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ABSTRACT A urinary stone is a type of abnormality that occurs frequently in the urinary system.
An automated segmentation of urinary stones is important for assisting medical doctors in early diagnosis
and further treatment. While deep learning techniques are effective for image segmentation, they require a
large number of datasets to achieve high accuracy. We proposed a GAN-based augmentation technique for
creating synthetic images based on stone and non-stone mask inputs in order to improve the segmentation
network’s performance by increasing the number and diversity of training data. The synthetic training
images were generated from stone-contained images and stone-free images using existing stone ground
truth and corresponding stone location maps, respectively. To segment urinary stones from full abdominal
x-ray images, we trained the MultiResUnet model using both original stone-contained and our proposed
synthetic samples. The proposed method obtained a 69.59% pixel-wise F1 score and a 68.14% region-wise
F1 score, which achieved an improvement of 2.12% and 2.13%, respectively, over a model trained with only
the original stone-contained dataset.

INDEX TERMS GANs, data augmentation, image inpainting, abdominal X-Ray imaging, urinary stone
segmentation.

I. INTRODUCTION
Urinary stones are one of the most frequently encountered
abnormalities in the urinary system [1]. Symptoms of a uri-
nary stone include lower abdominal pain and gross hema-
turia; therefore, early diagnosis is necessary to treat patients
before the disease becomes severe [2]. Urinary stones can be
detected by using a plain x-ray image in a lower body region
known as abdominal x-ray imaging, as the majority of stones
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are calcified, which are visible with this modality. Although
abdominal x-ray images are not commonly used for stone
detection, they are of less radiation exposure and less expen-
sive than CT scanning, which is the standard medical imaging
method on this task [3]. However, detecting urinary stones in
a plain x-ray image is a time-consuming process and usually
difficult for even an experienced urologists, as stones and
other anatomic structures are projected in a 2D image in
this modality. Some stones are difficult to detect due to their
overlapping to other anatomical structures; and some types of
stones, such as irregular ones, are barely visible. Therefore,
a computer-aided diagnosis for urinary stone segmentation is
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demanded to alleviate screening burden and assist medical
doctors during diagnosis process.

Deep learning has been widely applied to various medical
imaging tasks and has shown significant improvements over
traditional feature engineering methods [4]. However, the
performance of deep learning is typically dependent on the
amount of training data. Medical image datasets are limited
compared to other domains due to the high cost of data
acquisition, privacy restrictions, and difficulties associated
with image labeling, which require experts. Additionally,
class imbalance is a prevalent problem in medical domains,
where normal samples significantly outnumber samples with
lesions.

In this work, we proposed an image inpainting frame-
work to generate synthetic training images from stone and
non-stone masks. To the best of our knowledge, this is
the first study to focus on generating synthetic lesions in
2D radiography images based on the shape and contex-
tual information from mask inputs and the surrounding
region. Furthermore, we demonstrated in the experiments
that training urinary stones segmentation network with real
stone-contained images and additional synthetic images from
the proposed inpainting framework can improve the perfor-
mance of urinary stones segmentation and detection.

II. RELATED WORKS
Although basic data augmentation techniques such as image
shifting, scaling, flipping, and rotations are frequently used to
increase data diversity during the training stage, they cannot
be used to increase diversity of lesion characteristics and
locations. Accordingly, many investigators have proposed
various methods for creating new positive training samples.
For example, new lesions are simulated using a mathematical
model and then superimposed on existing medical images,
as demonstrated in the study in [5] for lung nodules, the one
in [6] for mammography, and the one in [7] for digital breast
tomosynthesis (DBT). In [8], [9], [10], [11], actual lesions
are extracted from real CT scan images and then inserted at
new locations in other images using various blending tech-
niques. In our previous work [12], we proposed a method
for superimposing a random urinary stone into normal x-ray
images during the training stage, by blending the properties
of the inserting stone and background. Additionally, our work
demonstrated that a model trained with real and synthesized
samples could improve the segmentation results.

