
tinue.

Step 3. Let o™ (i) be the first element of T, j = j + 1.
According to Definition 9, derive the preliminary SHU H;
for the argument " (i) and the set N of the same SHU ar-
guments of a™(i). Remove all elements of N from T, and
go to Step 2.

Similar to the algorithm given in Definition 9, be-
cause the number of arguments of predicate symbols and
function symbols in a set S of clauses is finite, the above
algorithm also terminates within finite steps.

FEzxzample 5. Consider the set S of clauses given in
Example 4. All preliminary SHUs of the arguments in
S can be derived as follows:

1) Initially, 7 = {p?(1), p*(2), f3(1), f3(2)}, and
7 =0.

2) j = 1. For the first element of T, i.e., p*(1), us-
ing the algorithm given in Definition 9 to calculate the
preliminary SHU H; and the corresponding set of the
same SHU arguments AN;. From Example 4, we have
Hi = V{(f)U{a} and N; = {p?(1), f?(1)}. Remove the
elements in A from T, then, T = {p?(2), f3(2)}.

3) j = 2. For the first element of T, ie., p?(2),
from Example 4, we have Hy = {a} and Ny = {p?(2)}.
Remove the elements in N3 from T, then, T = {f%(2)}.

4) j = 3. For the first element of T, ie., f2(2),
from Example 4, we have H3 = {b}, and N3 = {f2(2)}.
Remove the elements in A3 from T, then, 7 = 0.

5) Because 7 = 0, the calculation terminates.
H1,Ho and Hs are the derived preliminary SHUs of S.

All SHUs of the arguments of predicate symbols and
function symbols in a set of clauses in the form of the
Herbrand universe can be generated as follows:

Definition 11 (Algorithm for Deriving SHUSs
in the Form of the Herbrand Universe). Let S
be a clause set, and f1,..., fm, all function symbols in
S, and H,...,H, the preliminary SHUs of arguments
of predicate symbols and function symbols in S derived
according to Definition 10.

For each i such that 1 < ¢ < n, let C; be the set of
constants appearing in H;,

K2

HI(0) =C;
and for each j such that1 < j < m,
V*(fjv 0) =0.

Suppose that for 1 < j < m, f; is an h;-place func-
tion symbol, and the SHU for the argument fjhj ) (1<
t < hj) is Hy,, where 1l < uy < n. Fork=0,1,2,...,
let

V*(fj,k‘l‘l):{fj(al,-..,ah]-)|
ar € Hy (k),...,an; € /thj (k)}
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and
Hi(k+1) =Hi (k) U{V" (£, k+1) [ V(f;) € Hi}.
Then, V*(fj,00) is the set of the possible values of

fi, and H;(oco) is the form of the Herbrand universe of
Hi.

Because each element in H}(co0) (1 < ¢ < n) gener-
ated according to Definition 11 only contains constants
and function symbols that occur in the given set S of
clauses, each H} (o) is obviously a subset of the Her-
brand universe of S. For convenience, we use SHU" to
denote the form of the Herbrand universe of SHU.

FEzample 6. Let S be the set of clauses given in Ex-
ample 4. From Example 4, the preliminary SHUs are
Hi =V{f)U{a}, Ha = {a}, and H3s = {b}. The sets of
the constants in H;, Ho and Hs are C; = {a}, C2 = {a},
and C3 = {b}, respectively. Moreover, f is a 2-place
function symbol and the preliminary SHU for f2(1) is
H; and that for f2(2) is Hs.

Applying the algorithm given in Definition 10, the
SHUs in the form of the Herbrand universe are calcu-
lated as follows:

Hi(1) =H1(0)UV(f,1) = {a, f(a,b)}
H5(1) =H5(0) = {a},
Hz(1) =H3(0) = {b},

)

V*( 00) = {f(a b), f(f(a,b),b), f

: (£(£(a,b),6),6),...},
Hi(o0) ={a, f(a,b), f(f(a,b),b),

f(f(f(a;b),b),b),...},
Hy(o0) ={a},
H(00) = (B}

As a comparison, the Herbrand universe H of S
is {a,b, f(a,a), f(a,b), f(b,a), f(b,b), f(f(a,a),a),
F(f(@anb). f(f(ab),a), F(f(ab),b), F((bra).a),
f(f(b,a),b),...}. Obviously, all H}(oo) are smaller than
H.

