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Abstract 

Background: Recent increased use of medical images induces further burden of their interpretation for physicians. A 
plain X-ray is a low-cost examination that has low-dose radiation exposure and high availability, although diagnosing 
urolithiasis using this method is not always easy. Since the advent of a convolutional neural network via deep learning 
in the 2000s, computer-aided diagnosis (CAD) has had a great impact on automatic image analysis in the urological 
field. The objective of our study was to develop a CAD system with deep learning architecture to detect urinary tract 
stones on a plain X-ray and to evaluate the model’s accuracy.

Methods: We collected plain X-ray images of 1017 patients with a radio-opaque upper urinary tract stone. X-ray 
images (n = 827 and 190) were used as the training and test data, respectively. We used a 17-layer Residual Network 
as a convolutional neural network architecture for patch-wise training. The training data were repeatedly used until 
the best model accuracy was achieved within 300 runs. The F score, which is a harmonic mean of the sensitivity and 
positive predictive value (PPV) and represents the balance of the accuracy, was measured to evaluate the model’s 
accuracy.

Results: Using deep learning, we developed a CAD model that needed 110 ms to provide an answer for each X-ray 
image. The best F score was 0.752, and the sensitivity and PPV were 0.872 and 0.662, respectively. When limited 
to a proximal ureter stone, the sensitivity and PPV were 0.925 and 0.876, respectively, and they were the lowest at 
mid-ureter.

Conclusion: CAD of a plain X-ray may be a promising method to detect radio-opaque urinary tract stones with 
satisfactory sensitivity although the PPV could still be improved. The CAD model detects urinary tract stones quickly 
and automatically and has the potential to become a helpful screening modality especially for primary care physicians 
for diagnosing urolithiasis. Further study using a higher volume of data would improve the diagnostic performance of 
CAD models to detect urinary tract stones on a plain X-ray.
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Background
Urolithiasis is a common disease. Non-contrast 
computed tomography (CT) has become the gold 
standard modality as an imaging examination for diag-
nosing urolithiasis because of its high accuracy, which 
is reportedly 92–100%, and its excellent ability to detect 
other acute flank pain conditions [1–3]. However, some 
problems have emerged. CT is generally an expensive 
examination compared with others such as intrave-
nous urography [4], and it is not preferred for pregnant 
women or children [5, 6]. Therefore, the repetitive use 
of CT is unsuitable for follow-up based on cost-effec-
tiveness and radiation exposure. To reduce radiation 
exposure, low-dose CT is a promising option [7]. How-
ever, CT is not necessarily available in small-sized med-
ical institutions such as in a medical office [8] because 
a CT scanner is expensive and requires a high level of 
interpretation capability. Conversely, a plain X-ray is a 
low-cost examination that has low-dose radiation expo-
sure and high availability, although its accuracy, which 
is reportedly 44–77%, is inferior to that of CT [9].

An increased use of medical images induces further 
burden of their interpretation for physicians. Recently, 
a considerable amount of evidence has demonstrated 
the utility of artificial intelligence for diagnostic imag-
ing. A computer-aided diagnosis (CAD) has been 
especially receiving attention in recent years. A neural 
network is a machine learning model that was designed 
to mimic human neural systems. Since the advent of a 
convolutional neural network (CNN) via deep learning 
in the 2000s, which is an advanced form of a neural net-
work, CAD accuracy has increased and CAD has had 
a great impact on automatic image analysis in the uro-
logical field, leading to some successful reports about 
the detection of prostate cancer on magnetic resonance 
imaging (MRI) or the differentiation of distal ureteral 
stones and pelvic phleboliths [10, 11]. A combina-
tion of X-ray and CAD has also become successful in 
improving the diagnostic ability for various diseases, 
although its efficacy for identifying urinary tract stones 
has not been studied [12, 13]. In this study, we devel-
oped a CAD algorithm with deep learning architecture 
to automatically detect urinary tract stones on a plain 
X-ray image and evaluated the efficacy of this new 
model.