Recently, generative adversarial networks (GANs) have
been successfully used in medical imaging augmentation
applications. For examples, a study in [13] used GANs to
generate medical images of liver lesions in order to improve
lesion classification performance. In skin lesion researches
in [14], [15], [16], [17], GANs were used in synthesizing
new skin lesion images. In recent studies, GANs were used
in image inpainting to synthesize lesions in medical image
patches to augment the training data in mammograms [18],
and lung nodules in CT images [19], [20], [21], [22]. In these
techniques, GANs were trained to fill objects of interests,

FIGURE 1. Illustration of an abdominal x-ray image with stones (left),
along with the corresponding gold standard manual segmentation of the
stones (right). The red box represents the cropped region of a urinary
stone that was used to generate the dataset in stone inpainting process.

such as lesions, in a cropped region. Deep learning methods
trained on real and synthetic images generated by GANs [23],
[24], [25] were shown to improve the performance in classi-
fication and segmentation tasks.

Image inpainting is a task of reconstructing a missing or
distorted region in an image. Recently, GANs were used
in this application instead of the traditional approaches.
Context Encoder (CE) [26] is a framework for training an
auto-encoder architecture with adversarial loss and recon-
struction loss. The studies in [27], [28] enhance the CE
framework by incorporating two discriminator networks: a
local discriminator taking the completed region as input
and a global discriminator taking the entire image as input.
More recently, ip-MedGAN [29] has been developed as an
inpainting framework for medical imaging. This method uses
cascaded multiple U-Net networks as the generator trained
with the combination loss of discriminator networks, recon-
struction loss, perception loss, and style loss.

III. URINARY STONE INPAINTING FROM STONE MASK
A. CROPPED STONE AND NON-STONE MASKS
We created a dataset for training an image-to-image trans-
lation network by using abdominal x-ray images and their
corresponding stone ground truth (Fig.1). For the stone mask
dataset, the stone ground-truth images were cropped in a
square shape around the stone region for every stone, where
the width (wm) and the top-left coordinates (xm, ym) of the
stone maskMs are defined in Eqs.(1) and (2), respectively.

wm =

{
ws + 0.2 · ws, if ws ≥ hs
hs + 0.2 · hs, otherwise

(1)

where ws and hs are the width and height of the urinary stone
region, respectively.

(xm, ym) =


(xs−0.1 · ws, ys−

wm − hs
2

), if ws ≥ hs

(xs−0.1 · hs, ys−
wm − ws

2
), otherwise

(2)

where xs and ys are top-left coordinates of a urinary stone
region.
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FIGURE 2. Illustration of cropped urinary stone images and their
corresponding images with stone masks Ms in the image’s center
(columns 1-3), as well as cropped non-stone images and the
corresponding images with non-stone masks Mns in the image’s center
(columns 4-6).

For non-stone mask dataset, the top-left coordinates
(xm, ym) of each non-stone mask Mns were randomly chosen
from non-stone region in stone-free (Isf ) images, and the
width of each non-stone mask wm was randomly chosen
between [10, 50] pixels.

Then, full abdominal x-ray images were cropped as square
regions with a width of 3 · wm at Ms or Mns. Fig. 2
illustrates the original cropped stone-region images and their
corresponding cropped images that center the binary stone
or non-stone mask. We used these pairs, including 1,800
cropped stone-contained (Isc) and 1,800 cropped stone-free
(Isf ) samples for training and testing process for our image-
to-image translation network.

B. NETWORK FOR INPAINTING STONE MASK REGIONS
1) CONDITIONAL INPAINTING GANs
Conditional GAN (cGAN) is a type of GAN that the net-
work is conditioned during training by using some addi-
tional information. In this work, we used the image-to-image
translation network to generate a missing region by using a
stone mask input. This cGAN, learning the mapping from
observed image x and random noise z to y, has two compo-
nents including a generator and a discriminator. The generator
G is trained to generate the output images, which are difficult
to be distinguished from real images, while the discriminator
D is trained to classify between the fake generated images
and real images. The adversarial loss of a conditional GAN
can be expressed as

LcGAN = Ex,y[logD(x, y)]+ Ex,y[log(1− D(x,G(x, z)))]

(3)

where G tries to minimize this objective, while an adversary
D tries to maximize it.