FEzxzample 7. Let S be the clause set given in Example
2. By the algorithms given in Definition 9 and Definition
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10,
T = {pi(1),p2(1), f1(1)},
Hi = {ctUV(f),
N = {p1 (1), p3(1)},
Ho = {c},
Ny = {f1<1>}-
By the algorithm given in Definition 11,

V*(f,0) =0,

H1(0) ={c},
H5(0) ={c},

V(1) ={f(a) | a e H3(0)} = {f(c)},
Hi(1) =H1(0)UV(f,1) = {c, f(c)},
Hs(1) ={c},

Vi(£,2) ={f(e) |« e Hy(1)} = {f(c)},
H1(2) = HI()UV(S,2) = {e, f(c)},
H5(2) ={c},

pl(1) and p§<1> are the same SHU arguments, their
SHU* is H}(o0). The SHU™ for f1(1) is H3(co). Both

are finite, even though there is a function in S.

4 Correctness

In this section, we prove that a clause set S is unsat-
isfiable if and only if there is a finite unsatisfiable set of
ground instances of clauses of S derived by only instan-
tiating the variables in S over their corresponding sub-
universes of the Herbrand universe of S, respectively.

Definition 12 (SHU"* Ground Instance). Let
S be a set of clauses. An SHU™ ground instance of a
clause C of S is a clause obtained by replacing each vari-
able in C' by a member of the SHU* for the arguments
corresponding to the variable.

Because every SHU™ of a set S of clauses is a subset
of the Herbrand universe of S, an SHU* ground instance
of a clause C is certainly a ground instance of the clause,
but the converse is not always true.

Definition 13 (Depth of a Ground Term). Let
T be a ground term. The depth of T, denoted by dep(T),
is defined as follows:

1) dep(r) =1 if T is a constant.

2) dep(f(B1,-..,0n)) = h+ 1, where f is an n-place
function symbol and h s the mazrimum wvalue among
d6p<ﬂ1>a e dep<ﬂn>

For example, dep(f(a,b)) = 2, dep(f(a,g(b,c))) =3
and dep(f(a,g(b,h(c)))) = 4, respectively.
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Let S be an unsatisfiable set of clauses. Then, the
empty clause O can be derived from S by resolution.
We can obtain an unsatisfiable set of ground instances
of clauses of S by recording the clauses used in resolu-
tion as follows:

1) When deriving a factor Co of a clause C, instead
of deleting all repeated literals from Co, we enclose each
of them in a box.

2) When deriving a resolvent, instead of deleting the
two literals resolved up, we enclose each of them in a
box.

Literals enclosed in boxes will not be used in further
resolution. A clause with all literals enclosed in boxes is
the empty clause. When such a clause, called ezrtended
empty clause, is derived, for each variable X remains in
the clause (if any), we substitute it with a constant in
the SHU™ for the arguments corresponding to X. Let
FE be the resulted clause, then, the set of the clauses
occurring in F, denoted as Sg, is an unsatisfiable set of
the ground instances of clauses of S.

FEzample 8. Let S be the unsatisfiable set of clauses
given in Example 4:

—p(f(a, X1), Xz), (1)
p(a, X3) V p(X4, X3), (2)
—p(Xs5, X¢) V p(f(X5,b), Xe). (3)

The empty clause can be derived by resolution as
follows:

p(a,Xg) Vp(a,Xg) (4)

(2)

where (4) is a factor of (2).

p(a, X3) ‘\/‘p(a,Xg,) \Y;

(2)
_'p(aaX3) \/p(f(a,b),Xg,) (5)

(3)

where (5) is the resolvent of (4) and (3).

p(a, X3) ‘\/‘p(a,Xg) \%

@)
~p(a, X) | V| p(f(a,b), X3) |V

3)

—p(f(a,b), Xs) (6)
(1)

where (6) is the resolvent of (5) and (1).

