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A B S T R A C T

Traditional deep learning models often lack annotated data, especially in cross-domain applications such as 
anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To 
address this challenge, we propose Multi-AD, an unsupervised convolutional neural network (CNN) model for 
robust anomaly detection across medical and industrial domain images. Our approach utilizes the squeeze-and- 
excitation (SE) block to enhance feature extraction by applying channel-wise attention, enabling the model to 
focus on the most relevant features and detect subtle anomalies. Additionally, knowledge distillation (KD) 
transfers informative features from the teacher to the student model, enabling effective learning of the differ
ences between normal and anomalous data. Then, the discriminator network further enhances the model’s ca
pacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale 
features, the student model gains the ability to detect anomalies of varying sizes. Teacher-student (T-S) archi
tecture ensures consistency in representing high-dimensional features while adapting these features to improve 
anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and 
retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across mul
tiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art 
models, achieving the best average accuracy for anomaly localization at both the image level (81.4 % for 
medical and 99.6 % for industrial) and pixel level (97.0 % for medical and 98.4 % for industrial), making it 
effective for real-world applications.

1. Introduction

Anomaly detection (AD) is a critical task in the medical and indus
trial domains, where early identification of anomalous patterns can be 
used to ensure patient safety, operational efficiency, and product qual
ity. In healthcare, detecting anomalies such as tumors, lesions, and 
pathological structures is crucial for timely diagnosis and effective 
treatment, directly impacting patient outcomes and survival rates [1,2]. 
Similarly, identifying defects in manufacturing processes or equipment 
failures in industrial settings can help maintain high-quality production 
standards and prevent costly operational disruptions [3,4]. However, 
the scarcity of labeled anomaly data is a problem with AD, as such cases 
are typically rare, and acquiring labeled data, particularly in medical 
imaging, is labor-intensive, expensive, and subject to inter-observer 
variability [5–7]. These limitations are particularly pronounced in 
fields such as radiology, where subtle or heterogeneous anomalies 

necessitate large and diverse datasets that are rarely available [8].
To address the scarcity of labeled data, recent advances have turned 

to self-supervised learning (SSL) [9–11]. SSL techniques learn robust 
feature representations from unlabeled data by solving pretext tasks (e. 
g., reconstructing masked regions), allowing the model to capture 
intrinsic data patterns without manual labeling. By training on “normal” 
data distributions, SSL-based AD frameworks can identify outliers that 
signal anomalies, offering a practical solution for domains where labeled 
anomalies are rare or non-existent [12]. However, although SSL reduces 
the reliance on annotations, its performance suffers in scenarios with 
limited training data or high intra-class variability, such as medical 
imaging with diverse anatomical structures [13] or industrial systems 
with complex operational environments [14].

To bridge these gaps, knowledge distillation (KD) has emerged as a 
promising strategy to enhance AD robustness [15–17]. KD transfers 
knowledge from a larger “teacher” (T) model to a compact “student” (S) 
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model, maintaining performance while increasing efficiency and 
generalization [18]. For instance, in medical imaging, KD enables 
lightweight models to mimic expert-level AD capabilities, even when 
trained on small datasets. However, existing KD approaches often focus 
on single-domain applications, thus limiting their adaptability to 
cross-domain AD tasks, where feature representations must be general
ized across modalities [19,20].

Based on these advances, we propose Multi-AD, an unsupervised AD 
framework designed to address AD challenges in medical and industrial 
applications. The key innovation of Multi-AD lies in its ability to 
generalize across multiple domains by leveraging domain-independent 
feature representation and domain-specific adaptation. Adopting opti
mized unsupervised learning and KD techniques, where features learned 
from a normal sample dataset are refined into an S model that effectively 
distinguishes between normal and anomalous features, even in the 
presence of limited labeled data. In summary, our contributions are as 
follows: 

1. A cross-domain AD framework that disentangles domain-agnostic 
(shared) and domain-specific (adaptive) feature learning, 
improving generalization across medical and industrial datasets.