Methods
Study design and datasets
Ethics board approval was obtained from the Tokyo 
Medical and Dental University Ethics Review Com-
mittee (approval number M2018-176). This was a mul-
ticenter retrospective study. We collected plain X-ray 
images of 1123 patients who were diagnosed with 
upper urinary tract urolithiasis from 2013 to 2018 at 
three institutions. The diagnosis of urolithiasis was 
confirmed by urologists based on the CT images in all 
cases. We excluded 106 cases that had only radiolucent 
urinary tract stones. X-ray images of 1017 patients with 
a radio-opaque urinary tract stone were used for this 
study. We enrolled 616 patients from Tsuchiura Kyodo 
General Hospital, 211 from Tokyo Medical and Dental 
University, and 190 from JA Toride Medical Center. We 
included only one image per patient. If the X-ray was 
repeated, only the image that was performed at diag-
nosis was included. Images with a visible artificial for-
eign body on the X-ray were included. We divided all 
X-ray images into two datasets, as follows: a training 
dataset consisting of 827 X-ray images from Tsuchiura 
Kyodo General Hospital and Tokyo Medical and Dental 
University, which were used to develop the CAD algo-
rithm; and a test dataset consisting of 190 X-ray images 
from the JA Toride Medical Center, which were used to 
evaluate the model that we created. Figure 1 shows the 
inclusion and exclusion criteria and the outline of the 
present study.

Labeling stone lesions
Among all of the X-ray images, all visible stone lesions 
were labeled as the correct information by urologists who 
manually traced the stone outline (Fig. 2a, b), with refer-
ence to the CT scan images. Invisible stone lesions on the 
X-ray were ignored in this study.

Image pre‑processing
All X-ray images were resized to 1328 × 1328 pixels to 
accommodate the different image size in each hospital. 
Histogram equalization was used to enhance contrast. 
In the training data, patches that were 166 × 166 pixels 
were cropped from resized X-ray images to randomly 
reduce the amount of calculations based on the following 
rules: (1) patches were forced to include a urinary tract 
stone or not at the same rate; (2) a urinary tract stone 
was forced to be centered in the patch if it was included; 
and (3) patches without any part of a urinary tract stone 
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were forced to be created if the stone was not included 
(Fig. 2c). These patches were then divided into the follow-
ing two groups based on whether or not the urinary tract 
stone lesion was contained in the patch: patches includ-
ing or not including a stone lesion.

Deep learning for training
To develop the CAD algorithm, deep learning with 
graphics processing unit (GPU) computing using a com-
puter equipped with GeForce GTX 1080 graphics card 
(Nvidia, Santa Clara, CA, USA) was performed. As a 
CNN architecture for a patch-wise training, we used a 
17-layer Residual Network (ResNet) in this study [14]. 

Figure  3 shows the ResNet architecture. The patches 
including or not including a stone lesion were used as 
input data and the computer determined whether or not 
a stone lesion was contained in the patch. The outputs 
were normalized to show a probability of stone’s exist-
ence with the softmax function. There were two types 
of errors: overlooking and misdetection. An overlooking 
was an error that the patch included a stone lesion but 
the computer could not identify the stone, while a mis-
detection was an error that the patch included no stone 
lesion but the computer determined that a stone was 
present. Each error was calculated as a loss according to 
the probability of stone’s existence which the computer 

Fig. 1 Flowchart of the inclusion and exclusion criteria and study outline. Eight hundred and twenty-seven X-ray images were used for training and 
190 X-ray images were used for evaluating the model’s accuracy
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output as a result of prediction. Using the back propa-
gation method, the CNN’s parameters were optimized 
to minimize each loss, which resulted in a model with 
fewer errors. In addition, several different weights of loss 
were tried for overlooking against misdetection to find a 
model with the most balanced diagnostic performance. 
The weight of loss for overlooking was a coefficient that 
we set up to adjust for the influence of overlooking when 
the weight of loss for misdetection was set to 1. For 
example, when the weight of loss for overlooking was set 
to 1, the loss was equally calculated among overlooking 
and misdetection. When the weight of loss for overlook-
ing was set to 10, the loss for overlooking was calculated 
as 10 times more than that of misdetection. The weight of 
loss for overlooking affected how easily the model would 

overlook a stone lesion, and we could create models with 
different accuracies by changing this value. The training 
dataset was repeatedly used for the training, which was 
stopped when the model’s best accuracy was determined 
within 300 runs.

Evaluation of the model’s accuracy
The test data were used to evaluate the accuracy of the 
model that we created using deep learning. The computer 
was forced to identify urinary tract stones in each whole 
X-ray image of the test data, not in the patches. As the 
result of prediction by the computer, the probability of 
stone’s existence was calculated in each pixel and dem-
onstrated in each input image as heat maps that repre-
sented the probability of stone’s existence by the color 