2) GENERATOR ARCHITECTURE
The overall structure of this image-to-image translation net-
work is illustrated in Fig.3. We used a stack of two U-Net
models, as an inpainting generator, the input to the second
network is the coarse inpainting result of the first network.
Eachmodel has two paths consisting of a contracting path and
an expanding path. The generator takes 128× 128 full images
with a masked region as input. Each convolutional block

consists of two 3 × 3 convolutional layers with LeakyReLu
activation and Batch normalization, followed by a 3× 3 con-
volutional layer with a stride of 2 to downsample the image
resolution. At the mid-layers, we used the dilated convo-
lutional layers with dilation rate (η) of 2, 4, 8, and 16.
Dilated convolution increases the receptive field, while still
using the same number of parameters and computational
resources [31]. These layers at the low resolution are impor-
tant for the image inpainting task because it needs a larger
receptive field that can cover the contextual information and
missing region. In the expanding path, the transposed con-
volutional layer was implemented to upsample the image
resolution and concatenated with the encoder at the same
spatial level. The output layer of each generator uses a 1 ×
1 convolutional layer with Tanh activation.

3) DISCRIMINATOR ARCHITECTURE
An image inpainting task usually utilizes two discriminators
with different receptive fields. The global discriminator Dg
receives entire generated images and real images as the input,
like other GANs do, while the local discriminatorDl receives
only the masked region of generated and real images as
input. The global discriminator network has the receptive
field of 128 × 128 pixels and consists of 4 convolutional
layers(convolution + LeakyReLU + Batch normalization)
with 2 strides. By using the wide receptive field input, the
network focuses on realistic details in the entire image and
ensures that the inpainted region fits the contextual informa-
tion surrounding the masked region. The local discriminator
network consists of 3 convolutional blocks (convolution +
LeakyReLU + Batch normalization) with 2 strides, and has
a receptive field of 48 times 48 pixels cropped from the
masked region. By using the smaller input receptive field
at the masked region, this network only focuses on realistic
details within the inpainted region. The last layer of both
networks is a 1 × 1 convolutional layer with Sigmoid acti-
vation, which produce N × N output patches representing
classification scores (’real’ or ’fake’). The adversarial loss of
cGAN (Ladv) used in this work is the average between these
two discriminators with different receptive fields, which can
be expressed as

Ladv = 0.5 · Ladv(G,Dg)+ 0.5 · Ladv(G,Dl) (4)

4) TRAINING METHODOLOGY
Recently, non-adversarial losses were usually used in an
image-to-image translation task as it can obtain better con-
sistent results [30]. In this work, we used a conventional
pixel-wise reconstruction loss (LL1) as shown in Eq. (5) to
minimize the mean absolute error (MAE) between the target
and generated image.

LL1 = Ex,y,z[‖x − G(y, z)‖1] (5)

We also utilized the content loss to enhance image details
of an inpainted image. The feature maps of target Vj(x) and
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FIGURE 3. Overview of our framework for generative stone inpainting. A cascaded U-Net generator using dilated convolution is trained with
reconstruction loss, content loss from the pre-trained VGG19, global adversarial loss, and local adversarial loss.

FIGURE 4. Examples of plain abdominal x-ray images (top), and their
corresponding stone location maps (bottom).

generated image Vj(y, z) were extracted from jth convolu-
tional layers of the pre-trained VGG-19 network trained on
the ImageNet dataset in the classification task. Then, Lcontent
can be computed by

Lcontent =
4∑
j=1

1
hjwjdj

‖Vj(x)− Vj(G(y, z))‖1 (6)

where hj, wj, and dj are the height, width, and depth of the
extracted feature maps at the first layer of 1st - 4th blocks of
VGG-19 network.

The first part of the cascaded U-Net model was trained
with only LL1 loss to generate the coarse result, while the
second network was optimized by using the combined objec-
tive functions of adversarial loss, L1 reconstruction loss, and
content loss expressed as:

Ltotal = λ1Ladv + λ2LL1 + λ3Lcontent (7)

where λ1, λ2, and λ3 represent the contributions of adversar-
ial loss, L1 loss, and content loss, respectively. In this work,
we used λ1 = λ3 = 1 and λ2 = 50.

