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a b s t r a c t 

This paper proposes a tree-structured structure-from-motion (SfM) method that recovers 3D scene struc- 

tures and estimates camera poses from unordered image sets. Starting from atomic structures spanning 

the scene, we build well-connected structure groups, and propose RANSAC generalized Procrustes analy- 

sis (RGPA) to glue structures in the same group. The grouping-aligning operations hierarchically proceed 

until the full scene is reconstructed. Our work is the first attempt of using GPA for modern 3D recon- 

struction tasks. RGPA is able to merge multiple structures at a time and automatically identify outliers. 

The reconstruction tree is much more compact and balanced than previous hierarchical SfM methods and 

has a very shallow depth. These advantages, along with the resulting removal of intermediate bundle ad- 

justments, lead to significantly improved computational efficiency over state-of-the-art SfM methods. The 

cameras and 3D scene can be robustly recovered in the presence of moderate noise. We verify the effi- 

cacy of our method on a variety of datasets, and demonstrate that our method is able to produce metric 

reconstructions efficiently and robustly. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Structure-from-motion (SfM) techniques have become popular

or reconstructing cameras and 3D scenes from unstructured and

nconstrained image collections. The pioneering work of Brown

nd Lowe uses SIFT features and bundle adjustment to do metric

econstruction on a small set of weakly calibrated images ( Brown

nd Lowe, 2005 ; Lowe, 2004 ; Triggs et al., 2000 ). The work is then

mproved to handle large-scale data under weaker constraints with

ore powerful computational tools ( Snavely et al., 2006 ; Agarwal

t al., 2009 ). Recently proposed SfM systems have enabled signif-

cant progress in vision and graphics applications ( Pollefeys et al.,

004 ; Wu et al., 2011 ). 

The dominant approaches for SfM are incremental or sequen-

ial algorithms ( Snavely et al., 2006 ; Pollefeys et al., 2004 ), which

tart with a small seed reconstruction, then grow by repeatedly

ncluding additional cameras and scene points. Incremental meth-

ds tend to be computationally intensive, making repeated use of

undle adjustment as well as inconsistent measurements removal.

his can be alleviated by employing multi-core optimization ( Wu

t al., 2011 ), or by splitting the problem into more tractable com-
∗ Corresponding author. 
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onents ( Snavely et al., 2008 ; Nister and Stewenius, 2006 ; Shah

t al., 2014 ). Incremental methods also suffer from drift in scenes

ith weak visual connections. 

One approach to SfM, which is less sensitive to drift, is to use

 hierarchical reconstruction ( Ni et al., 2012 ; Corsini et al., 2013 ).

y organizing a hierarchical cluster tree and merging partial re-

onstructions along the tree, these methods are able to distribute

rrors evenly throughout the reconstruction, thus making them

ess sensitive to initialization and drift ( Gherardi et al., 2010 ). This

cheme can cut the computational complexity by one order of

agnitude provided that the cluster tree is well balanced ( Nister,

0 0 0 ). In hierarchical methods, care must be taken to avoid bad

tructures caused by outlier matches ( Nister, 20 0 0 ; Havlena et al.,

009 ). 

Another approach to SfM is to use global optimization

 Martinec and Padjla, 2007 ; Sinha et al., 2012 ; Arie-Nachimson

t al., 2012 ). First, camera rotations are estimated separately us-

ng two-view geometries. Then these rotations are fed into further

ptimization steps that solve for camera translations and structure

 Jiang et al., 2013 ; Moulon et al., 2013 ). The global pose registration

pproach lacks built-in robustness to noise, and may fail to provide

 good initialization ( Hartley et al., 2013 ; Crandall et al., 2011 ). Al-

hough some attempts are made to handle noise ( Chatterjee and

ovindu, 2013 ; Enqvist et al., 2011 ), the global method tends to be

http://dx.doi.org/10.1016/j.cviu.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.02.005&domain=pdf
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Fig. 1. Tree-structured SfM algorithm. The algorithm starts with a pairwise reconstruction set spanning the scene (represented as image-pairs in the leaves of the reconstruc- 

tion tree). From these atomic structures a minimum connected dominating set (MCDS) is computed (MCDS vertices are image pairs with red-dashed boxes, and connections 

are red-dashed lines). Each MCDS vertex induces a group, which contains the vertex itself and all non-MCDS vertices connected to it (black rounded-rectangle), as well as 

the adjacent MCDS vertices (connected by red-dashed line). All structures in the same group are aligned and merged to form the higher-level structures (blue arrows) by 

RANSAC generalized Procrustes analysis (RGPA). The MCDS and RGPA operations are repeated hierarchically until the complete scene is built at the top-level of the tree. The 

very small tree depth is a key advantage of our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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unstable and inaccurate when applied to highly unstructured data

( Wilson and Snavely, 2014 ). 

Robustness to noise and computational efficiency are two major

challenges to modern SfM approaches. On one hand, adverse cam-

era poses and mismatches can cause bad atomic reconstructions,

and may significantly bias nonlinear optimization even on small

datasets. Many studies have been conducted to improve the stabil-

ity ( Zach et al., 2010 ; Govindu, 2006 ; Olsson et al., 2011 ; Heinly et

al., 2014 ). On the other hand, great effort s have been devoted to

speed up key SfM modules, like image clustering, feature match-

ing and nonlinear optimization ( Wu, 2013, Bhowmick et al . , 2014 ;

Frahm et al., 2010 ). 

