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ABSTRACT In this research, we proposed a two-stage pipeline for segmenting urinary stones. The first stage
U-Net generated the map localizing the urinary organs in full abdominal x-ray images. Then, this map was
used for creating partitioned images input to the second stage U-Net to reduce class imbalance and was also
used in stone-embedding augmentation to increase a number of training data. The U-Net model was trained
with the combination of real stone-contained images and synthesized stone-embedded images to segment
urinary stones on the partitioned input images. In addition, we proposed to use an inverse weighting method
in the focal Tversky loss function in order to rebalance lesion size. The U-Net model using our proposed
pipeline produced a 71.28% pixel-wise F2 score and a 69.82% region-wise F2 score, which were 2.88% and
7.63%, respectively, higher than those of a baseline method. Experimental results showed that the proposed
method improved urinary stone segmentation results, especially for small stones and stones in uncommon
locations.

INDEX TERMS Computer-aided detection and diagnosis, urinary stone, deep learning, image segmentation,
abdominal X-ray imaging.

I. INTRODUCTION
A urinary stone, or renal calculi, is one of the most fre-
quent abnormalities in the urinary system. These hardmineral
deposits form in the kidneys and can travel down the urinary
tract into the ureters and bladder, causing severe discomfort,
as well as other complications if left untreated [1]. Each year,
more than half a million people visit emergency rooms for
urinary stone problems. The accurate and early detection of
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urinary stones is a crucial task for medical doctors for the
diagnosis and management of this condition. [2]. Urinary
stones can be detected by various medical imaging modalities
such as CT-scanning, ultrasonography, and x-ray imaging.
An abdominal x-ray or KUB (Kidney, Ureter, Bladder) radio-
graphy can detect urinary stones because most stones are cal-
cified. Although radiography is not frequently used for stone
detection, advantages of this method include relatively lower
radiation exposure than CT imaging and a lower cost than
ultrasonography and CT imaging [3]. However, stone detec-
tion in plain x-ray images is often difficult for radiologists and
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other medical doctors because of the following challenges.
In radiography, stones and other anatomical structures are
projected in a 2D image; hence small stones are difficult
to identify due to the overlaps, and some types of stones is
poorly visible.

In this paper, we propose the pipeline of a cascaded
framework based on the U-Net model for the urinary
stones segmentation in plain x-ray images. The sig-
nificant contributions of our work are summarized as
follows:

1.) We propose the pipeline of urinary stone segmentation
by using two stages of U-Net models, reducing class imbal-
ance and improving segmentation performance.

2.) We utilize the stone-free images by proposing the
stone-embedding augmentation implementing during train-
ing the second stage U-Net.

3.) We modify the training loss function by implementing
the lesion-size reweighting approach, improving the recall
rate of small stones.

II. RELATED WORKS
A computer-aided diagnosis (CAD) for urinary stones is
demanded, because it can support radiologists and other med-
ical doctors in various processes, such as screening, treatment
planning and treatment follow-up. As such, many researchers
have proposed approaches to detect or segment urinary stones
in ultrasonography [4], [5] or CT-scan imaging [6], [7]. How-
ever, as the limitation of x-ray images for urinary stones
diagnosis, there was only a few work proposing CAD for this
modality [8].

An increased use of medical images causes more burden
of their interpretation for medical experts. Recently, deep
learning has been widely used to support medical doctors
in various medical imaging tasks due to its high accuracy
comparing with traditional methods. The performance of
deep learning is typically dependent on the amount of training
data [9]. However, the availability of medical image datasets
is usually limited compared with other domains because the
data acquisition and the preparation of image ground truth
are usually costly and need experts. Generally, the number
of medical anomaly samples is less than the normal data;
accordingly, many techniques to generate new positive sam-
ples have been proposed and used to create extra training
samples. For example, the new lesions are simulated using
a mathematical model and inserted into the existing medical
images such as the study in [10] for lung nodules in CT,
the one in [11] for breast lesions in mammography, and the
one in [12] for digital breast tomosynthesis (DBT). In [13],
[14], [15], and [16], an actual lesion is firstly extracted
from real CT-scan images and then inserted into a new
location on other images using image-processing techniques.
Our previous works [17], [18] proposed augmentation tech-
niques for creating synthetic images to improve the segmen-
tation network’s performance by increasing the number and

diversity of training data. However, our methods still had
a limitation for detecting stones in some cases, particularly
small stones and stones at bladder region.