Because all literals in clause (6) are enclosed in a
box, clause (6) is an extended empty clause. Moreover,
because there are app(X3,p?(2)) in (6) and a € H(p*(2))
(see Example 6), substituting variable X5 in clause (6)

with constant a, we have the following clause F:

p(a,a) ‘\/‘p(a, a) |V

(2)
—p(a,a) |v|p(f(a,b),a) |V

(3)

_‘p(f(av b)v a) . (7)

The unsatisfiable set Sg of ground instances of
clauses of S derived from clause (7) is:

_‘p(f(a7 b): a)

- a ground instance of (1),

p(a,a) Vv p(a,a)
- a ground instance of (2),

_'p(aa a) N p(f(aa b)a a)

- a ground instance of (3).

Lemma 2. Let S be a set of clauses, T a factor or
a resolvent derived in resolution on S, and X a variable
in T. Then, all arguments corresponding to X in T are
the same domain arguments.

Proof. We prove Lemma 2 by induction on the fol-
lowing statement:

I(n): Suppose that T, is the clause derived in the n-
th step in resolution. Then, all arguments corresponding
to a variable X in T;, are the same domain arguments.

Base case: show I(0). Tp is a clause in S. Accord-
ing to Definition 9, all arguments corresponding to a
variable X in Ty are the same domain arguments.

Induction step: suppose that 1(0),...,I(n), to show
I(n+1).

T.11 is a factor of a clause C' (a resolvent of two
clauses C; and Cy), where C (each of C; and C5) is a
clause derived in I(7) (0 <7 < n).

Because X is a variable in 7,41, X
tainly a variable in C (C’, where C' is one of C
and C3). For the appearances app(X,aj*(i1)),...,
app(X,a? (i,)) in T,41 such that there are also
app(X, ai* (i1)), . .., app(X, a7 (i) in C (C'), by the
induction assumption, aj*(i1),..., a0 (i) are the same
domain arguments.

The remain appearances of X in 7,1 are gener-
ated by substituting other variables, say Yi,...,Y:, in
C (Cp or Cy) with X. For each Y (1 < k < t),
there is certainly a sequence of app(X, 57" {(j1)),
app(Ysl, Inl <-71>)’ app(YSl, ;n2<j2>)7 app(YsZ, ;2<j2>)7
app(Ysy, 85" (43))s - -, app(Ys,, B (Gu)),  app(Yy,
B (ju)), where 1 < s, < t, 1 < v < u, and 3" (j;)
(1 <5 <my,1 <1l < u)is an argument in C (Cy
or/and C5). By Definition 9, all arguments correspond-
ing to variable X and those corresponding to variable
Yy, Ys,,Yr in C (Cy or/and Cs) respectively are
the same domain argument. Then, all arguments cor-

is cer-
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responding to variable X in T}, are the same domain
arguments.
Therefore, I(n + 1) is true. O
For example, let C be a clause p(X,Y,Y,Z) Vv
q(Z) v p(U,U,V,V). Then, p(X,X, X, X)V q(X)V

p(X,X,X,X)| is a factor of C.

which is substituted to X in factorization, there is
a sequence app(X,p*(1)), app(U,p*(1)), app(U,p*(2)),
app(Y,p*(2)), app(Y,p*(3)), app(V,p*(3)), app(V,p*(4)),
and app(Z,p*(4)). By Definition 9, all arguments cor-
responding to variables X, Y, Z, U, and V in C, i.e.,
0}, (7). PR}, (M0, ), (1), P ),
and {p*(3), p*(4)}, respectively, are the same domain
arguments. The set of such arguments, i.e., {p*(1),
p(2), p*(3), p*(4), ¢'(1)}, is just the set of the argu-
ments corresponding to variable X in the factor.

For variable Z,

Lemma 3. During our proposed resolution, when-
ever there is app(c,a™(2)) (app(f,a™(1))), there is ¢ €
H(a™ (1)) (V(f) € H(a™(3))), respectively.

Proof. For each constant ¢ and each argument o™ (7)
such that there is app(c,a™(i)) in S, by Definition 9,
c € H(a™(z)).

For each functional term f(7y,...,7,) and each ar-
gument o () such that there is app(f(71,...,7n), @™ (i)
in 8, by Definition 9, V(f) € H(a™(z)).