The attempt on full reconstruction from all available matches

is often undermined by highly unstructured dataset, and may take

unnecessary computational cost. Instead, a spanning structure has

been proved sufficient for many tasks ( Snavely et al., 2008 ; Lou

et al., 2012 ; Havlena et al., 2010 ). In this paper, we propose a

novel SfM method to build a spanning reconstruction from un-

ordered images. Our method addresses both the robustness and ef-

ficiency challenges, and is able to recover cameras and scene struc-

tures quickly from highly unstructured datasets. We first compute

a spanning tree that traverses all images and generate the asso-

ciated atomic structures. We then group the structures into local

clusters with close intra-similarities, and build larger reconstruc-

tion by robustly aligning multiple structures in the same group us-

ing a RANSAC extension of generalized Procrustes analysis (GPA).

This grouping-aligning process iteratively proceeds until a full re-

construction is achieved. To the best of our knowledge, our work

is the first attempt of practical usage of GPA for modern recon-

struction tasks. Fig. 1 gives an example of our tree-structured SfM
method. 
Our work has two key contributions: 

1. We propose a RANSAC generalized Procrustes analysis method

for multiple structure alignment, which is fast and robust to

outliers ( Section 2.3 ). 

2. We design a shallow reconstruction tree for organizing un-

ordered images and grouping local structures, which enables

quick and reliable 3D reconstruction ( Sections 2.2 and 2.3.2 ). 

Intrinsically our approach partitions the problem into smaller

nstances and combines them hierarchically. Therefore, it has the

dvantages of a hierarchical solution, such as high computational

fficiency and insensitivity to initialization and drift. Our method

s advantageous over state-of-the-art SfM methods in the following

spects: 

1) In comparison to hierarchical methods ( Gherardi et al., 2010 ),

our method has much shallower tree depth and thus faster

speed, which is due to merging of more than two structures

simultaneously; 

2) In comparison to global optimization methods ( Havlena et al.,

2009 ; Martinec and Padjla, 2007 ; Sinha et al., 2012 ; Arie-

Nachimson et al., 2012 ), our method is more tolerant of large

camera rotations and avoids the problem of registration failure;

3) In comparison to incremental methods ( Snavely et al., 2006 ;

Agarwal et al., 2009 ; Pollefeys et al., 2004 ), our divide-and-

conquer strategy is much faster, less sensitive to drift, and eas-
ier to parallelize. 
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Fig. 2. Logistic regression for the 162 2-view reconstructions of “Dante”. The 

threshold t of the average re-projection error for separating good and bad recon- 

structions is set to the median value of all e i,j . This experiment justifies the as- 

sumption that a larger v i,j corresponds to a better reconstruction. 

Fig. 3. An example spanning structure from 6 images by solving the maximum 

spanning tree. Each edge connects two images with sufficient valid matches. The 

number of valid matches between two images ( i,j ) v i,j are used to define the edge 

weights. The bold edges represent the maximum spanning tree, which defines the 

spanning structure. 
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. Tree-structured SfM based on RANSAC generalized 

rocrustes analysis 

In this section, we propose a tree-structured SfM algorithm

ased on RANSAC generalized Procrustes analysis (RGPA), which

an quickly and robustly recover the cameras and the 3D scene

n the presence of moderate noise. First, we build point tracks and

erform pairwise reconstruction. Next, we build a spanning struc-

ure set containing two-view reconstructions that spans the maxi-

um connected component of the image set. The spanning struc-

ures are then grouped and merged hierarchically in a bottom-up

anner. RGPA is used to align and merge a group of structures,

hile also detecting and removing outlier matches. After all struc-

ures are merged, we perform a final bundle adjustment to refine

he reconstructed 3D points and cameras. 

.1. Track generation and pairwise reconstruction 

In this preprocessing step, tracks are progressively established

rom SIFT features using an algorithm similar to the one described

n Olsson and Enqvist (2011 ). For all image pairs with sufficient

atching features in the track list, we use the 5-point algorithm

 Nister, 2004 ) to estimate camera poses and triangulate points. For

he calibration matrix, we use the standard camera model with the

rincipal point ( x 0 ,y 0 ) being at the center of the image and the

ocal length f being extracted from the cameras’ EXIF data ( Snavely

t al., 2006 ). 

One important operation at this stage is to detect and remove

ad image pairs with incorrect epipolar geometry, which may de-

troy future structure merging. We carry out several checks to

emove suspicious pairs ( Pollefeys et al., 2004 ; Wu et al., 2011 ;

navely et al., 2008 ): 1) we remove pairs with fewer than 15

atches; 2) we remove pairs with too similar scenes (the out-

ier ratio r < 0.01 for a planar homography test); 3) we remove

airs where the distance d 1 between the camera centers is too

mall compared to the median distance d 2 between the cameras

nd the reconstructed points ( d 2 > 10 d 1 ); 4) We check rotation-

onsistency for all triplets of 2-view reconstructions and remove

ach pair causing inconsistency over 50% of the triplets it belongs

o. 