Class imbalance is common problem in many medical
imaging applications. The lesion region can be extremely
smaller than the background region; therefore, the small
lesions are more likely not to be detected or well-segmented
because their information is lost during the downsampling
in deep learning models. The researches such as the kidney
tumor segmentation [19], [20], [21] and brain tumor segmen-
tation [22] proposed the pipeline consisted of multiple stages.
With these approaches, a small lesion can be segmented more
precisely than using a full image as the input.

III. METHODOLOGY
The overview of proposed pipeline of this study is shown in
Fig. 1.

A. ABDOMINAL X-RAY IMAGES DATASET
In this work, we used our private dataset, consisting of 1,156
abdominal x-ray images containing urinary stone(s) called
stone-contained images (Isc) and 1,200 abdominal x-ray
images without any urinary stone called stone-free images
(Isf ), as shown in Fig. 2 (left) and Fig.2 (right), respectively.
The ground-truth masks of urinary stones (Fig. 2 (middle)),
which require medical knowledge and precise annotation
skills, were manually drawn by the urology experts for every
stone-contained image. Only 600 stone-free images were
randomly chosen for using in the first stage, whereas the other
600 stone-free images and all stone-contained images were
used in the second stage.

B. KUB REGION MAP GENERATION STAGE
1) STONE LOCATION MAP
Based on medical domain knowledge, urinary stones can
only be found in kidneys, ureters, and bladder. In this
stage, we generated the stone location maps (Fig.3 (2nd

image)), representing the approximate locations of these
organs in an abdominal X-ray image (Fig.3 (1st image)).
Firstly, all training images were resized to 256 × 256 pix-
els. We used the U-Net model [23] for training a network
to generate coarse stone location maps. The network was
trained with 500 full abdominal x-ray images and their man-
ual segmentation of stone location maps from scratch for
100 epochs and used Adam optimizer [24] with a learning
rate of 10−3 to minimize the Dice coefficient loss (DL).
In post-processing, the output images were binarized using
a 0.5 threshold value and implemented morphological opera-
tions to connect all white components and remove the small
ones.

2) KUB REGION MAP
Next, we used stone location maps to create KUB region
maps (Fig.3(4th image)), representing kidneys, ureters, and
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FIGURE 1. The overview of proposed pipeline for segmenting urinary stones. The 1st stage U-Net generates KUB region maps from downsampled
abdominal x-ray images. The results from this stage are upsampled and used for stone-embedding augmentation, and cropping a full image into
3 partitions based on the anatomical region. The 2nd stage U-Net processes the partitioned images and generates the segmented stones results.
Post-processing consists of the detection of false bladder stones and the removal of lesions outside the stone localization map.

FIGURE 2. Illustration of an abdominal x-ray image with stones (left),
corresponding gold standard manual segmentation of the stones (middle)
and a stone-free abdominal x-ray image (right).

FIGURE 3. An abdominal x-ray image (1st image), its segmentation of
stone location map (2nd image), its partitioned bounding boxes (3rd

image) and its KUB region map (4th image), where kidneys, ureters, and
bladder regions are represented in red, green, and blue, respectively.

bladder regions. Let (xmtl , y
m
tl ) be the top-left coordinate and

(wm, hm) be its width and height of the bounding box of
a stone location map. We cropped this bounding box into
3 partitions; top-left partition (Ptl), top-right partition (Ptr ),
and bottom partition (Pb), as shown in Fig.3(3rd image). The
coordinates of top-left partition (xpl , y

p
l ), top-right partition

(xpr , y
p
r ), and bottom partition (xpb , y

p
b) are defined as Eqs.(1)

- (3), respectively. The width and height of each partition
(wp, hp) are defined as Eq.(4).