If a variable X is substituted to a functional
term f(71,...,7,) in resolution, then there are two
cases. One is that there are app(X,a™(i)) and
app(f(71,...,7n),@™(i)) in S, by Definition 9, V(f) €
H(a™(3)). The other is that there are app(Y, 5™ (j)) and
app(f(71, ..+, 7n), B™(j)) in S such that Y is substituted
to X in resolution, by Definition 9, V(f) € H(8™(j)),
and by Lemma 2, all arguments corresponding to vari-
ables X and Y are the same domain arguments, i.e.,
for each app(X,a™(i)) in the resolvent, H(a™(i)) =
H(B™(j)). Therefore, we have V(f) € H(a™(z)).

Now, consider the case where a variable X is sub-
stituted to a constant c. If it occurs in our proposed
resolution, same as above, there are also two cases.
One is that there is app(X, a™(i)) and app(c, a™(i)) in
S, by Definition 9, ¢ € H(a™(i)). The other is that
there are app(Y,B™(j)) and app(c,3™(j)) in S such
that Y is substituted to X in resolution, by Defini-
tion 9, ¢ € H(8™(j)), and by Lemma 2, all arguments
corresponding to variables X and Y are the same do-
main arguments, i.e., for each app(X,a™(i)) in the re-
solvent, H(a™(i)) = H(BF™(j)). Therefore, we have
¢ € H(a™(i)). On the other hand, when a variable
X in the extended empty clause derived by our pro-
posed resolution is substituted to a constant ¢, by our
method proposed above, for some argument a™(z), there
are app(X,a™(i)) in a clause of S and ¢ € H(a™(7)). O

Lemma 4. Let S be an unsatisfiable set of clauses,
and Sg the unsatisfiable set of ground instances of
clauses of S derived by our proposed resolution. Then,
each clause of Sg is an SHU”* ground clause of S.
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Proof. Because there is no variable in Sg, all terms
in Sg are ground. We show that for each ground term
7, if there is app(r, @™ (i)) in Sk, then 7 € H(a™(i)). We
do it by induction on dep(r).

If dep(tr) = 1, 7 is a constant.
T € H(a™(i)).

Assume the above statement holds when dep(r) = 1,
1 < ¢ < t. We show that it holds when dep(r) =t + 1.

Without loss of generality, let 7 = f(p1,...,Pm),
where dep(p;) < t, 1 < j < m. By the above discus-
sion, V(f) C H(a™(:)). By the induction hypothesis,
p; € H(f™(4)), and by Definition 11, f(p1,...,pm) €
H(a™(3)). That is, 7 € H(a™ (7)) for dep(r) =t + 1.

Then, by above discussion and Definition 12, every
clause of Sg is an SHU™ ground instance of some clause
of S.® O

Theorem 5 (Correctness). A set S of clauses is
unsatisfiable if and only if there is a finite unsatisfiable
set S* of the SHU™ ground instances of clauses of S.

Proof. (=) Suppose that S is unsatisfiable. By our
proposed resolution, we can derive an unsatisfiable set
Sg of ground instances of clauses of S. By Lemma 4,
each clause of Sg is an SHU* ground instance of some
clause of S. Let §* = Sg, then §* is an unsatisfiable
set of SHU™* ground instances of clauses of S.

(<) Suppose that there is a finite unsatisfiable set S*
of SHU™ ground instances of clauses of S. Because each
SHU* ground instance clause of S is a ground instance
clause of S, by Herbrand’s theorem, S is unsatisfiable.

O

By Lemma 3,

5 Application to Model Generation Theorem
Proving

By Theorem 5, to check the unsatisfiability of a
clause set, instead of the set of ground instances over
the Herbrand universe of the clause set, we need only
consider the sets of SHU™ ground instances of clauses
in the clause set. Therefore, when we transform a non-
range-restricted clause set to its corresponding range-
restricted one, we can limit each non-range-restricted
variable to elements of the SHU™ of the arguments cor-
responding to the variable.