Fig. 2 Labeling stone lesions and image division into patches. a Resized plain X-ray image of a patient with a left ureteral stone. b Labeling of stone 
lesions by urologists. A blue area in the image is a label showing the correct location of the stone lesion. c Random cropping and creating patches. 
Patches of 166 × 166 pixels were randomly cropped from a plain X-ray image and divided into two groups: patches including or not including a 
stone lesion
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Fig. 3 ResNet architecture. The patches were input and convoluted as they passed through each layer. Each box indicates the number (n) and size 
(length (l) × width (w) = pixels) of images in each layer. The computer’s prediction of whether an input patch was included was output and each 
loss was calculated if the output was not concordant with the input. The parameters were optimized using the back propagation method, in which 
each loss was supposed to be minimized

Fig. 4 Preparation to evaluate the model’s accuracy. a Heat map representing the possibility of a stone lesion by color between light red at 100% 
and dark green at 0%. b Bounding boxes were automatically created to enclose three pixels outside of the heat maps
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between light red at 100% and dark green at 0% (Fig. 4a). 
In addition, bounding boxes were automatically created 
to enclose three pixels outside of the heat maps (Fig. 4b). 
If the bounding box completely contained the stone label, 
it was considered to be a true positive (TP), and if not, it 
was considered to be a false positive (FP). Additionally, if 
a stone lesion was ignored, it was considered to be a false 
negative (FN). TP or FP were assigned to each bounding 
box and FN to each ignored stone lesion, and they were 
then counted. We measured the sensitivity, positive pre-
dictive value (PPV), and F score of the models that we 
created, with three different weights of loss for overlook-
ing, as follows: 1, 10, and 20. The F score, which is usually 
used to compare the models’ accuracies, is the harmonic 
mean of the sensitivity and PPV, and it reaches its maxi-
mum value at one and its worst value at zero. The closer 
the F score is to one, the more balanced is the diagnostic 
performance. Sensitivity, PPV, and the F score were cal-
culated using the formulas that are described below.

Sensitivity =
TP

TP + FN

Positive predictive value (PPV ) =
TP

TP + FP

F score =
2× Sensitivity× PPV

Sensitivity+ PPV

Statistical analyses
Statistical analyses were performed using the JMP soft-
ware program, version 10.0 (SAS, Cary, NC, USA). Data 
were compared between each group using Pearson’s chi-
square test or Fisher’s exact test for categorical variables 
and Student’s t-test or Mann–Whitney U test for contin-
uous variables. Chi-square test was also used for compar-
ing sensitivity or PPV. P < 0.05 was considered statistically 
significant.

Results
Patients and images characteristics
The characteristics of patients and images that are 
assigned to the training and test datasets are summa-
rized in Table  1. There were no significant differences 
between both datasets for gender and the number of 
labeled lesions per image (P = 0.132 and 0.486, respec-
tively). Patients in the training dataset were significantly 
older than those in the test dataset (58 vs. 56 years old, 
P = 0.038). The proportion of images with a urinary tract 
stone located at mid-ureter was significantly lower in the 
training dataset than in the test dataset (9.1% vs. 14.2%, 
P = 0.046). However, the proportion of images with a uri-
nary tract stone that was located in the distal ureter was 
significantly higher in the training dataset than in the test 
dataset (22.2% vs. 9.5%, P < 0.001). In the present study, 
images with an artificial foreign body such as a ureteral 
stent, a nephrostomy tube, an artificial joint, and a screw 

Table 1 Characteristics of patients and X-ray images assigned to the training and test datasets

Training dataset Test dataset P value

Number of patients 827 190

Gender, n (%) 0.132

 Male 537 (64.9) 143 (75.3)

 Female 290 (35.1) 47 (24.7)

Age, median (range), years 58 (17–89) 56 (14–87) 0.038

Number of labeled lesions per image, n (%) 0.486

 One 656 (79.4) 144 (75.8)

 Two 112 (13.5) 32 (16.8)

 More than two 59 (7.1) 14 (7.4)

Location of urinary tract stone, n (%)

 Kidney 428 (51.8) 106 (55.8) 0.895

 Proximal ureter 334 (40.4) 72 (37.9) 0.582

 Mid-ureter 75 (9.1) 27 (14.2) 0.046

 Distal ureter 184 (22.2) 18 (9.5) < 0.001

Staghorn calculus, n (%) 0.553

 Yes 17 (2.1) 2 (1.1)

 No 810 (97.9) 188 (98.9)

Artificial foreign body in image, n (%) 0.672

 Yes 53 (6.4) 10 (5.3)

 No 774 (93.6) 180 (94.7)
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for spinal surgery were included, resulting in no signifi-
cant differences between the training and test datasets 
(6.4% vs. 5.3%, P = 0.672).