(xpl , y
p
l ) = (xmtl − bx , ymtl − by) (1)

(xpr , y
p
r ) = (xmtl + wm/2, ymtl − by) (2)

(xpb , y
p
b) = (xmtl + wm/4, ymtl + hm/2 + by) (3)

(wp, hp) = (wm/2 + bx , hm/2 + by) (4)

where bx and by are the border size in the vertical and horizon-
tal direction, respectively, which are set to 10% of the width
and height of the stone location map’s bounding box. Then,

we split the stone location map into kidneys, ureters, and
bladder regions. Stl and Str which are the region separating
lines used in Ptl and Ptr are defined as Eqs. (5) and (6),
respectively, while the separating line Sb used in Pb is defined
as Eq. (7).

Stl = argmin
j

1j(
wp∑
i=0

Ptl(i, j)) (5)

Str = argmin
j

1j(
wp∑
i=0

Ptr (i, j)) (6)

Sb = argmax
j

1j(
wp∑
i=0

Pb(i, j)) (7)

C. URINARY STONES SEGMENTATION STAGE
1) DATA AUGMENTATION APPROACHES
In this stage, the traditional augmentation method, includ-
ing rotation [-5◦, 5◦], horizontal flipping was implemented
for both stone-contained and stone-free samples, while the
proposed augmentation method was implemented for only
stone-free samples, as shown in Fig. 4(left). We proposed
to use stone-embedding algorithm to generate new training
images, which urinary stones were inserted while preserving
the background texture of the target image. Firstly, urinary
stone images were cropped andmultiplied with cropped stone
mask to remove the region outside stone pixels, as shown in
the 2nd row in Fig. 4(right). By using KUB region maps,
all stones were separated into three categories based on their
location: kidney stones, ureteral stones, and bladder stones.
We selected only small and medium stones, which have size
between 20 to 500 pixels, which are the hard samples to use
in this augmentation.

During the augmentation process, we randomly selected
1 to 3 target location(s) (xt ,yt ) from the KUB region map of
each target image to be the center of a cropped region of the
target image (ft ) that has the same size as the selected source
image (fs). Then, the source stone image fs was randomly
selected based on the region of selected locations in the KUB
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FIGURE 4. Training framework in the 2nd stage (left), and cropped targets (ft ), cropped sources (fs) and results (fa) by stone-embedding augmentation
(right).

region map (kidneys, ureters, or bladder) and applied with
simple augmentation methods: rotation [-10◦, 10◦], vertical
flip, and horizontal flip. The augmented source image (A(fs))
was multiplied by λstone, which has a random value [0.1, 0.2]
to control the intensities of stone pixels and combined with ft
as shown in Eq. (8).

fc = λstoneA(fs) + ft (8)

where fc is a combined region of a source and target image.
Gaussian filter G (window size 3 × 3) was applied on fc
to make the synthetic stone looks more natural. Then, the
distance map (wdist ) calculated by the Euclidean distance
transform was used to calculate the weighted sum between
G(fc) and (ft ) as shown in Eq. (9).

fa = G(fc)wdist + ft (1 − wdist ) (9)

where fa is a final stone-embedded image, as shown in
Fig. 4(right) (3rd row).

2) PRE-PROCESSING AND IMAGE PARTITIONING
All samples were normalized to [-1, 1] before the training
process, while ground-truth images were converted to binary
images where 1s pixels represent the stone region, and 0s
pixels represent the background region. Full images were
partitioned based on the stone location map into 3 local
images including Ptl , Ptr , and Pb as described in the first-
stage section. Then, all partitioned images were resized to
256 × 256 pixels.