We used the ADAM optimizer [32] with a momentum
value of 0.5 and a learning rate of 0.0002 to train the network
for 15,000 iterations. The discriminator was trained once for
every two iterations of training the generator. The dataset was
split into 85%of training samples and 15%of testing samples.

IV. URINARY STONE SEGMENTATION
A. GAN-BASED STONE INPAINTING AUGMENTATION
1) STONE LOCATION MAP
According to medical domain knowledge, urinary stones are
formed in kidneys and excreted via the ureters and bladder.
Therefore, they are found only in these urinary organs. In this
task, we created a map representing approximate locations
of urinary stones in the urinary organs based on clinical
data. The stone location maps were created by analyzing
the characteristics of original full plain abdominal x-ray
images of patients, as illustrated in Fig.4. These maps were
used for stone synthesis process for stone-free samples (Isf ),
as described in the following section.

2) SYNTHETIC IMAGES DATASET
The number of positive pixels (in a stone region) in an
abdominal x-ray image is extremely small compared to that
of negative pixels (in a non-stone region). The ratio of the
stone to the non-stone area can be less than 0.1%. In this
stage, we used the proposed urinary stone inpainting method
described in the previous section to increase the number
of positive data. The framework of image augmentation for
stone-contained (Isc) and stone-free (Isf ) training samples is
shown in Fig.5.

For each real stone-free image (Isf ), 1 to 3 new target
location(s) (xt , yt ) were randomly selected from the corre-
sponding stone location map to synthesize new stone(s) in the
non-stone region. A cropped stone mask (Ms) was randomly
selected from the cropped stone mask dataset and augment-
ing using image rotation [−10 ◦, +10 ◦], vertical flipping,
and horizontal flipping to increase the diversity of the new
stone’s characteristics. The augmented stone mask Ms was
then placed in the center of a selected location (xt , yt ), and
a full image (Isf /Isc) was cropped in a square shape around
the placed stone mask Ms with a 3 · wm width to include
the context region surrounding the stone mask, similar to the
training data for the stone inpainting task. For each real
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FIGURE 5. Proposed framework for image augmentation including GAN-based augmentation and classic augmentation techniques for urinary stone
segmentation.

FIGURE 6. Illustrations in columns 1-3 show original cropped Isf images, cropped Isf with random stone masks, and G(Isf ) results from the stone-free
augmentation. Illustrations of original cropped Isc images, cropped Isc with masks, and G(Isc ) results from the stone-synthesized and stone-removed
augmentation are shown in columns 4-6, and 7-9, respectively.

stone-contained image (Isc), the center coordinate of each
stone (xt , yt ) was randomly chosen to be replaced with either
the stone mask to synthesize a new stone, or non-stone mask
to remove the stone when there are multiple stones.

The input images were resized to 128 × 128 pixels and
processed by the trained inpainting generator to generate a
stone region based on the context pixels surrounding the
missing region and an input stone or non-stone mask as illus-
trated in Fig. 6 (columns 1-3) for stone-free images, Fig. 6

(columns 4-6) for stone-contained images with stone mask
inputs, and Fig. 6 (columns 7-9) for stone-contained images
with non-stone mask inputs.

The cropped region in the full image was then replaced
with the inpainted result, and the stone mask was placed
at the same location in the full ground-truth image. This
method was used to generate 10 additional samples for each
Isc and Isf , as additional training samples for the segmentation
network.
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TABLE 1. Summary of our abdominal X-ray database for urinary stones
segmentation.

B. URINARY STONES SEGMENTATION NETWORK
The training images for the stone segmentation network
were a combination of original full stone-contained images
(Isc), stone-synthesized stone-contained images (G(Isc)), and
stone-synthesized stone-free images (G(Isf )). All training
images were resized to 256×256 pixels and normalized to
zero mean and unit variance. Then, during the training stage,
all training images were randomly rotated [−5, 5] and hori-
zontally flipped.