Deep learning results and the model’s accuracy
The GPU needed 9  h to finish learning the training 
data. The model that we created needed 110 ms to pro-
vide an answer for each image. Figure 5 shows four rep-
resentative cases in which the computer’s predictions 
were visualized. The sensitivity when the weights of loss 
for overlooking were 1, 10, and 20 was 0.872, 0.916, and 
0.960, respectively. For each weight of loss, the PPV was 
0.662, 0.488, and 0.418, and the F score was 0.752, 0.637, 
and 0.582, respectively. Figure  6 demonstrates a line 
graph showing the models’ diagnostic performances that 
was created for each weight of loss for overlooking, indi-
cating that the sensitivity was increased and the PPV and 
F score were decreased as the weight of loss for overlook-
ing increased. Based on the F score, the diagnostic per-
formance of the model that was created when weight of 
loss for overlooking was set to 1 was considered to be the 
most balanced.

The model accuracy for each urinary tract stone location
In our test dataset of 190 patients, 106 kidney stones, 
107 proximal ureteral stones, 22 mid-ureteral stones, 
and 30 distal ureteral stones were identified by urolo-
gists. We studied the differences in the model’s diagnostic 

performance based on the location of a urinary tract 
stone, using the model that was created when the weight 
of loss for overlooking was set to 1. In this case, the CAD 
model was able to detect 95 stones in the kidney, 99 
stones in the proximal ureter, 13 at mid-ureter, and 24 in 
the distal ureter. Conversely, there were 72 FPs in the kid-
ney, 14 in the proximal ureter, 13 in the mid-ureter, and 
19 in the distal ureter. The diagnostic performance was 
as follows: the sensitivity was 0.896 in the kidney, 0.925 in 

Fig. 5 Visualization of four representative cases. a A case with multiple calculi including a mid-ureteral stone. b A case in which a calculus was able 
to be distinguished from pelvic phleboliths. c A case with residual barium in the colon. d A case with multiple calculi and an artificial joint

Fig. 6 The models’ diagnostic performance that was created for 
each weight of loss for overlooking. This line graph indicates that 
the sensitivity was increased and that the PPV and F score were 
decreased as the weight of loss for overlooking was increased
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the proximal ureter, 0.591 at mid-ureter, and 0.800 in the 
distal ureter. The sensitivity for mid-ureter stone was sig-
nificantly lower than that for kidney and proximal ureter 
stone (P = 0.001 and < 0.001, respectively). The PPV was 
0.569 in the kidney, 0.876 in the proximal ureter, 0.500 
at mid-ureter, and 0.558 in the distal ureter (Table  2). 
The PPV for proximal ureter was significantly higher 
than that for kidney, mid-ureter and distal ureter stone 
(P < 0.001, < 0.001, and < 0.001, respectively). There were 
no significant differences except for the above-mentioned 
comparisons.

Discussion
In this study, we used deep learning to develop a CAD 
system to detect radio-opaque urinary tract stones on a 
plain X-ray. To our knowledge, there has been no report 
about automatic detection of urinary tract stones on 
plain X-ray. Our model was able to detect urinary tract 
stones quickly with a high sensitivity. This might become 
a new screening modality for diagnosing urolithiasis.

Automatic detection of urinary tract stones using a 
CAD system has several advantages. First, a CAD sys-
tem is always able to provide quick and consistent inter-
pretation without fatigue or fickleness. This capability is 
helpful in emergency medicine. Second, a CAD system 
is economical and easy to access because it can func-
tion as an application on a computer. There is no need 
to purchase any special machine and all we need to do 
is to install the application. Third, a CAD system with 
deep learning can have a self-learning system. Learn-
ing the mistakes that were made using a CAD system 
allows improvement of its diagnostic performance. 
Given these advantages, a plain X-ray with a CAD system 
may become a reliable modality in clinical practice as a 
screening tool, although the main problem is its accuracy.

We studied the diagnostic performance of a CAD sys-
tem with a focus on a balance by changing the weight 
of loss for overlooking. In this study, we measured the F 
score, which represented a balance of the CAD system’s 
diagnostic performance between overlooking and mis-
detection. The F score was best when the weight of loss 
for overlooking was set to 1, and the sensitivity and PPV 