2. A convolution-enhanced multi-scale fusion module that improves the 
localization of small and large anomalies.

3. Discriminator (D) networks with adaptive attention mechanisms, 
enabling precise anomaly localization in various imaging modalities 
(e.g., MRI, CT, and OCT) and industrial inspection systems.

4. Provision of precise anomaly maps for accurate localization of dis
eases and product defects.

2. Related works

Despite significant advances in AD for medical and industrial images, 
scalability, robustness, and cross-domain generalization challenges 
remain [21]. Traditionally, supervised learning approaches, which rely 
on large-scale labeled datasets containing normal and defective samples, 
have been used for AD [22,23]. However, the scarcity of labeled 
anomalous samples and the wide variety of potential anomaly types 
have limited the effectiveness of these methods. The following section 
provides an overview of previous methods used in AD for medical and 
industrial applications.

2.1. Anomaly detection in medical images

Generative adversarial networks (GANs) have been widely explored 
for AD in medical images, such as MADGAN for brain MRI [24]. The 
potential of GAN-based methods lies in their ability to generate 
high-quality images. However, they often face challenges such as un
stable training and mode collapse, which limit their scalability across 
different medical imaging modalities [25].

Deep perceptual autoencoder (DPA) models can learn a compact 
representation of normal data in a lower-dimensional space, flagging 
outliers as anomalies based on reconstruction errors [26]. This approach 
has been applied to medical images, such as histopathology and chest 
X-rays, demonstrating improved robustness compared with traditional 
autoencoder methods [27]. On the other hand, its reliance on 
well-represented normal classes and challenges in feature selection may 
limit its performance in highly complex medical datasets.

2.2. Anomaly detection in industrial images

AD in industrial images helps maintain production standards, reduce 
waste, and minimize operational costs. However, challenges such as 
limited labeled data, variability in defects, and the demand for real-time 
processing make this task complex [28,29].

Feature matching-based methods utilize a pre-trained feature 
extractor to collect features from anomaly-free samples and create a 

feature memory bank [30,31]. These methods match query image fea
tures with features in the database during inference to identify anoma
lies but incur significant memory usage due to the extensive storage of 
features. They can also incur higher computational costs when 
down-sampling features to manage memory [32]. Furthermore, since 
feature matching operates at the patch level and treats samples as un
ordered local feature sets, these approaches often miss positional details 
and fail to detect anomalies that require spatial context or occur at 
specific locations [33].

Unsupervised AD methods have been widely explored in industrial 
settings due to the abundance of normal data compared to defective 
examples [34,35]. Although GANs for AD have shown promising results 
on industrial datasets, they often suffer from mode collapse and diffi
culty reproducing high-fidelity reconstructions, particularly in scenarios 
involving complex or irregular defects [36]. Moreover, the prior 
normality prompt transformer (PNPT) has been successfully applied to 
various industrial datasets, including textures, objects, and surfaces 
[37]. However, the transformer’s reliance on well-represented normal 
classes and its complexity in managing dual-stream architecture can 
make it sensitive to feature selection and computationally intensive, 
which limits its scalability across diverse industrial imaging tasks [38].

3. Proposed method

Multi-AD integrates unsupervised learning and KD through domain- 
agnostic feature learning to capture universal anomalous patterns (e.g., 
irregular textures or shapes) and domain-specific adaptation to refine 
the representation for the target modality, as illustrated in Fig. 1. This 
allows the framework to generalize across unseen domains while 
maintaining fine-grained anomaly sensitivity. By distilling features 
learned from the T model (trained on normal samples) into the S model 
(tested on limited normal and anomalous data), the discriminatory 
ability can be improved even with minimal labels. The specialized D 
network improves localization accuracy across multiple modalities. 
Furthermore, the proposed multi-scale feature extraction mechanism 
enables the simultaneous detection of global anomalies (e.g., large le
sions) and local defects (e.g., microcracks in machines). This capability is 
critical in real-world scenarios where anomalies manifest at varying 
scales and intensities.