In this task, we used the MultiResUnet model [33] which
is one of the state-of-the-art architecture that was designed
to improve the classical U-Net architecture, and success-
fully used in medical image segmentation. It substitutes a
MultiRes-Block for each convolution block in the original
U-net model at each level. This block consists of three cas-
caded 3 × 3 convolutional layers interconnected together
to extract various scales of spatial features. Then, a 1 ×
1 convolution was added as a residual connection from the
input to the output of the MultiRes-Block, in order to append
the spatial information. Additionally, It replaces skip connec-
tions between encoder-decoder paired layers with a ResPaths
block, which consists of 3× 3 and 1× 1 convolutional filters.
The architecture of the MultiResUnet is illustrated in Fig. 7.

The model was optimized using the focal Tversky loss
(FTL), a generalization of Dice loss (DL), which balances
the contribution between FN and FP by α and β, respectively.
Furthermore, it also has γ value for controlling non-linearity
of Tversky index (TI ) [34].When γ > 1, this loss non-linearly
focuses more on small TI samples, and suppresses the con-
tribution of high TI samples to the loss function. TI and FTL
are calculated as Eqs. (8) and (9), respectively.

TI =

∑N
i=1 p1ig1i∑N

i=1 p1ig1i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i
, (8)

FTL = (1− TI )1/γ (9)

where p1i represents the probability that pixel i is a stone and
p0i represents the probability that pixel i is not a stone. While
g1i is 1 for stone pixels and 0 for non-stone pixels, and g0i
is the opposite. N denotes the total number of pixels in the
current batch. This study used α = 0.7, β = 0.3 to bias the
model toward FN over FP values, and used γ = 2.0 to focus
more on less accurate predictions.

In each epoch during the training stage, 5% of G(Isc) and
G(Isf ) datasets were randomly selected and combined with
all Isc training samples to train the network. The network was
trained from scratch and used the Adam optimizer [32] to

FIGURE 7. MultiResUnet architecture for urinary stones segmentation.

minimize FTL with an initial learning rate of 10−3. During
training, whenever validation loss did not decrease by at least
10−4 over 10 epochs, the learning rate was divided by 2,
with the minimum learning rate set to 5 × 10−4. For all
experiments, the model was trained for 150 epochs with a
batch size of 16 images.

C. EXPERIMENTATION AND EVALUATION METHODS
For the urinary stone segmentation experiment, we used full
abdominal x-ray images consisting of 1,159 Isc and 740 Isf .
For each Isc, experienced urology doctors manually drew the
ground-truth masks of urinary stones. We used 5-fold cross-
validation to evaluate segmentation performance. In each
validation experiment, Isc samples were divided into 64%
training images, 16% validating images, and 20% testing
images. G(Isc) and G(Isf ) datasets were used only as addi-
tional training samples for the network. All dataset for urinary
stones segmentation are summarized in Table 1. The experi-
ments were conducted using TensorFlow 2.5.0 and all models
were trained on an Nvidia GeForce 1080Ti (12GB) GPU.

The segmentation results were evaluated using pixel-level
metrics such as recall, precision, and F1 score. Although
the conventional pixel-wise evaluation has been used in a
wide variety of segmentation tasks, it has a disadvantage
in the detection of multiple lesion because large lesions
obscure the small ones. Therefore, we also evaluated the
results using region-wise metrics, assessing the detection
performance based on the ground-truth stones and predicted
stones.

Each connected component [35] of stone-ground truth
(Gi) was compared to the predicted stone connected com-
ponent P that overlaps Gi in each testing image. The
total number of region-wise true positives (TPr ), and false
negatives (FNr ) can be defined in Eqs. (10), and (11),
respectively.

TPr =
N∑
i=1

Gi[
Gi ∩ P
Gi

>= 0.5] (10)

FNr =
N∑
i=1

Gi[
Gi ∩ P
Gi

< 0.5] (11)
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FIGURE 8. Illustration of the original cropped stone region images (1st row), input images for the stone inpainting network(2nd row), and synthesized
urinary stone results generated by the stone inpainting network (3rd row).

TABLE 2. Image quality assessment of our inpainted stone and
non-stone results.

where the stone ground-truth have N connected components
in total.

To calculate false positives (FPr ), each predicted con-
nected component (Pj) was compared with the ground truth
that overlaps Pj. Then, FPr can be defined as Eq. (12).