.2. Spanning structure building 

We aim to build a spanning reconstruction from the most reli-

ble two-view reconstructions. To do this we first build a graph

ith each image being a vertex and each valid pairwise recon-

truction being an edge. We propose a method to extract a span-

ing structure set ψ from the maximum connected component H

f this initial graph. ψ contains all images in H and all edges in

 corresponds to the most reliable two-view reconstructions. The

dvantage of using a spanning structure is twofold: 1) a spanning

tructure generally covers the main body of the scene with a suffi-

ient number of features, which is computationally more efficient

han a redundant full reconstruction; 2) the atomic reconstructions

n the spanning structure are the most reliable ones and thus fur-

her reduce the risk of failure caused by bad epipolar geometries. 

Previous work uses maximum leaf spanning tree to define the

panning structure ( Snavely et al., 2008 ). This works well for in-

remental SfM but may result in relations between initial struc-

ures that are too weak for hierarchical SfM. Here, we propose

 method for building a spanning structure for robust structure

erging, which computes the spanning tree of a graph by heuris-

ically collecting 2-view reconstructions with more valid matches. 

Assume that v i,j is the number of valid matches for image pair

 i, j ). After most bad image pairs are removed in the preprocessing
tep in Section 2.1 , it is reasonable to assume that a larger v i,j cor-

esponds to a better reconstruction ( Enqvist et al., 2011 ). To justify

his, we separated the 162 2-view reconstructions of the “Dante”

ataset into good and bad ones with a threshold t of the average

e-projection error e i,j , and conducted a logistic regression to esti-

ate the goodness of reconstruction as a function of v i,j . The result

n Fig. 2 verified that a larger v i,j corresponds to a better recon-

truction. Moreover, local structures sharing more matches gener-

lly have stronger connections and lead to better merging results.

herefore, we use v i,j to define the edge weights, and look for the

panning tree with the largest total weights ( Prim, 1957 ). Fig. 3

lots an example maximum spanning tree for 6 images. 

After the optimal spanning tree ψ is computed, the two-view

econstructions associated with the edges of ψ make the atomic

tructures for the subsequent merging step, and act as the leaves

f the reconstruction tree. The 38 leaf vertices of Fig. 1 give the

tomic structure set for the dataset Dante in our experiment. 

The above scheme helps us quickly build a spanning tree with

trong enough connections among its nodes. Taking into account

he distribution of matches or other semantic information may

ead to better models at the cost of more advanced techniques.

his is an interesting future work. 
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2.3. Bottom-up structure merging by RGPA 

Each leaf of the reconstruction tree corresponds to a two-view

reconstruction and provides a set of reconstructed 3D points. Glob-

ally any two of these 3D point sets are related by a 7-degree-of-

freedom similarity transform (3 for rotation, 3 for translation and

1 scale). Therefore, these initial structures can be aligned using

their common points by a carefully designed 3D registration algo-

rithm ( Eggert et al., 1997 ). We use a modified version of general-

ized Procrustes analysis (GPA) ( Crosilla and Beinat, 2002 ), a statis-

tical shape analysis tool, for the registration task. 

2.3.1. Generalized Procrustes analysis 

We first give a brief problem statement for generalized Pro-

crustes analysis ( Pizarro and Bartoli, 2011 ) for shape alignment.

The input shapes are represented by n matrices D 1 , . . . , D n . Each

shape D i ∈ R d × m is composed of m d -dimensional points, 

D i = ( D i, 1 , . . . , D i,m 

) , D i, j ∈ R 

d . (1)

The shape alignment problem is to find the set of n simi-

larity transformations T i : R d → R d and the reference shape F =
( F 1 , . . . , F m 

) ∈ R d×m that minimize the cost function 

ε ( T , F ) = 

n ∑ 

i =1 

m ∑ 

j=1 

μi, j 

∥∥F j − T i 
(
D i, j 

)∥∥2 

2 
, (2)

where μi, j ∈ {0, 1} allows the model to ignore missing data when

not all points can be observed in all shapes. The GPA problem can

be solved by alternating between the estimation of T and F . In par-

ticular, Procrustes analysis (PA) is used to align all shapes one by

one with the current reference F to solve T , and all aligned shapes

are superimposed to update F . The algorithm terminates when the

change of the reference is sufficiently small. 

The standard GPA algorithm goes as follows: 

1. Choose a reference shape (typically by selecting it among the

available instances). 

2. Superimpose all instances to current reference shape by PA us-

ing their sharing points. 

3. Compute the mean shape of the current set of superimposed

shapes. 

4. Go back to step 2 if the mean shape and the reference is close

enough, otherwise, return the reference and terminate the al-

gorithm. 

In our context, n is the number of partial reconstructions in a

group, and m is the total number of reconstructed 3D points for

these n reconstructions. We consider non-reflected similarities in

3D space ( d = 3). Our GPA model is different from the model in ( 2 )

in that the factor variable μi,j is not fixed, but dynamically changes

based on the quality of alignment of on-the-fly updated matches.