3) LESION-SIZE REWEIGHTING APPROACH TO BALANCE
STONE SIZE INEQUALITY
The model trended to miss small stones when training with
the traditional dice coefficient loss or binary cross entropy
because large lesions overshadow the small ones in loss cal-
culation. Most of the recent loss functions try to solve the
data imbalance between classes [25], but ignore imbalance
between lesion size in the same class. In our case, abdominal
x-ray images usually have multiple stones per image, and

FIGURE 5. Illustration of an inverse weighting result calculated using our
modified formulas in Eq.(11). A Weight for every stone is shown near the
stone contour.

some stones can be much larger than small ones. Therefore,
we proposed the lesion-size reweighting method, inspired
from [26], to reduce the lesion size imbalance problem during
training process. The difference is that our inverse weighting
method does not include the background component because
highly imbalance between the background and stone region
makes the weights of stone pixels too high, which reduced
segmentation performance in our case. During the training
process, we generated the tensor of weights for every batch.
We split a tensor of ground-truth into N 2D connected com-
ponents and the weight for every pixel inside each component
(wj) can be computed by Eq.(10).

wj =


1, if j = 0

1 +

∑N
n=1 | Cn |

N · | Cj |
, otherwise

(10)

where C0 is the background component, and C1, . . . , CN are
the connected components [27] of stones in the current batch.
This inverse weighting method assigns the higher weights to
small stones (Fig.5), which will be used in loss calculation
during the training stage.

4) TRAINING METHODOLOGY
In each epoch of training process, all stone-contained
images (Isc) and 1/4 stone-free images implemented
stone-embedding augmentation (S(Isf )) were used for
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FIGURE 6. Illustration of a comparison between bladder stones (1st row)
and phleboliths (2nd row) from our dataset.

training the U-Net model. We used focal Tversky loss (FTL)
applied with the proposed inverse weight map (iw.) to over-
come these challenges. Focal Tversky loss is the generaliza-
tion of the Dice loss (DL) balancing importance between
FN and FP by α and β, respectively [28]. Furthermore,
it also has γ for controlling between easy and hard training
samples [29]. We used α = 0.7, β = 0.3, and γ = 2.0 in all
experiments. The calculation of TIiw and FTLiw is defined as
Eqs. (11) and (12), respectively.

TIiw =

∑N
i=1 wip1ig1i∑N

i=1wip1ig1i+α
∑N

i=1 wip0ig1i+β
∑N

i=1wip1ig0i
,

(11)

FTLiw = (1 − TIiw)1/γ (12)

where p1i and p0i are the probability of pixel i being a stone
and non-stone, respectively. g1i is 1 for a stone pixel and 0 for
a non-stone pixel, and g0i vice versa. wi is the inverse weight
of pixel i as described in previous section. Total number of
pixels in a current batch is denoted by N .

We trained the network from scratch for 150 epochs
with a batch size of 12 images, and used the Adam opti-
mizer to minimize FTLiw with an initial learning rate of
10−3. Whenever validation loss has not decreased by at
least 10−4 for 10 epochs during training, the learning rate
is divided by two and the minimum learning rate is set
to 5 × 10−4.

5) POST-PROCESSING
Calcifications of tiny veins or phleboliths, as shown in Fig. 6
(bottom), are prevalent in bladder region and can be diffi-
cult even for an expert to identify from urinary stones in
this location (top). Several studies have reported that uri-
nary stones and phleboliths present different morphological
structures and characteristics, however, the classification is
still challenging especially for the x-ray modality [30], [31].
In post-processing, we also proposed the detection of false
bladder stone by training the classification model to distin-
guish between bladder stones and phleboliths. We manually
cropped 150 images of the bladder stone and phleboliths
as well as the paired stone masks. The pre-trained VGG16
network was fine-tuned only fully-connected layers with the
concatenation of the cropped image and stone mask input
from our dataset using Focal binary cross entropy loss for

FIGURE 7. Illustration of stone location map results from the 1st stage
U-NET; plain x-ray images are overlaid with the predicted map and
ground-truth map where TP, FP, and FN pixels are shown in yellow, red,
and green, respectively. The first row images are the top-five highest
F-score results and the second row images are the top-five lowest F-score
results.