FPr =
M∑
j=1

Pj[
Pj ∩ G
Pj

< 0.5] (12)

where the predicted stones have M connected components in
total.

Then, TPr , FNr , and FPr were used to compute region-
wise recall, precision, and FB score, as shown in Eqs. (13),
(14), and (15), respectively. By using the region-wise evalua-
tion metric, the size of the lesion has no effect on these scores.
Apart from frequently used F1 score or dice coefficient,
we also reported F2 score results for region-wise evaluation.
In our case, some false positive (FPr ) results are acceptable
because all predictions must be confirmed by medical doc-
tors in real-world clinical use. F2 score, which weights FNr
more than FPr , is also another suitable metric for our work,
as we focused on the detection of urinary stones, and some
increased false positives as a trade-off were acceptable.

Recall =
TPr

TPr + FNr
(13)

Precision =
TPr

TPr + FPr
(14)

FB =
(B2 + 1) · Precision · Recall
(B2 · Precision)+ Recall

(15)

FIGURE 9. Comparisons of training and validation losses (left) and dice
coefficients (right) in 5-fold cross validation for the MultiResUnet model
trained with different training data.

V. RESULTS AND DISCUSSION
A. IMAGE INPAINTING RESULTS
We evaluated the quality of inpainted images using
full-reference image quality assessment (FR-IQA) methods
including MSE, PSNR, and SSIM [36], as shown in Table 2.
Fig. 8 illustrates the results of an inpainting network imple-
mented for testing samples. The input images in the stone
region were trained to generate both a stone region and its
surrounding region in the missing region as illustrated in
Fig. 8 (columns 1-5), whereas the input images in non-stone
regions were trained to fill the missing regions as illustrated
in Fig. 8 (columns 6-10).

B. PIXEL-WISE AND REGION-WISE URINARY STONES
SEGMENTATION RESULTS
In this experiment, we compared the pixel-wise and region-
wise segmentation results of the MultiresUnet model trained
with different training data, namely, real stone-contained
(Isc), real stone-free (Isf ), synthetic stone-contained (G(Isc)),
and synthetic stone-free (G(Isf )). Themodel trainedwith only
Isc was selected as the baseline because its pixel-wise and
region-wise F score was superior to that of the model trained
with both Isc and Isf . The results in Table 3. demonstrate
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TABLE 3. Pixel-wise and region-wise evaluation of segmentation results measured by recall, precision, and FB score (average ± S.D.%) of the
MultiResUnet model trained with different training data.

TABLE 4. Pixel-wise and region-wise evaluation of segmentation results measured by recall, precision, and FB score (average ± S.D. %) by
state-of-the-art Unet-based models trained with different training data.

that our proposed synthetic training data could significantly
improve segmentation results when compared to a baseline,
and the model trained with Isc, G(Isc), and G(Isf ) could
achieve the highest scores in all pixel-wise scores and region-
wise recall, region-wise F1, and region-wise F2 scores. The
proposed method outperformed the baseline 2.12% pixel-
wise F1 score (67.47 % to 69.59 %), and 2.13% region-wise
F1 score (66.01 % to 68.14 %). For region-wise evaluation,
these synthetic training samples significantly improved recall
scores in all experiments; thus, the improvement is obviously
seen in region-wise F2 score, in which FNs are weighted
more than FPs. Fig. 9 shows the 5-fold cross validation
training loss and dice coefficient for a baseline (real) and
the proposed method (real+syn.), demonstrating that the pro-
posed method’s validation loss was lower than a baseline
and its validation dice coefficient was also higher than a
baseline.

Additionally, we performed statistical analysis on
pixel-wise and region-wise F1 score results using an inde-
pendent two-sample t-test comparing the baseline method to
those trained with real and synthetic training data, as shown
in Fig. 10. For pixel-wise evaluation, Isc+G(Isc), Isc+G(Isf ),
and Isc+G(Isc)+G(Isf ) training data all have a significantly
higher F1 score than the baseline (p < 0.05). For region-wise
evaluation, MultiResUnet model trained with Isc+G(Isf ),
and Isc+G(Isc)+G(Isf ) can improve F1 score significantly
(p < 0.05).