In an iterative alignment and reference update module, reliable

points are progressively updated until convergence, while spurious

points are detected and removed by cross-checking over multiple

shapes. This makes our model much less sensitive to noise. We

provide details for structure grouping and merging in the remain-

der of this section. 

2.3.2. Structure set grouping 

Given a set of partially reconstructed structures S i , i = 1,…, s ,

composed of the reconstructed 3D points set P i , and the cameras

set C i , we first partition the structures into g groups G i , i = 1,…, g

(not necessarily mutually exclusive), each containing a cluster of

structures similar to each other. We have three main requirements

for this partitioning: 

1) For the sake of reliable merging of local structures, all struc-

tures in a group should have enough matches to a reference

shape, so that GPA can be smoothly carried out. 
2) For the sake of complete reconstruction, any two groups should

be connected via a path with strong enough connections be-

tween adjacent groups in the path. 

3) For the sake of computational efficiency, the total number of

groups should be as few as possible. 

We model the structure set as a graph with each structure act-

ng as a vertex and the number of common points defines the

eight connecting two vertices. With this graph the above require-

ents can be well described as a minimum connected dominat-

ng set (MCDS) problem ( Havlena et al., 2010 ). The MCDS model

as been used before for skeletal set building ( Snavely et al., 2008 ;

avlena et al., 2010 ). In our context we use MCDS to help do struc-

ure grouping. 

A minimum connected dominating set of a graph � is a set �

f vertices with three properties: 

1) Every vertex in � either belongs to � or is adjacent to a vertex

in �. 

2) Any vertex in � can reach any other vertex in � by a path that

stays entirely within �. 

3) � has the smallest possible cardinality among all sets of � that

satisfy 1) and 2). 

We can see that the 3 properties of MCDS relate perfectly to

he 3 requirements for structure grouping. For grouping structures

t the same level of the reconstruction tree, we employ a variant of

he greedy algorithm proposed in Guha and Khuller (1998 ) to com-

ute an approximation of MCDS. The algorithm is illustrated in Fig.

 . In particular, during greedy searching we give higher priority to

hose vertices sharing more common points with their neighbors.

ur algorithm proceeds as follows: 

1. Initialization: Select the vertex with the maximum degree and

color it gray. Color all other vertex white. 

2. Select a gray vertex v with 1) maximum degree, and 2)

strongest connection, to white vertices, and color it black. 

3. Color every white neighbors of v gray. 

4. Go back to step 2, until all vertices are black or gray. 

When the algorithm ends, the black vertices make the mini-

um connected dominating set. Each MCDS vertex acts as the ref-

rence of a group, which is composed of this vertex and all vertices

onnected to it. The dashed boxes connected by dashed lines at the

ottom level of Fig. 1 give an example of MCDS. 

.3.3. RANSAC generalized Procrustes analysis 

We now present our RANSAC GPA (RGPA) algorithm for merging

ll structures in a group. We first choose the MCDS vertex P r as the

nitial reference shape. Next we iterate between an alignment step

nd a reference update step. In the alignment step, each structure

n the group G is aligned with the reference P r using valid matches

etermined by a RANSAC ( Fischler and Bolles, 1981 ) extension of

rocrustes analysis (PA). Particularly, two structures are aligned by

onducting multiple PA trials with a small sample of points (5

oints), and the result with the most inliers is selected. For the

ANSAC strategy we choose LMedS ( Choi et al., 2009 ), which is fast

nd involves no parameter tuning for less than 50% outliers. For

ach local alignment 60 RANSAC trials are tested, which guarantee

 success probability of over 99% under a conservative estimate of

0% outliers. 

For each PA operation, the factor variable μi,j is activated only

or inliers detected by RANSAC. This means that the 3D points used

n every PA are not the same, but dynamically change depending

n the inlier matches detected by RANSAC. In other words, the reg-

stration and optimization of ( 2 ) is done in terms of all inliers,

hich undergo on-the-fly updating during iteration. This allows

ur model to effectively detect and remove outliers under noisy
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Fig. 4. A step by step illustration of our MCDS computing algorithm. The initial graph in (a) contains 12 structures. Bolder edges correspond to more common points between 

two structures. In (b), for labeling the 2nd black vertex, vertex A has higher priority than vertex B because it has stronger edges to adjacent white vertices, although the 

number of its white neighbors is equal to B (both 3). Therefore, vertex A is colored black in (c). The 3 black vertices in (d) make the final MCDS. 

Fig. 5. An example of reference updating in a 3-structure group. The 3 structures P 1 , P 2 and P 3 are represented by 3 images from “Dante”. P 2 is the initial reference P r . The 

common features C ij between P i and P j are plotted as red ( C 12 ), green ( C 23 ) and blue ( C 13 ) markers, respectively. When aligning P 1 and P 2 , the common features C 12 (mainly 

in the red ellipse) act as tie points, and likewise for P 3 and P 2 ( C 23 , green dashed ellipse). At the end of each GPA iteration, the reference shape P r is updated as the set of 

features with at least two occurrences (i.e., all features in C 12 , C 23 and C 13 ). The features occurring only in one structure are never selected as tie points. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Algorithm 1. RANSAC generalized Procrustes analysis for one group G . 