Definition 14 (SHU Range-Restriction Trans-
formation Algorithm). Let & be a non-range-
restricted clause set. Suppose that there are t different
SHUs, says, H1, ..., Hs, for the arguments in S derived
according to Definition 10. For each H; (1 <1 < t),
we introduce an auziliary predicate symbol dom;. S is
transformed to a range-restricted clause set S*, called
the SHU range-restricted form of S, in the following
way:

1. Every range-restricted clause A — C 1is trans-
formed into itself.

2. For every non-range-restricted clause A — C,
let X1,...,X, be non-range-restricted variables in the

@ For example, each ground instance of clauses derived in Example 8 is an SHU* ground instance.
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clause, and Hq,,...,Hs, (1 < s < ¢, 1 <
k < n), the SHUs for the arguments correspond-
ing to Xq,...,Xn. Transform the clause to A,
doms, (X1),...,dom, (X,) = C. However, A is omit-
ted if it is T.

3. For every H; such that 1 < j <t,

(1) for each constant ¢ € H;, add a clause T —
dom;(c);

(2) for each V(f) € H;, suppose that f is an
m-place function, and Hp,,...,Hn, are the SHUs
for the arguments f™(1),...,f™(m), add a clause
domp, (Y1),..., domp,, (Y,) — domp, (f(Y1,...,Ym)).

Obviously, by the transformation procedures given
in Definition 14, a non-range-restricted variable is only
instantiated over the SHU™ corresponding to the vari-
able.

Because each SHU for the arguments correspond-
ing to a variable in a non-range-restricted clause of a
clause set S is a subset of the Herbrand universe of S,
by limiting non-range-restricted variables to elements of
the SHUs of the arguments corresponding to those vari-
ables, the number of ground instances might be reduced
considerably. For model generation theorem proving,
this means that the number of ground clauses used for-
ward chaining might be reduced, thus, reasoning could
be made efficiently.

FEzample 9. Let S be the clause set given in Example
2. By Example 7, the SHU for the argument pi(1) and
p3(1) is {c} UV(f) and the SHU for the argument f!(1)
is {c¢}. By the algorithm given in Definition 14, S can
be transformed into the following SHU range-restricted
clause set §*:

pi(c) = L,

p2(f(c)) = L,

dom1(X) — p1(X); p2(X),
T — domy(c),

T — domy(c),

doms(Y) — dom, (f(Y)).

SATCHMO can immediately show S* satisfiable.
The proof tree on S* constructed by SATCHMO is
shown in Fig.2.

FEzample 10. Consider the problem PUZ017-1 given
in TPTP (the Thousand Problems for Theorem Prov-
ing) library!'®l, which is described as follows.

There are 5 houses, 5 people, 5 colors, 5 drinks, 5
games, and 4 pets. Each house has a person, a color, a
drink, and a game, and all but one of the houses has a
pet. The problem is to match each house with as many
properties as possible. House 1 is at the left end and
house 5 is at the right end. The Englishman lives in
the Red house. The White house is at the left of the
Green house. The Italian has a Guppy. Lemonade is
drunk in the Green house. The Swede lives in the house
where Coffee is drunk. The Toad lives in the house
where Backgammon is played. Racquetball is played in
the Yellow house. Milk is drunk in the third house. The

Russian lives in the first house. The Camel lives next
to the house where Quoits is played. The Rat lives next
to the house where Racquetball is played. Solitaire is
played in the house where vodka is drunk. The Amer-
ican lives in the house where Charades is played. The
Russian lives next to the Blue house.

p1(f(c))
I

satisfiable

Fig.2. Proof tree constructed by SATCHMO in Example 9.

For convenience, we use hl, h2, h3, h4, h5 to denote
house 1, house 2, house 3, house 4, house 5, and hd for
hasdrink, respectively. The Herbrand universe H of the
problem consists of all constants in the problem:

H = {h1,h2,h3,h4, h5, no_pet, rat, camel, toad,
guppy, charades, solitaire, quoits, racquetball, backgam-
mon, unknown_drink, vodka, milk, coffee, lemonade,
blue, yellow, green, white, red, american, russian, swede,
italian, englishman}

There is, for example, the following non-range-
restricted clause in the problem:

T — hd(h1, A); hd(h2, A); hd(h3, A);
hd(hd, A); hd(hd5, A). (1)

By the general range-restricted transformation algo-
rithm given in Definition 6, for each element c in H, a
clause T — dom(c) will be added, and the clause (1) is
transformed to

dom(A) — hd(h1, A); hd(h2, A);
hd(h3,A); hd(h4, A); hd(h5, A).