TABLE 1. Pixel-wise evaluation of the stone location map segmentation
measured by recall, precision, and F1 score (average B1 S.D.).

150 epochs. Then, we used this trained model to detect and
remove the false-positive lesions from the 2nd stage network
in the bladder partition.

Lastly, the output images from 2nd stage network were
binarized using a 0.5 threshold value, thenmultiplied with the
corresponding stone location maps from 1st stage network to
remove the false predicted lesions outside of the urinary organ
region.

D. EXPERIMENTAL SETUP AND EVALUATION METHOD
We evaluated urinary stones segmentation performance
using five-fold cross-validation. Stone-contained (Isc) sam-
ples were divided into 64% training images, 16% validating
images, and 20% testing images. Stone-free (Isf ) samples
were used only in experiments using stone-embedding aug-
mentation. All experiments were conducted using Tensor-
Flow 2.1.0 and themodels were trained on an Nvidia GeForce
1080Ti (12GB) GPU.

We used simple pixel-wise metrics including recall, preci-
sion, and F-score to evaluate segmentation results like other
researches in lesion segmentation tasks. However, this metric
has a drawback in the multiple objects task because big object
overshadows small ones. Therefore, we also evaluated by the
region-wise metrics, measuring the detection performance
based on actual stone(s) and predicted stone(s). In every
testing image, each connected component of stone-ground
truth (Gi) is compared with the predicted stone connected
component that overlaps Gi. If the overlap area over the area
ofGi is equal or greater than 0.5, the result will be counted as
true positive (TPr ). Otherwise, the result will be counted as
false negative (FNr ). To compute false positive (FPr ), each
predicted connected component (Pj) is compared with the
ground truth that overlaps Pj. If the overlap area over the area
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TABLE 2. Pixel-wise and Region-wise evaluation of segmentation results (averageB1S.D.%) by different training methods. The highlight cells represent
the scores that difference compared with the baseline are statistically significant (p < 0.05).

of Gi is less than 0.5, the result will be counted as FPr . Then,
these values were used for computing recall, precision, and
FB score for region-wise metrics, as shown in Eqs. (13), (14),
and (15), respectively.

Recall =
TPr

TPr + FNr
(13)

Precision =
TPr

TPr + FPr
(14)

FB =
(B2 + 1) · Precision · Recall
(B2 · Precision) + Recall

(15)

IV. RESULTS AND DISCUSSION
A. OVERALL STONE LOCATION MAP SEGMENTATION
RESULTS
Pixel-wise results of the stone location map segmentation
(mean ± s.d.) is presented in Table 1. Our first stage U-Net
can produce 0.84% recall, 0.90% precision, and 0.87%
F1 score. Examples of stone location map result are dis-
played in Fig.7. The top-five best results, showing in the
first row, demonstrate that these maps can represent the kid-
neys, ureters, and bladder region and our stone location map
generated by the U-Net model corresponds to the charac-
teristics of input abdominal x-ray images. The top-five low-
est F-score results, showing in the second row, demonstrate
that although the stone location map results are not seg-
mented precisely compared with the ground-truth, the overall
results can represent the estimated location of the urinary
organs.

B. URINARY STONES SEGMENTATION RESULTS
1) OVERALL RESULTS
We evaluated U-Net model using different proposed meth-
ods including partitioned input from two-stage pipeline
(part.), stone-embedding augmentation (aug.), and inverse
weight maps (iw.). Post-processing method by false bladder
stones detection was implemented only for two-stage pipeline
experiments. Based on region-wise results in Table 2, all
experiments could outperform the baseline in recall and
F2 scores with statistical significance (p < 0.05). The model
trained with partitioned Isc + S(Isf ) samples implemented
lesion-size reweighting approach (Proposed.) achieved the
highest pixel-wise and region-wiseF1 andF2 score. Although

this method produced a low precision, it significantly
improved the recall as a trade-off, which outperformed the
baseline 2.88 % pixel-wise (68.40 % to 71.28%) and 7.63%
region-wise F2 score (62.19 % to 69.82 %), respectively.
In overall results, the baseline method and our proposed
method segmented the large stones very well as shown in
Fig.8 (1st column); however, our method could improve the
segmentation performance in difficult cases, such as small
stones or obscure stones located near other anatomical struc-
tures. This improvement is demonstrated in the comparison
between baseline and our proposed method in Fig.8 (2nd -6th

column).