Input: Group G = { S i ( P i ,C i ), S i + 1 ( P i + 1 , C i + 1 ),…, S j ( P j ,C j )}, 

Reference index r ∈ { i,…,j }. 

Initialization: Set reference shape P r 
0 = P r 

Set iteration times numIter = 3 

for l = 1…numIter 

for k = i …j 

Align P k to P r 
l -1 using RANSAC Procrustes analysis to obtain the similarity transform T k 

l and the aligned points set P k 
l : 

[ P k 
l T k 

l ] = RansacProcrustesAnalysis( P k ,P r 
l -1 ); %only inliers detected by RANSAC are used for alignment. 

end 

Superimpose all aligned shapes to build an intermediate set of points: 

P = merge( P i 
l ,…, P j 

l ); 

Update the reference shape P r by collecting valid points in P : 

P r 
l = collectValidpoints( P ); %only points in at least two structures are used for reference updating. 

end 

Align all structures in the group into a new structure: 

S = align( P i 
l , …, P j 

l , T i 
l ,…, T j 

l ); 

Output: merged structure S . 
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nvironments. Note that multiple shapes can be aligned at a time

ith the reference shape in one alignment step, which leads to

ery small tree depth and significant time saving. This is an im-

ortant advantage of RGPA. 

In the reference update step, a new reference shape is com-

uted by superimposing all aligned shapes, and all points occur-

ing in at least two structures are averaged and accepted as new

eference points. This step can add some points that are not orig-

nally in P r , but in at least two other structures, into the refer-

nce. Note that only points in at least two structures are used for

hape alignment and reference updating to ensure an unbiased es-

imate (see Fig. 5 for an illustration). The iteration proceeds for 3

imes, which is long enough for the reference shape to converge

nder varied noise levels (see experiments). We denote our algo-

ithm for aligning and merging all structures in a group as RANSAC

PA (RGPA). The RGPA module is summarized in Algorithm 1 . Un-

er noisy environment RGPA is more efficient than the early robust

PA attempt ( Crosilla and Beinat, 2006 ), which has to iteratively
rocess increasingly bigger data. In comparison to other SfM works

hat conduct robust estimation of the 3D similarity transform to

erge two 3D shape ( Gherardi et al., 2010 ; Li et al., 2008 ), RGPA

s able to merge multiple shapes at the same time, and brings the

enefit of a shallow reconstruction tree. 

One distinctive property of our RGPA module is that it is resis-

ant to outliers randomly distributed in the original shapes, thus it

s able to work robustly under a relatively noisy environment. This

enefit is mainly from the dynamic reference update operation be-

ween different iteration rounds. During the reference update, in-

iers tend to be attracted towards a fixed pivot point, which im-

roves the reliability of the reference for future alignment. On the

ontrary, outliers generally have inconsistent positions in 3D and

ail to converge to a steady point, and thus have little chance of

urviving repetitive outlier checking. The dynamic change of the

eference shape is another important advantage of RGPA, which

quips the conventional GPA framework with a desirable property

f counteracting noise. Particularly, in the context of our SfM al-
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Fig. 6. Illustration of reference updating and outlier detection by RGPA. Three structures A, B and C are merged by RGPA, with B acting as the reference. A and C have two 

common track points P 1 (red points) and P 2 (green points) invisible to B. P 1 is an outlier whereas P 2 is an inlier. After the 1st alignment round both P 1 and P 2 are added 

to the new reference shape because they occur in at least two structures ( A & C ). However, we see from (d) that P 1A and P 1C are not well aligned as P 2A and P 2C , and the 

corresponding new averaged reference point P 1 
r (blue point) in (e) is distant from both P 1A and P 1C . As a result, in the 2nd alignment round for structure A, P 1 has big 

alignment error and is labeled as an outlier, while P 2 successfully survives as a new reference point (f). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. Some erroneous track matches detected and removed by RGPA due to their large alignment errors. These mismatches may cause future alignment or BA failure if not 

detected and removed at an early stage. 
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gorithm, the above advantage makes RGPA capable of effectively

detecting and removing erroneous tracks by cross-checking among

multiple structures in one group. We use the median alignment er-

ror to estimate the noise variance σ 2 as in Raguram et al. (2011 ),

and employ the 3 σ criterion to identify outliers. Tracks containing

outliers are removed from the merged structure. The reference up-

dating and outlier labeling mechanism is illustrated in Fig. 6 . The

outlier in the figure is difficult to detect by popular error check-

ing methods based on 3D-2D re-projection, but can be easily de-

tected by our 3D-3D alignment method in iterative RGPA. With this

scheme mismatches as shown in Fig. 7 can be effectively identified

and removed. 

Algorithm 1 is applied to each group G g 
l at level- l and results

in a new aligned structure S at a higher level l + 1. Note that there

might be some duplicate cameras between structures in a group

(e.g., structure 1 contains cameras 1,2 and structure 2 contains

cameras 2,3, then camera 2 is duplicate). In this case, after align-

ment we retain the camera associated with more 3D points and

discard the others, to ensure the uniqueness of the cameras in one

structure. 