Algorithm 1 describes the overall training process of the proposed 
Multi-AD framework, which integrates teacher-student (T-S) KD, 
discriminator (D) optimization, and multi-scale anomaly localization. 
The algorithm shows the main steps in the subsections, including feature 
extraction, loss formulation, and updating strategies for the S and D 
networks. This structure ensures that each component contributes 
cohesively to the final anomaly map, rather than functioning in 
isolation.

3.1. Backbone

Fig. 2 illustrates the proposed backbone network, which is a modi
fication of the WideResNet-50 architecture [39] by integrating 
squeeze-and-excitation (SE) blocks [40] to improve AD performance 
across medical and industrial domains. The backbone architecture 
consists of an initial 7 × 7 convolutional layer with 64 filters, stride 2, 
and padding 3, followed by batch normalization (BN), a rectified linear 
unit (ReLU) activation, and a 3 × 3 max-pooling operation. The choice of 
a large initial convolutional kernel (7 × 7) ensures that spatial infor
mation is preserved across a sizeable receptive field at the beginning of 
the network. The proposed backbone is based on an architecture that 
balances depth and computational efficiency. The number of feature 
planes in each layer can be expanded, allowing for richer feature rep
resentation without significantly increasing the number of parameters.

Dilated convolutions are applied at the four residual stages (Res
Block1, ResBlock2, ResBlock3, ResBlock4) to enlarge the receptive field 
while maintaining the spatial resolution. For a convolution with a 
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dilation rate r, the output is computed as: 

y(i, j) =
∑

m

∑

n
x(i − r⋅m, j − r⋅n)ω(m, n), (1) 

where x denotes the input feature map, ω(m, n) represents the con
volutional kernel at index (m,n), and y is the resulting output. The 
dilation rate is progressively increased across the residual stages (r = 1, 

2, 4, 8) to enable the network to capture both local details and global 
context.

This design enables the model to detect minor, localized anomalies 
(e.g., subtle lesions) and diffuse patterns (e.g., significant structural 
distortions) in the images. Such versatility is important in dealing with 
anomalies that vary in shape, size, and location. By using dilated con
volutions, the model avoids resolution loss typically associated with 

Fig. 1. Proposed Multi-AD method for cross-domain anomaly detection.

Algorithm 1 
Training Procedure of Multi-AD.

Input: Training dataset Xt =
{

Xt
1,Xt

2,⋯,Xt
n
}
, pretrained T (teacher model) parameters βT, epoch number m

Output: S (student model) parameters βS;
1: Initialization:

- Randomly initialize βS and D (discriminator) parameter βD;
- Load pretrained weight βT into T and freeze T (no gradient);

2: Feature extraction: For each input Xt
j in Xt ;

3: for i ← 1 to m do
4: for j ← 1 to n do
5: Forward pass: For each Xt

j compute multi-layer features:

6: FT←T
(

Xt
j

)
and FS←S

(
Xt

j

)
;

7: Feature normalization: Apply L2 normalization to T or S feature maps used for distillation: F̂T = FT/‖ FT‖2 and F̂S = FS/‖ FS‖2;
8: Loss computation:

- Feature alignment (distillation): Compute the feature generator loss L G by comparing feature activations across critical layers on Eq (8);
- Discriminator loss: Compute L D using real (T) and fake (S) labels on Eq (10);
- S adversarial term: Computer L adv Eq (11);
- S total loss: L S on Eq (12), integrating both feature generator and discriminator losses;

9: Parameter update:
- Update D: βD←βD − ηD ∇βD L D (freeze S, T frozen);
- Update S: βS←βS − ηS ∇βS L S (freeze D, T frozen);

9: end for j
10: end for i

Fig. 2. Proposed backbone network.
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down-sampling layers, which is critical for preserving spatial detail. 
Each ResBlock in the network architecture incorporates BN after each 
convolution to normalize the output and stabilize the learning process. 
This is followed by a ReLU activation function, which introduces non- 
linearity and increases the network’s capacity to learn complex fea
tures. Additionally, each block includes a shortcut connection, which 
smoothly combines the block’s input with its output, helping to mitigate 
the vanishing gradient problem by promoting more effective gradient 
flow during training.