2) FULL VS. PARTITIONED INPUT TYPE
All experiments of the U-Net model trained with partitioned
images demonstrated a significant improvement in pixel-wise
and region-wise scores when compared with their paired
experiments trained with full image inputs. Instead of receiv-
ing entire images as inputs, the second stage U-Net in our
cascaded U-Net pipeline processed each partition cropped by
KUB region maps. This approach can preserve more infor-
mation, especially in pixels of small stone, which can be lost
during the image scaling and downsampling. Furthermore,
the usage of KUB region maps derived from the 1st stage
U-Net model can alleviate the imbalance problem between
stones and background by removing irrelevant pixels outside
urinary tract region.

3) EFFECT OF STONE-EMBEDDED TRAINING IMAGES
Our proposed stone-embedding augmentation reduced the
need for actual positive samples and utilized normal images to
improve the performance of the deep learning model. When
compared to those without this augmentation, the experimen-
tal results show that this method significantly improved recall
and F2 score. This method increases the number and variety
of positive training samples, which is important for training
deep learning models to detect urinary stones in unusual
shapes, locations, or background properties. Lower precision
results, on the other hand, indicated that the model trained
with stone-embedded images was increasingly predicting
false positives. This increased false prediction is thought to
be due to the fact that some training augmented stones may
not appear realistic enough.
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FIGURE 8. Illustration of a comparison between urinary stone segmentation results by a baseline method (3rd row) and those by our proposed method
(4th row), displaying predicted stone regions via heatmap visualization.

4) WITH VS. WITHOUT INVERSE WEIGHT MAP (iw.)
The inverse weighting method compensates for the effect
of stone size imbalance on loss calculation by multiplying
the high weight assigned to small connected components
and the low weight assigned to large connected components.
Although the precision was decreased when applying this
method, the recall was increased as well. These results indi-
cated that the model could detect more stones while also
predicting false ones. The results show that using this method
with the FTL significantly improved the F2 score when com-
pared to those without it.

5) EVALUATION BASED ON STONE’s SIZE AND STONE’s
REGION
We also investigated the effect of the stone’s size on the
segmentation performance (region-wise F1 score). Firstly,
all stones in testing data were separated into 3 categories
based on their size, including small-sized stones (0-200 pix-
els), medium-sized stones (201-500 pixels), and large-sized
stones (> 500 pixels) from image’s resolution of 1,024 ×

1,024 pixels. The result in Fig. 9 shows that the region-
wise F1 score was relative to the stone’s size, which the
larger stones are more detected than the small ones in

FIGURE 9. The comparison of region-wise F1 score in different stone size
groups.

all experiments. This result also indicated that U-Net model
implemented all proposed method (Proposed.) could signif-
icantly enhance F1 score, particularly for small-sized and
medium-sized stones, which produced the highest F1 score
in these categories.
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FIGURE 10. The comparison of region-wise F1 score in different anatomic
regions.

FIGURE 11. Mean ROC curve of bladder stone classification model for
5-fold cross validation.

TABLE 3. Bladder stone classification results measured by recall,
precision, and accuracy (average B1 S.D.).

For evaluating the stone in different anatomical regions
and region-wise F1 score, we separated all urinary stones in
testing data into 3 categories based on their location, includ-
ing kidney, ureteral, and bladder stones, by using the KUB
region maps. The result in Fig.10 shows that stone detec-
tion performance was decreased significantly in the bladder
region, which has the lowest number of stones. The results in
the ureters and bladder region demonstrate that U-Net model
implemented all proposed method (Proposed.) produced the
highest F1 score score.