2.3.4. Higher level grouping and merging 

An optional operation is to do sparse bundle adjustment (BA)

( Wu et al., 2011 ; Lourakis and Argyros, 2009 ) for each newly gen-

erated structure before proceeding to grouping and merging at the

next higher level of the reconstruction tree. Fortunately, due to the

built-in outlier detecting mechanism of RGPA, the structures gen-

erally have good accuracy and this optional BA operation becomes

unnecessary. Therefore, the structure grouping and merging opera-

tions are performed bottom-up without any intermediate BAs. Af-

ter the top level is reached, we execute a final BA to refine the

structure. The removal of intermediate BAs leads to big saving of

running time. 
Fig. 1 plots the tree structure of our SfM algorithm for the

Dante” dataset. The reconstruction is accomplished in as few as

 levels. The very small tree depth leads to fast reconstruction. It

lso helps reduce the risk of error propagation. It is worth not-

ng from Fig. 1 and Algorithm 1 that all atomic RGPA operations

n the same level of the reconstruction tree, as well as all atomic

rocrustes analyses in the same iteration round of a group, are in-

ependent of each other. This means that RGPA can be parallelized

o further reduce the running time. 

. Experiments 

We implement our RGPA-based SfM algorithm in Matlab, with

ome core components (SIFT feature extraction, 5-point algorithm,

A) obtained as pre-compiled C code ( Lowe, 2004 ; Wu et al., 2011 ;

ister, 2004 ). Experiments except preprocessing were run on a

esktop PC (3.4 GHz dual core, 16 GB RAM). 

We first test the performance of RANSAC in RGPA under noisy

nvironment and experimentally show the robustness of RGPA.

onsidering the fact that the choice of the threshold parameter for

he standard RANSAC is not trivial in large-scale SfM tasks ( Moulon

t al., 2012 ), we take the LMedS RANSAC model ( Choi et al., 2009 ),

hich needs no parameter tuning at a moderate noise rate. We

est on EPFL Fountain-P11 dataset ( Strecha et al., 2008 ), which con-

ains 11 images that can be grouped with one RGPA merging op-

ration. We synthetically add various ratios ( e ) of outlier noise.

ig. 8 plots the estimated inlier ratios as RGPA iterates under dif-

erent amounts of outlier noise. The inlier ratio quickly increases

ecause outliers are effectively detected and discarded. Under all

oise levels the estimated inlier ratios converge and become very

lose to 1.0 after the 3rd iteration. This implies that 3 iterations are

ufficient for RGPA. 

In Table 1 we compare the performances of LMedS, and using

o RANSAC in RGPA. It is clear that without RANSAC reliable recon-
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Table 1 

Comparison of RANSAC strategies before the final BA. 

Outlier ratio ( e ) Origin 0.1 0.2 0.3 0.4 

Time (s) LMedS 1.27 1.24 1.21 1.20 1.19 

noRANSAC 0.42 0.42 0.42 0.42 0.42 

Number of recovered points LMedS 11,114 10,585 10,166 9698 9715 

noRANSAC 11,116 11,116 11,054 11,120 11,120 

Average reproj. error (pixel) LMedS 0.74 0.77 0.81 0.82 0.85 

noRANSAC 1.14 11.51 11.92 10.03 11.26 

Table 2 

Performance evaluation on 3 small datasets with ground-truth cameras ( R err in degree and T err 

in mm. Bold indicates the best score). 

Dataset \ Method Fountain-P11 Herz-Jesu-P25 Castle-P30 

R err T err R err T err R err T err 

Global1 ( Arie-Nachimson et al., 2012 ) 0 .421 23 .0 0 .313 48 .0 – –

Global2 ( Jiang et al., 2013 ) 0 .195 14 .0 0 .188 64 .0 0 .480 235 .0 

VSFM ( Wu et al., 2011 ) 0 .041 7 .6 0 .068 25 .0 0 .156 175 .8 

HIER ( Gherardi et al., 2010 ) 0 .035 5 .4 0 .128 15 .6 0 .158 126 .7 

RGPA 0 .035 5 .4 0 .127 15 .6 0 .139 143 .8 

Fig. 8. Inlier ratio vs. RGPA iteration under different noise levels. 
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truction cannot be achieved and the re-projection error is large

ven under low noise ratio. 

We then compare RGPA with state-of-the-art hierarchical

 Gherardi et al., 2010 ) (HIER), global ( Arie-Nachimson et al.,

012 ; Jiang et al., 2013 ) and the incremental ( Wu, 2013 ) (VSFM)

fM methods using 3 small datasets with ground-truth cameras

 Strecha et al., 2008 ). The initial focal lengths are extracted from

XIF. Table 2 reports mean errors for recovered camera rota-

ions ( R err , in degree) and translations ( T err , in mm) with respect

o ground truths. Although all methods yield correct structures

rom which good densely reconstructed points can be computed

 Furukawa et al., 2010 ) (see supplementary material), the camera

ose accuracy of the global methods ( Arie-Nachimson et al., 2012;

iang et al., 2013 ) is inferior to other approaches. This weakness is

mplified on more unstructured datasets, and prohibits the usage

f global methods on some challenging datasets. The two hierar-

hical methods (HIER and RGPA) perform the best in this test and

ave comparable results. 