The variable A in the above clause can take any el-
ement of the Herbrand universe H. For this reason,
for example, the following ground instance of the above
clause becomes violated and is used for forward chain-
ing:

dom(rat) — hd(h1,rat); hd(h2,rat);
hd(h3,rat); hd(h4,rat); hd(h5, rat).
Obviously, such ground instance is unreasonable and
therefore is redundant for a proof, because rat is ob-

viously not a drink. In the same way, there are such
unreasonable and redundant ground instances of clause
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(1) for each house, each person, each color, each pet and
each game. For this sake, no model generation based
theorem prover can complete the proof within an hour.

By our algorithm given in Definition 11, the follow-
ing six SHU™s can be derived:

H, = {h1,h2, h3, h4, h5},

Ho = {no_pet, rat, camel, toad, guppy},

Hs = {charades, solitaire, quoits,
racquetball, backgammon},

Hs = {unknown_drink, vodka, milk,
coffee, lemonade},

Hs = {blue, yellow, green, white, red},

‘He¢ = {american, russian, swede, italian,

englishman}.

It is worth noticing that, the above SHU*s are natu-
rally divided according to house, pet, game, drink, color
and people, respectively.

According to the SHU range-restriction transforma-
tion given in Definition 14, clause (1) is transformed into
the following one:

domy(A) — hd(hl, A); hd(h2, A);
hd(h3, A); hd(h4, A); hd(h5, A)

where dom, is the auxiliary predicate symbol corre-
sponding to H4. In this way, the variable A in the above
clause can only take elements in Hy, i.e., unknown_drink,
vodka, milk, coffee and lemonade, all are really existing
drinks. Thus, no unreasonable ground instances of the
clause would be generated. The model generation based
theorem provers SATCHMO and R-SATCHMO!!!! gave
the proof of the transformed SHU range-restricted one
of PUZ017-1 within 3 seconds.

6 Experimental Results

There are 3317 non-Horn problems in the TPTP li-
brary version 2.5.0, a benchmark problem library for
automated theorem proving, where there are 5181 prob-
lems in alll’®l. Among them, 2881 problems are non-
range-restricted, and the number of the problems from
which 2 or more SHUs can be derived by our ap-
proach is 451. Among them, 316 problems are really

non-propositional®, and other 135 problems are really
propositional. The largest number of the derived SHUs
is, somewhat surprisingly, 271 (Problem SYN837-1).
We run all the 451 applicable problems by
SATCHMO and R-SATCHMO without and with (the
cases with symbol %), our improvement on an Intel
PentiumIII/980MHz workstation with a time limit of
300 seconds. Both systems were implemented by SWI-
Prolog. The running times included the range-restricted
transformation, compilation and reasoning.
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Table 1 shows the number of the problems solved
by SATCHMO and R-SATCHMO. We found that if
a problem could be solved by SATCHMO and/or R-
SATCHMO, then it could also be solved by SATCHMO*
and /or R-SATCHMO* within almost the same time, but
the converse was not always true. This shows that the
SHU range-restriction transformation almost takes no
additional cost than the general range-restriction trans-
formation.

Table 2 shows some selected experimental results,
where the running times are given in seconds and T.o.
means time out, i.e., > 300 seconds, U means unsatisfi-
able, and S for satisfiable. All problems are non-range-
restricted. We can find that our approach is power-
ful for model generation theorem proving on non-range-
restricted problems.

Among 143 problems resolved by R-SATCHMO*, 81
problems are satisfiable and the other 62 problems are
unsatisfiable. The largest number of derived SHUs is 22
(SYN890-1). 24 problems have the rating beyond zero
(such problems are said to be difficult problems), the
highest rating is 0.83 (TOP002-1 and TOP003-1, both
are satisfiable) and the lowest rating is 0.33 (NLP061-1,
SYN851-1, etc.). Among them, 15 problems are sat-
isfiable and the other 9 problems are unsatisfiable. It
turns out that our method is more suitable for satisfi-
able problems.