TABLE 4. Comparative stones segmentation results between the
proposed method with and without false bladder stone detection
measured by region-wise recall, precision, and F1 score (average
B1 S.D.%).

FIGURE 12. False-negative example by our method (the heatmap
visualization displays predicted stone regions). Red boxes show enlarged
regions containing urinary stone that were missed.

C. FALSE BLADDER STONES DETECTION
The pre-trained VGG16 fine-tuned with our dataset was eval-
uated using 5-fold cross validation, with 120 cropped-stone
images for training and validating, and 30 images for test-
ing. The classification model achieved 0.84 (± 0.04) AUC,
as shown in Fig. 11, and 0.76 (± 0.09) recall 0.83 (± 0.03),
precision, and 0.80 (± 0.05) accuracy, as shown in Table 3.
The detection of false bladder stones was implemented in
the post-processing of urinary stones segmentation by 2nd

stage network to reduce false positive results. Although, this
method reduced the region-wise recall (71.84% to 70.36%),
it improved the precision (65.55% to 67.76%) and F1 score
(68.55% to 69.03%), as shown in Table 4.

D. EXPERIMENTAL RESULTS OF U-NET VARIANTS
Furthermore, we compared U-Net-based models imple-
mented with our proposed method (partitioned input+ stone-
embedding augmentation + inverse weighting map) and
the baseline U-Net-based models, which were trained using
full images without any proposed method. The U-Net vari-
ants that we experimented included U-Net, ResUnet [32],
Unet++ [33], Attention Unet [34], MultiResUnet [35], and
TransUnet models [36].

Base on the pixel-wise and region-wise evaluation results,
as shown in Table 5, Unet++ model with the proposed
methods has the highest pixel-wise F-score, while Mul-
tiResUnet model has the highest region-wise F-score for
both baseline approach and the one employing the proposed
methods. Plain U-Net model implementing the proposed
methods has better pixel-wise and region-wise F-scores than
other baseline U-Net-based variants. Overall, our proposed
pipeline can significantly improve F-scores in both pixel-
wise and region-wise evaluations as shown by the improve-
ment when compared to the baselines of all Unet-based
models.
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TABLE 5. Pixel-wise and region-wise evaluation of segmentation results measured by recall, precision, and FB score (average B1 S.D. %) by Unet-based
models with and without our proposed pipeline.

E. LIMITATIONS OF CURRENT WORK AND OUR FUTURE
WORK
Although the stone-region evaluation shows that our pro-
posed method can detect the large stones and the stones
in kidney region very well, there are some cases that the
model cannot detect them. Based on our stone-size and stone-
region evaluations, the small stones in the lower ureters or
bladder region are the most challenging case that shows the
lowest recall results compared with other cases. In this case,
as shown in Fig. 12, our model is unable to detect the small
stone that is barely visible in the bladder region. In addi-
tion, although the detection of false bladder stones could
decrease false-positive results, there is room for improvement
in the classification accuracy. Our future work will focus on
improving the performance of bladder stone classification
and stones segmentation, and further implement our proposed
method with the larger dataset.

V. CONCLUSION
We proposed a two-stage pipeline for automatically segment-
ing urinary stones in abdominal x-ray images. The proposed
method produced a 71.28% pixel-wise F2 score and a 69.82%
region-wise F2 score, which were higher than 2.88% and
7.63% produced by the baseline method, respectively. The
urinary stones segmentation network in the cascaded frame-
work, processed partitioned images instead of full images,
could improve segmentation results by reducing class imbal-
ance problem and processing images at higher resolution.
Stone-embedding augmentation was implemented to increase
the number and variety of positive training samples dur-
ing the training process, which was important for improving
the performance, especially for stones in rare locations. Our
lesion-size reweighting approach used with the focal Tversky
loss could significantly improve the detection performance
for small stones.
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