Finally we test bigger datasets with more unstructured organi-

ations ( Hane et al., 2013 ; Samantha site ; BigSFM site ). We report

he results of the 5 image sets in Table 3 . For scenes with big cam-
ra rotations the camera registration of the global methods ( Arie-

achimson et al., 2012 ; Jiang et al., 2013 ) becomes unstable and

ails to provide reliable initialization (see Supplementary Material).

herefore, we only compare RGPA with Gherardi et al. (2010 ) and

u. (2013 ) in Table 4 . It is worth noting that due to the outlier de-

ection scheme in Section 2.3.3 the intermediate BAs in Gherardi et

l. (2010 ) can also be removed to achieve a much faster reconstruc-

ion. The running time in Table 4 excludes the preprocessing step

f track generation and pairwise reconstruction, which is common

or the three algorithms. For preprocessing we used a 192-core

luster to speedup feature matching, and the running times are

iven in the last column of Table 3 . The RANSAC estimated inlier

atios are also reported in Table 3 . 

“Building” is the easiest one among the 5 datasets. All three

ethods recover all 128 cameras. RGPA and HIER rebuild fewer

oints because they only perform a spanning reconstruction that

gnores many redundant points. This spanning reconstruction cov-

rs the main structure of the scene and the densely rebuilt scenes

xhibit comparable qualities. Albeit written in non-optimized Mat-

ab code, RGPA and HIER are both much faster than VSFM. The rea-

ons are twofold: 1) in RGPA and HIER the intermediate BAs are

emoved; 2) the tree structure of hierarchical SfM is more efficient

han the line structure of incremental SfM. Even though RGPA uses

n iterative alignment procedure for 3D registration, it still runs

aster than HIER because RGPA has a much shallower reconstruc-

ion tree. 

“Dante” is a very challenging dataset, which attempts to cover

 moderately complicated, closed scene with only 39 unordered

ameras. It has the highest outlier ratio among the 5 datasets, and

he maximum local outlier ratio reaches 30% (see Table 3 ). Big

amera rotations and sparse associations between cameras cause

roblems for global methods (see supplementary materials). Incre-

ental and hierarchical methods are not as vulnerable as global

ethods. VSFM recovers 38 cameras but fails to recover the last

ne due to too few inlier projections, whereas RGPA and HIER suc-

essfully recover all cameras. The reconstructed points are satisfac-

ory for RGPA, but noisy for HIER due to drift (see Fig. 9 ). 

In Table 5 we report results with and without intermediate BAs

or “Building” and “Dante” to show that intermediate BAs are not

ecessary in RGPA. The removal of intermediate BAs causes larger

e-projection error before the final BA. However, after the final BA

he differences become insignificant, and the recovered structures

re visually close. 
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Table 3 

A description of the five datasets tested in our experiment. 

Dataset No. of images Average inlier ratio Min local inlier ratio Mean error before/after BA Preprocessing time (s) 

Building 128 98% 90% 3.46 / 0.89 33 

Dante 39 91% 70% 3.99 / 0.46 6 

Piazzabra 380 94% 79% 3.37 / 0.61 289 

Trevi 751 99% 93% 8.78 / 2.71 887 

Colosseum 822 97% 76% 8.92 / 2.13 948 

Table 4 

Results comparison on the five image sets in Table 3 ( ∗ indicates that two partial reconstructions were obtained). 

Dataset Algorithm No. of points recovered No. of views recovered Time (s) Tree depth 

Building VSFM ( Wu et al., 2011 ) 82,275 128 129 –

HIER ( Gherardi et al., 2010 ) 54,611 128 37 26 

RGPA 55,281 128 31 4 

Dante VSFM 26,786 38 15 –

HIER 19,090 39 11 11 

RGPA 19,127 39 11 3 

Piazzabra VSFM 182,370/23,792 ∗ 348/42 ∗ 781 –

HIER 148,795 379 134 37 

RGPA 144,973 379 118 5 

Trevi VSFM 197,051 750 1282 –

HIER 107,368 735 679 236 

RGPA 115,617 735 257 3 

Colosseum VSFM 244,431 821 1088 –

HIER 158,888 809 597 178 

RGPA 164,138 809 317 4 

Table 5 

A comparison of RGPA with and without intermediate BAs. 

Dataset BA strategy # BAs Mean re-projection 

error (before/after 

final BA) 

Building With inter. BAs 20 1.34 / 0.87 

No inter. BAs 1 3.46 / 0.89 

Dante With inter. BAs 9 0.73 / 0.42 

No inter. BAs 1 3.99 / 0.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Time spent on RGPA operations for the original and the simulated 

parallel implementations. 