The SE blocks are integrated into each residual stage to recalibrate 
channel-wise feature responses, allowing the network to emphasize 
informative features while suppressing less relevant ones. The process 
begins with a squeeze operation that employs global average pooling to 
compute channel-wise statistics. For each channel in c in an input 
feature map of x of dimensions h × w, the statistic is calculated as: 

zc =
1

h × w
∑h

i=1

∑w

j=1
xc(i, j), (2) 

where xc(i, j) represents the activation at a spatial location (i, j) for 
channel c. Next, the pooled vector zc is processed through two fully 
connected (FC) layers. A ReLU activation follows the first FC layer, and 
the second applies a sigmoid function to yield a channel-wise scaling 
factor by: 

sc = σ(τ2. ReLU(τ1⋅zc)), (3) 

where τ1 and τ2 are learnable weight matrices and σ denotes the sigmoid 
activation function. Finally, the recalibration is performed by scaling 
each channel c of the original feature map by its corresponding factor sc 
by: 

x̂c(i, j) = sc⋅xc(i, j), (4) 

This recalibration enhances the network’s ability to identify subtle 
anomalies by ensuring that channels with more informative features are 
accentuated while irrelevant channels are diminished. Including SE 
blocks further enables the network to adaptively focus on channel- 
specific cues relevant to the anomalous context of each dataset, which 
contributes to the domain adaptability of the proposed framework.

Furthermore, feature fusion integrates fine details from lower layers 
with the high-level semantic information extracted by upper layers. This 
fusion is implemented by applying 1 × 1 convolution followed by BN 
and ReLU activations, which can be expressed as: 

Ffused = ReLU
(
BN

(
ω ∗

[
Flow, Fup

]))
. (5) 

where ω represents the 1 × 1 convolution kernel and 
[
Flow, Fup

]
denotes 

the concatenation of the lower-level and the upper-level feature maps.
Table 1 summarizes the backbone comparison of the original 

WideResNet with the improved version. Compared with the original 

WideResNet, the improved version not only widens the receptive field 
and introduces dynamic feature recalibration but also improves the 
scalability and flexibility of the network in handling feature variations 
and patterns. This results in a more adaptive approach to handling 
diverse and complex datasets, which is especially important in precise 
anomaly detection across scales and contexts.

3.2. Knowledge distillation (KD)

The KD process enables the S model to imitate the feature repre
sentations of the T model by transferring middle-level knowledge. The S 
model achieves state-of-the-art performance by matching the hierar
chical features extracted from the pre-trained T, effectively dis
tinguishing normal from abnormal regions during testing. This 
intermediate-level distillation balances low-level texture transfer and 
high-level semantic abstraction, resulting in stronger generalization to 
unseen anomalies.

The model is trained on a dataset of anomaly-free or normal images 
denoted as Xt =

{
Xt

1, Xt
2, ⋯, Xt

n
}
, where each image Xn ∈ Rw× h ×c has 

dimensions w, h, and c representing the image’s width, height, and 
channel size, respectively. During training, the model learns to recog
nize and localize features that follow the same distributions as the 
normal training data. This enables it to detect deviations (anomalies) in 
samples drawn from a different distribution during testing.

To mitigate the bias present in pre-trained networks (often trained on 
unrelated datasets), the backbone processes feature at multiple levels of 
abstraction. For example, the top layer of the network (FT1, FS1) pro
duces low-resolution, high-level features containing contextual infor
mation, such as shape and structure (M1). In contrast, the bottom layer 
(FT4, FS4) generates high-resolution, fine-grained features encoding 
details, such as texture, edges, and color (M4).

Let FN
T and FN

S denote the T and S models feature maps at the N-th 
intermediate layer. To ensure consistency during training, the feature 
maps from both models are first normalized using L2 normalization as: 

F̂
N
T =

FN
T

‖ FN
T ‖2

and F̂
N
S =

FN
S

‖ FN
S ‖2

, (6) 

The feature generator (G) extracts activation vectors from the 
normalized feature maps. The activations extracted from a critical layer 
(C) of the T and S models are represented as ϕC

T and ϕC
S , respectively. 