Overall, as illustrated in Fig. 11, both the baseline method
and our proposed method are capable of detecting and seg-
menting large stones very well (columns 1-2). The example

FIGURE 10. Comparison of pixel-wise (left) and region-wise (right)
F1 score of the MultiResUnet model trained with different training data.

results in Fig. 10 (columns 3-6) demonstrate that our pro-
posed method is capable of detecting small stones that were
missed by the baseline method. However, there are some
cases, particularly small stones as illustrated in Fig. 10
(column 7), where both methods were unable to detect them.

C. COMPARATIVE EXPERIMENT BY STATE-OF-THE-ART
UNET-BASED MODELS
In addition, we compared the state-of-the-art Unet-based
models trained with only real stone-contained data (Isc) to
those trained with both real stone-contained and all synthetic
data (Isc+G(Isc)+G(Isf )). The Unet-based models used in
this experiment are the original U-Net [37], ResUnet [38],
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FIGURE 11. Comparisons between urinary stone segmentation results by a baseline MultiResUnet (3rd Row) and the MultiResUnet trained with both real
samples and our proposed synthetic samples (4th Row). Red boxes show enlarged regions containing urinary stones.

Unet++ [39], Attention Unet [40], MultiResUnet [33],
TransUnet [41], and UTNet [42]. In comparison to other
Unet-based models, the MultiResUnet model has the highest
recall and F1 scores for pixel-wise results, and the high-
est recall, F1, and F2 scores for region-wise results. While
Unet++ trained on real combined with synthetic samples
has the best pixel-wise precision, and the one with only real
data has the best region-wise precision. As shown in the
pixel-wise and region-wise evaluation results in Table 4, all
models trained on real data with additional synthetic training
data (G(Isc) and G(Isf )) achieved higher pixel-wise F1 score,
region-wise F1, and F2 scores than the baselines that was
trained with only real data.

D. STONE SIZE VS. REGION-WISE RECALL
Furthermore, we investigated the effect of the stone size
on the region-wise recall. All urinary stones were classi-
fied according to their size, including small-sized stones
(0-200 pixels), medium-sized stones (201-500 pixels), and
large-sized stones (> 500 pixels) based on the image’s res-
olution of 1,024 × 1,024 pixels. The comparison of recalls
across different stone size groups in Fig. 12 demonstrates that
while all baseline models detected large stones well (recall >
0.8), their performance deteriorated significantly for medium
and small stones. The addition of synthetic training samples
(G(Isc), and G(Isc)) significantly improved the region-wise
recall for all models, particularly for small stones, but

FIGURE 12. Comparison of region-wise recalls of state-of-the-art deep
methods trained with and without synthetic training samples in different
stone size groups.

had a slight effect on recall scores for medium and large
stones.

This method, by increasing the number of positive training
data G(Isc) and G(Isf ), can support the network in learning to
segment urinary stones using a wider variety of images. This
method augments the number and variety of positive training
samples, which is important when training deep learning
to detect urinary stones with irregular shapes, locations,
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or background properties. Although lower region-wise preci-
sion in somemodels means themodel is more likely to predict
more FPs when trained with synthetic images, the model also
detects more TPs as a trade-off, as evidenced by a significant
increase in region-wise F2 score.

This augmentation method is important for medical imag-
ing applications, where the number of positive cases is
typically less than the negative cases. This method is impor-
tant for medical imaging applications in which the number
of positive cases is typically lower than the number of
negative cases. By utilizing existing medical images of
healthy samples, this method can also be used to reduce
the number of actual positive samples required and also
improve the segmentation performance of deep learning
models.

VI. CONCLUSION
We proposed a GAN-based inpainting augmentation tech-
nique for generating the synthetic images based on the
input masks and their surrounding regions. The proposed
inpainting model was used to generate the synthetic training
samples from original stone-contained images and stone-
free images to increase the number and variety of positive
training samples for the lesion segmentation model. The
experimental results indicated that our proposed method was
able to achieve higher pixel-wise and region-wise F-score
than the baseline methods. In overall, this method could
significantly improve the segmentation performance, espe-
cially for small stones and stones located in less common
locations.
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