were 0.872 and 0.662. According to the previous report 
about automatic detection of abnormality on chest X-ray, 
the sensitivity and specificity were 0.887 and 0.696, which 
are similar to our results [13]. The sensitivity seemed to 
be so satisfactory that the CAD system could help pri-
mary care physicians to find a urinary tract stone. In 
fact, this CAD model was able to detect a kidney stone 
of 2  mm in diameter (Fig.  5b). However, PPV was low, 
particularly in the kidney, at mid-ureter, and in the distal 
ureter. It was probably because the computer was likely 
to misdiagnose calcifications or bones as urinary tract 
stones. The computer did not have knowledge about the 
structure of the human body, resulting in mistakes that 
would not be made by physicians. On the other hand, 
another study reported that the combination of CAD 
system and CT had high accuracy in automatic differ-
entiation of distal ureteral stones and pelvic phleboliths 
with the sensitivity of 0.94 and the specificity of 0.9 [11]. 
Another possible reason is the small amount of training 
data that we used in this study. We prepared only 1017 
images for deep learning. This amount was low for train-
ing data for adequate deep learning. For example, in a 
previous report about deep learning for chest X-ray, over 
100,000 images were used [15]. In the future, if we are 
able to prepare an adequate amount of training data and 
combine it with another algorithm to identify the human 
body’s structure, the accuracy may be further enhanced. 
The CAD system that we created in this study seems to 
be useful as a screening tool, because X-ray has the sev-
eral advantages such as low-cost, low-dose radiation and 
high availability.

Data augmentation is a method that is used to amplify 
training data by adding a change to an original image. We 
did not perform data augmentation in this study. In our 
pilot analysis, data augmentation did not improve accu-
racy (i.e. the best F score was 0.636), which was proba-
bly because the computer identified urinary tract stones 
based on their shape or orientation. Data augmenta-
tion by transformation or rotation might not be helpful 
for developing the CAD system to detect urinary tract 
stones. However, data augmentation without transfor-
mation or rotation may improve the accuracy. One such 

Table 2 The accuracy of the model for each urinary tract stone location

TP true positive, FP false positive, FN false negative, PPV positive predictive value

Urinary tract stone 
location

Number of TP Number of FP Number of FN Sensitivity PPV

Kidney 95 72 11 0.896 0.569

Proximal ureter 99 14 8 0.925 0.876

Mid-ureter 13 13 9 0.591 0.500

Distal ureter 24 19 6 0.800 0.558

All locations 231 118 34 0.872 0.662



Page 9 of 10Kobayashi et al. BMC Urol          (2021) 21:102  

method is embedding augmentation, which means mak-
ing a fake image that is similar to a real image [16]. Using 
stone embedding, we can create a large amount of fake 
images of urolithiasis and increase the training data for 
deep learning, leading to an improvement in the CAD 
system’s diagnostic performance.

The present study has several limitations. First, we 
excluded cases with only radiolucent urinary tract stones, 
which is reportedly observed in 10% of patients with 
urolithiasis, because the diagnostic ability of the algo-
rithm depends on the contrast information in the image 
[17]. This model can identify only lesions visible on 
plain X-ray. A radiolucent urinary tract stone will not be 
detected by models using a plain X-ray trained with CNN 
algorithm, although the combination with ultrasonogra-
phy or intravenous pyelogram may be effective. Although 
the diagnostic performance of a CAD system would cur-
rently be inferior to CT for diagnosing radiolucent stones, 
a CAD system could be improved in the future, and it is 
expected to be used in various situations such as follow-
up until stone expulsion or objective evaluation of stone 
treatment. In addition, if trained based on CT or MRI, 
the CAD system seems to gain the ability to accommo-
date various types of lesions, as we reported about auto-
matic detection of prostate cancer in the previous study 
[10]. The efficacy of a CAD system combined with CT 
or MRI images for the urological field including not only 
urolithiasis but also neoplastic disease is under inves-
tigation. Second, the proportion of X-ray images with a 
distal ureteral stone was lower in the test dataset than in 
the training dataset. Distal ureteral stones were difficult 
to distinguish from pelvic phleboliths, which might tend 
to increase the number of FP results. Therefore, the test 
dataset in the present study might contribute to reduc-
ing the number of FPs. Third, we did not include negative 
images without a stone lesion. Therefore, the specificity 
and negative predictive value could not be calculated in 
this study. Prospective investigations of the CAD system’s 
usefulness are required for urinary stone clinical practice.

Conclusions
We developed a CAD system using deep learning to 
detect radio-opaque urinary tract stones on a plain X-ray. 
The sensitivity was high enough to use the CAD model in 
clinical practice, although there was still room to improve 
the PPV. The CAD model can detect urinary tract stones 
quickly and automatically, and has the potential to help 
primary care physicians to diagnose urolithiasis as a 
screening modality. Further study using higher-volume 
data would improve the CAD models’ diagnostic perfor-
mance for detecting urinary tract stones on a plain X-ray.
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