Each activation captures both magnitude and direction (spatial) infor
mation, preserving the intrinsic value and structure of the features. For a 
given critical layer i and for each spatial location or neuron j, the acti
vation vector can be expressed as: 

ϕj
T(i) = Gj

(
F̂

N
T
)

and ϕj
S(i) = Gj

(
F̂

N
S
)
, (7) 

Knowledge transfer is achieved by aligning these normalized acti
vations with minimizing Euclidean distance. This alignment is enforced 
via the loss function defined as: 

L G =
1
P
∑P

i=1

1
Qi

∑Qi

j=1

(
1 − cos

(
ϕ(i,j)

T ,ϕ(i,j)
S

))
. (8) 

where P is the total number of critical layers and Qi denotes the number 
of neurons in the i th critical layer. Unlike traditional KD methods 
focusing only on logits or final output, this approach leverages deep 
feature-level alignment, enabling more granular and spatially aware 
knowledge transfer. This loss ensures that the T model’s normalized 
activations effectively guide the S model, facilitating robust knowledge 
transfer across the network layers.

3.3. Discriminator (D) network

The D network comprises convolutional layers, followed by BN and a 
leaky ReLU activation, to progressively refine the input feature map, as 

Table 1 
Comparison of the original WideResNet backbone with the improved version.

Feature Original WideResNet Improved WideResNet

Convolutional 
layers

Standard convolutions Dilated convolutions for 
expanded receptive fields

Feature 
recalibration

Not present SE blocks added to recalibrate 
channel-wise feature responses

Feature fusion Absence of explicit fusion Convolutional layer for multi- 
scale feature fusion

Focus on multi- 
scale context

Limited, relies on depth 
and pooling

Enhanced through dilated 
convolutions and fusion 
techniques

Receptive field Standard size (depends 
on layer depth)

Expanded due to dilated 
convolutions

Scalability and 
flexibility

Good scalability, less 
focus on feature 
adaptivity

Improved scalability and 
adaptability to feature 
variations
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illustrated in Fig. 3. The architecture is structured to capture spatial 
hierarchies and complex patterns effectively. The first convolutional 
layer applies 128 filters with a kernel size of 3 × 3, stride 1, and padding 
1, which preserves spatial resolution while extracting low-level features, 
defined as: 

D1
(
F(0)) = LeakyReLU

(
BN

(
Conv3 × 3

(
F(0)))), (9) 

where F(0) is the input feature map. The subsequent layers further 
enhance the representation: the second convolutional layer uses 256 
filters to refine mid-level features, the third employs 512 filters to cap
ture high-level spatial relationships, and the fourth applies 1024 filters 
to generate a detailed representation. Then, a dropout layer is applied to 
reduce overfitting and improve generalization.

The output from the final convolutional layer is flattened into a one- 
dimensional vector and passed through the FC, reducing the dimen
sionality to a single scalar. A sigmoid activation function is applied to 
produce a probability score ranging from 0 to 1. This score indicates the 
likelihood of the input feature map being real (closer to the T model) or 
fake (closer to the S model). The D is optimized using a binary cross- 
entropy (BCE) loss function by 

L D = −
1
m

∑m

i=1

[
logD

(
F(i)

T
)
+ log

(
1 − D

(
F(i)

S
))]

, (10) 

where D
(
F(i)

T
)

and D
(
F(i)

S
)

are the D’s output for the T and S feature maps, 
respectively, and m is the batch size. This loss ensures that D assigns a 
high probability to real features and a low probability to fake features. 
Thus, this output provides a confident estimate of how well the S model 
replicates the internal representations of the T model, which serves as a 
dynamic feedback mechanism during training.

During adversarial training, D learns to maximize its ability to 
distinguish genuine features (T) from fake features (S). In contrast, the S 
model attempts to minimize these differences to make its resulting 
features indistinguishable from the features of the T model. These 
adversarial dynamics force the S model to produce feature maps that 
closely resemble those of the T model, thereby effectively capturing the 
normal distribution of the data, as shown in Fig. 4.