As a comparison of R-SATCHMO™* with other au-
tomated reasoning systems that entered the most re-
cent automated theorem prover system competition held
in IJCAL-3 (CASC-J3)P% where the used comput-
ers were AMD Athlon XP2200+/1797MHz, we run R-
SATCHMO* on the problems used in CASC-J3. The
results were not as good as expected for R-SATCHMO*.
The reasons are: 1) as indicated in [21], most of
the problems in the TPTP library are designed with
refutation-oriented theorem provers in mind, therefore
favoring those systems; 2) R-SATCHMO* lacks built-in
equality treatment; 3) R-SATCHMO* was implemented
in SWI-Prolog, while all of systems that entered CASC-
J3 were implemented in C or C++ (it was reported in
[22] that a system implemented in C or C++ would be
at least 300 times faster than that implemented in SWI-
Prolog); 4) the computers used in CASC-J3 were almost
two times faster than ours.

For the EPS (Effectively Propositional Satisfiable
clause sets) division, R-SATCHMO* seems quite good
for problems from which two or more SHUs can be de-
rived. The results are shown in Table 3, where Py,
Pl, PQ, P)_?,7 P3, P47 P5, P6, P7, Pg, Pg and R* are de-
noted provers Darwinl.3, DCTP10.21p, DarwinFM1.3,
Paradox2.0a, Geo2006i, iProver0.1, E0.99, Vampire8.1,
Equinox1.0a and R-SATCHMO?*, No., for the number of
divided SHUs, G.u., for give-up, and T.o., for time-out,
respectively. All data except for those of R-SATCHMO*
are taken from [20].

©Rea.lly non-propositional means with an infinite Herbrand universe

[20],
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Table 1. Experimental Results (I)
Number of Problems SATCHMO SATCHMO* R-SATCHMO R-SATCHMO*
451 7 132 85 143
Table 2. Experimental Results (IT)
Number of
Problem Derived SHU: U/s SATCHMO SATCHMO* R-SATCHMO R-SATCHMO*
erive s
COMO002-2 12 U T.o. 0.6 0.3 0.2
KRS016-1 2 S T.o. 0.2 T.o. 0.2
MSC004-1 3 U T.o. T.o. T.o. 0.2
NLP048-1 4 S T.o. 1.0 T.o. 1.0
NLPO060-1 7 S T.o. 160 T.o. 160
NLPO067-1 5 S T.o. 0.3 T.o. 0.2
NLPO0O79-1 5 U T.o. 0.6 T.o. 1.0
NLP131-1 6 S T.o. 0.3 T.o. 1.0
NLP161-1 7 S T.o. 1.0 T.o. 1.0
NLP221-1 5 S T.o. 0.3 T.o. 0.2
NLP230-1 5 S T.o. 2.2 T.o. 0.4
PLA029-1 4 S T.o. 0.3 T.o. 0.2
PUZ017-1 6 U T.o. 0.6 T.o. 0.2
PUZ019-1 2 U T.o. 1.0 1.0 0.3
PUZ044-1 2 S T.o. 0.3 T.o. 0.3
SET777-1 2 S T.o. 0.2 T.o. 0.2
SYN304-1 5 S T.o. 0.2 T.o. 1.0
SYN320-1 3 S T.o. 0.3 T.o. 1.0
SYN345-1 2 U T.o. 0.2 T.o. 0.3
SYN419-1 2 S T.o. 242 T.o. 252
SYN423-1 2 S T.o. 163 T.o. 167
SYN425-1 2 S T.o. 126 T.o. 127
SYN513-1 2 S T.o. 131 T.o. 129
SYN545-1 2 S T.o. 227 T.o. 23
SYN&T70-1 21 S T.o. T.o. T.o. 146
SYN871-1 22 U T.o. 135 T.o. 86
SYN&75-1 22 U T.o. 70 T.o. 25
SYN879-1 21 U T.o. T.o. T.o. 114
SYN891-1 22 U T.o. 90 T.o. 87
SYN892-1 20 U T.o. 206 T.o. 133
TOP003-1 3 S T.o. 8.26 T.o. 0.27
TOPO006-1 3 S 35.75 0.27 1.83 0.15
Table 3. Experimental Results on the Problems in the EPS Division in CASC-J3
Problems Py P> Ps3 Py Ps Ps P; Ps Py No. R*
PUZ018-2 0.0 0.1 0.1 0.0 3.4 0.0 T.o. T.o. G.u. 2 0.1
SYN307-1 0.0 0.0 0.0 0.0 0.0 0.0 T.o. T.o. G.u. 2 0.1
SYN317-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 G.u. 2 0.1
SYN419-1 0.1 1.1 0.1 0.6 59.1 T.o. 1.1 T.o. G.u. 2 252.8
SYN423-1 0.1 1.9 11.2 1.1 T.o. T.o. T.o T.o. G.u. 2 166.6
SYN521-1 0.0 0.1 0.0 0.1 0.5 0.0 0.0 0.0 G.u. 4 0.1
SYN534-1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 G.u. 2 0.1
SYN539-1 0.0 0.2 0.0 0.2 0.5 0.0 1.2 1.5 G.u. 2 0.8
SYN541-1 0.0 0.1 0.0 0.2 0.5 0.0 T.o. 0.2 G.u. 2 0.5
SYN823-1 0.5 1.6 0.7 15.0 T.o. 284.4 0.2 0.4 G.u. 128 T.o.
SYN872-1 0.5 0.6 1.2 179.8 T.o. T.o. 0.3 0.5 G.u. 62 T.o.
SYN888-1 0.8 1.8 1.9 281.7 T.o. T.o. 0.4 0.6 G.u. 64 T.o.