Dataset Original time t o (s) Parallel time t p (s) t o / t p 

Building 19 .69 3 .82 5 .15 

Dante 4 .76 1 .00 4 .76 

Piazzabra 66 .19 10 .49 6 .31 

Trevi 136 .72 31 .87 4 .29 

Colosseum 122 .18 19 .50 6 .27 
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“Piazzabra” contains many narrow baseline cameras and dupli-

cate structures, which lead to a lot of incorrect epipolar geome-

tries and a large proportion of mismatches. There are several local

structures with relatively high outlier ratios of around 20%. VSFM

is negatively affected and recovers two separate parts, but fails to

join them together. RGPA and HIER successfully recover the full

scene. The result of HIER is not as good as RGPA due to some visi-

ble stitching cracks (see Fig. 10 ). 

“Trevi” and “Colosseum” are two biggest subsets in the

Rome16k dataset ( BigSFM site ). All photos with valid EXIF focal in-

formation are used in our test. Both RGPA and VSFM give satisfac-

tory results. HIER yields acceptable results, but with a few visible

errors (see Fig. 11 ). This is because the small tree depth and the

cross-checking among multiple structures make RGPA less sensi-

tive to drift than HIER. RGPA and HIER recover fewer cameras than

VSFM because some “singleton” images are automatically removed

to ensure a good status of the maximum connected component of

the scene. The advantage of RGPA over HIER in speed is evident on

these two datasets. The MCDS grouping in RGPA is superior to the

one-by-one strategy in HIER, and is able to merge as many as 80

structures at a time. As a result, RGPA takes only 3 or 4 levels to

complete the reconstruction, whereas HIER needs 100 + levels. The

reason why “Trevi” has 3 levels whereas “Colosseum” has 4 is that

the images in “Trevi” are better aggregated and thus MCDS is able

to group more structures at a time. 

For all experiments, the mean relative deviations of the focal

lengths computed by the final BA from the initial EXIF values are

below 2%. The results of RGPA are plotted in Fig. 12 . 
We also give a coarse estimate of the running speed of paral-

el RGPA. Table 6 compares the total time for the original and the

imulated parallel implementation of RGPA. Using parallelization,

he running speed is 4–7 times faster. This is because RGPA can

e parallelized at the same tree level. Note that HIER cannot be

asily parallelized, because in HIER every merging operation is de-

ermined after the previous merging has finished. 

In summary, RGPA runs faster than HIER and VSFM because

ts tree-structured organization can merge multiple structures at a

ime, and it needs no intermediate BAs. The built-in outlier detect-

ng mechanism makes RGPA insensitive to errors that may hinder

ther SfM approaches, thus achieving more robust reconstruction. 

The limitation of RGPA is that it relies moderately on the tight-

ess of connections among structures to achieve a full reconstruc-

ion. Roughly speaking, for loosely connected structures the scene

ill split into several connected components at weak edges with-

ut sufficient common points, and only partial reconstructions can

e accomplished for each connected component. This generally

ccurs for randomly collected image sets of a large-scale scene.

ig. 13 provides the partial reconstructions of the maximum con-

ected components of 3 less-connected datasets ( Wilson and

navely, 2014 ). The recovered cameras are significantly fewer than

he original dataset, but the scene structures are correctly recon-

tructed. Treating large datasets with loose connectivity more reli-

bly is an interesting future work. 
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Fig. 9. The results of 3 algorithms for “Dante”. The bottom row shows the global top views. All cameras except camera 20 are plotted as blue circles. Camera 20 (plotted as 

red circles for HIER and RGPA) is not recovered by VSFM (within the dotted ellipse of (a)). The top row shows an enlargement of the region marked with a dashed rectangle. 

The HIER result has noise in this region. Camera 20 is also in this region. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 10. The results of 3 algorithms for “Piazzabra”. RGPA yields a satisfactory reconstruction. HIER yields an acceptable result but with visible stitching cracks (encircled by 

green dashed ellipse). VSFM yields two separate parts of the scene (The 2nd part in red solid cube). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 11. A comparison of reconstructed 3D points by HIER and RGPA for “Colosseum”. RGPA yields satisfactory reconstruction. HIER yields an acceptable but less clean result, 

with visible errors caused by drift (encircled by green dashed ellipses). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 12. RGPA results of 4 image sets (The result of “Dante” is in Fig. 1 ). Left: 4 images of the image set; Right: the reconstructed points and cameras. Cameras are plotted 

as red points. For (a) and (b), 3D scenes are rendered using colored points because the photos are taken in consistent lighting; For (c) and (d), 3D scenes are rendered using 

uniform gray-colored points because lighting varies among photos. 

Fig. 13. Reconstruction of 3 less-connected datasets. The numbers in the parentheses denote the number of images in the maximum connected component and the original 

dataset respectively. 
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4. Conclusion 

In this paper, we have proposed a tree-structured SfM algorithm

that can be executed quickly, while also reliably handling outliers.

Our method has several advantages. 1) By employing RGPA we

can merge multiple structures simultaneously. This substantially

increases the efficiency. 2) Using built-in cross-checking between

multiple structures we can detect and remove outliers effectively.

This makes our algorithm resistant to noise. 3) Using a spanning

structure and minimum connected dominating sets we organize

unordered images and group structures efficiently. This leads to a

quick and reliable bottom-up reconstruction approach. The exper-

iments confirm that our method outperforms the state-of-the-art

in both efficiency and robustness for highly unstructured scenes. 
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