The optimization of the S model involves a combination of the 
feature-alignment loss L G and an adversarial alignment term L adv that 
encourages the student to fool D as follows:The S model total loss is 
defined as: 

L D = −
1
m

∑m

i=1
log

(
1 − D

(
F(i)

S
))
, (11) 

L total = L G + λL adv. (12) 

where λ is a hyperparameter that controls the relative contribution of the 
two loss components. This total loss ensures a balance between feature 
alignment and adversarial discrimination, optimizing both aspects 
during training. Therefore, this combined optimization scheme 
strengthens the fidelity of S model features.

3.4. Convolution-enhanced multi-scale feature fusion

To improve the robustness and accuracy of AD, we employ a multi- 

scale feature fusion (MFF) approach that integrates feature differences 
across multiple layers of the T and S models. Traditional MFF methods 
typically focus on directly fusing multi-scale anomaly maps through 
simple summation, ensuring that feature representations from different 
network depths contribute equally to the final anomaly decision. How
ever, these approaches often lack a refinement mechanism, leading to 
inconsistencies due to differences in scale, feature distribution, and 
spatial misalignment between feature maps. To address these chal
lenges, we introduce an enhanced MFF framework with convolution, 
which refines feature maps before fusion, thereby ensuring a more 
robust and stable anomaly representation, as illustrated in Fig. 5. This 
enhancement allows the model to adaptively calibrate the contributions 
of each scale before combining them, reducing overemphasis or un
deremphasis of certain features.

During inference, cosine similarity evaluates the alignment between 
the feature representations of the T and S models at each spatial location 
across multiple layers. The cosine loss function is the primary metric for 
detecting feature-level anomalies, as it quantifies the cosine difference 
at each pixel within the feature map.

Since anomalies can occur at different levels of abstraction, the 
model constructs multiscale anomaly maps to capture deviations across 
different spatial representations. These maps, M1, M2, M3, and M4, 
correspond to different depths in the network, each of which encodes 
unique structural characteristics. M1 represents fine-grained texture 
variations typically detected in shallow layers, allowing for identifying 
small-scale anomalies. M2 captures local structural irregularities as 
additional contextual information, indicating inconsistencies in feature 
distributions. M3 encodes high-level spatial relationships, enabling the 
detection of broader semantic anomalies that may not be apparent at 
lower layers. Finally, M4 incorporates global-scale feature irregularities, 
focusing on significant structural inconsistencies that indicate major 
anomalies across the image. By leveraging these hierarchical features, 
the model increases sensitivity and specificity, reducing the likelihood of 
missing subtle anomalies or misclassifying normal patterns.

To localize anomalies at each stage of feature extraction, the pixel- 
wise cosine dissimilarity is computed for every spatial location in the 

Fig. 3. Proposed discriminator (D) network.

Fig. 4. The student (S) model produces feature maps very similar to the teacher 
(T) model, so it can distinguish normal and anomalous regions very well.
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feature map as follows: 

M(n)
T− S(i, j) = 1 −

∑
c F̂

(n,i,j,c)
T ⋅F̂

(n,i,j,c)
S

‖ F̂
(n,i,j)
T ‖ ⋅ ‖F̂

(n,i,j)
S ‖

, (13) 

where M(n)
T− S(i, j) represents the pixel-level anomaly map computed at 

layer n, spatial position (i, j), and channel c.
The proposed convolution-enhanced MFF incorporates an additional 

convolutional refinement step before fusion, which addresses in
consistencies caused by scale variations and misaligned feature maps. A 
1 × 1 convolution layer reduces dimensionality while preserving spatial 
structure, ensuring that all layers contribute proportionally to the final 
anomaly representation. BN stabilizes the feature distribution across 
layers, improving robustness by normalizing variations in feature re
sponses. Finally, ReLU activation introduces non-linearity, enhancing 
the model’s ability to capture complex patterns in anomalous regions. 
This additional processing step minimizes feature inconsistencies across 
scales, making the final anomaly map more robust. The anomaly maps 
are then combined via bilinear interpolation: 

Mfused =
∑N

n=1
Ψ
(
M(n)