R-SATCHMO* had an adequate performance among
all provers, where SYN419-1 and SYN423-1 were re-
solved with the help of our approach.

R-SATCHMO* failed on SYN823-1, SYN872-1 and
SYNR888-1, each of them has a large size. For example,
there are 386 clauses, 5849 atoms, 241 predicates and
5029 variables (345 singleton) in SYN823-1. A theorem
proving system implemented in Prolog hardly resolves
so large sized problems within 300 seconds. Keeping
in mind that R-SATCHMO™* was implemented in Pro-
log, while other theorem provers were implemented in
C or C++ and the computer used in CASC-J3 was al-

most two times faster than ours, we would expect that
R-SATCHMO* could resolve SYN823-1, SYN872-1 and
SYNB888-1 if it had been implemented in C or C++.

7 Conclusion

In this paper, we presented an improvement of Her-
brand’s theorem and proposed the algorithm for deriv-
ing sub-Herbrand universes for arguments of predicate
symbols and function symbols in a given clause set. We
have shown that to check unsatisfiability of a set S of
clauses, instead of considering the set S’ of ground in-
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stances of clauses of S derived by instantiating variables
in S over the Herbrand universe of S, we can consider
the set S*, which is a subset of &', of ground instances
of clauses of § derived by instantiating variables in &
to elements of SHUs corresponding to the variables. In
cases where non-range-restricted problems are applied
to a model generation theorem prover, this directly leads
to reduction the number of ground clauses used for for-
ward chaining, therefore the search space is limited and
the efficiency of reasoning might be enhanced consider-
ably.

It is worth mentioning that, the strategy proposed
in this paper is a basic one and therefore can be fur-
ther improved. For example, we can derive a smaller
sub-universe of the Herbrand universe for an argument
of predicates or functions by differentiating the positive
atoms and the negative atoms in a given set of clauses.

We will also try to find other applications on the full
first-order logic for our approach.

In order to further investigate the power of our ap-
proach, we will improve R-SATCHMO* by incorporat-
ing built-in equality treatment, use C or C++ to imple-
ment our system, and make a challenge to refutation-
oriented theorem provers in future CASCs.

It is said that a problem is really non-propositional if
it has an infinite Herbrand universe, i.e., if it contains a
function. With our improvement, the definition should
be changed to: a problem is really non-propositional if it
has at least an infinite sub-Herbrand universe for some
argument in the problem.
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