T− S
)
, (14) 

Followed by a Gaussian smoothing operation to improve the clarity 
of detected anomalies and suppress high-frequency noise. The final 
image-level anomaly score is calculated by selecting the maximum 
response from the smoothed anomaly map: 

φ = max
(
Gθ

(
Mfused

))
. (15) 

The proposed MFF improves robustness by alleviating the limitations 
of single-layer feature maps, combining complementary information 
from different network depths. Furthermore, this mechanism is inher
ently scalable, adapting smoothly to various sizes and distributions of 
anomalies, making it suitable for multiple detection tasks. In practical 
applications, this flexibility allows Multi-AD to perform consistently 
across multiple imaging modalities and hardware configurations 
without requiring manual tuning or architectural changes.

4. Experimental results

The model training and evaluation were performed using an RTX 
A6000 GPU and an Intel Core i9 CPU. The T model parameters were 
sourced from the backbone previously trained on ImageNet. In contrast, 
the S model was learned through a distillation process based on the 
knowledge transferred from the T model. Training focused only on 
normal data, while AD testing was applied to normal and abnormal 
samples.All inputs were finally resized to 256 × 256 pixels. Optimiza
tion was performed using the Adam optimizer on the backbone and D 
networks, with a learning rate of 0.001 at 250 epochs and a batch size of 
16.

4.1. Dataset

4.1.1. Medical
To ensure a fair and representative evaluation of medical AD, we 

selected a reference dataset widely adopted in previous medical imaging 
AD studies [1]. This dataset covers a wide range of imaging modalities 
and clinical scenarios, including brain MRI, retinal OCT, and liver CT, 
providing a heterogeneous and clinically relevant testing platform. Each 
dataset represents a different anatomical and diagnostic context with 
unique imaging characteristics that enhance the robustness and gener
alizability of the evaluation.

The BraTS2021 [41] dataset consisted of 3D volumes transformed 
into 2D slices by extracting brain scans and corresponding annotations 
along the axial plane. We retained brain slices containing parenchyma 
(non-empty mask) and discarded empty background slices. This dataset 
comprises 3201 slices, of which 1542 normal images were used for 
training, with all images having a resolution of 512 × 512.

The Retinal Edema Segmentation Challenge (RESC) [42] dataset 
comprises Optical Coherence Tomography (OCT) images of the retina, 
explicitly targeting cases of retinal edema. Each case includes 128 slices 
where retinal edema is present. The dataset includes 6217 images with a 
resolution of 512 × 1024, of which 4297 are normal images used for 
training.

The “Multi-Atlas Labeling Beyond the Cranial Vault” (BTCV) and 
Liver Tumor Segmentation (LiTs) datasets [43] consist of 3201 slices 
with a resolution of 512 × 512, 1542 normal slices, and they were used 
for training. Hounsfield units (HU) from the 3D scans were converted to 
grayscale and cropped into 2D axial slices for analysis.

4.1.2. Industrial
The MVTec AD [44] dataset has been widely used as a benchmark for 

AD in real-world industrial settings. This dataset contains 15 categories, 
consisting of 5 texture classes and 10 object classes, with 5354 images. 
In addition, it includes 73 different types of defects, including scratches, 
damages, stains, cracks, deformations, and missing objects.

4.2. Multi-AD results

The performance of the AD model was evaluated using the Area 
Under the Receiver Operating Characteristic (AUROC) curve metric, 
which measured the overall ability of the model to differentiate between 
positive (anomaly) and negative (normal) classes. Higher AUROC values 
indicate better performance. Image-level AUROC measured a model’s 
ability to correctly identify whether an entire image was normal or 
contained anomalies. In contrast, pixel-level AUROC evaluated the 
model’s accuracy in detecting anomalous regions with details at each 
pixel in an image.

4.2.1. Medical
A comparison of AUROC scores for Multi-AD with state-of-the-art 

models, such as PaDiM [33], PatchCore [30], SimpleNet [45], STFPM 

Fig. 5. Convolution-enhanced multi-scale feature fusion.
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[46], RD4AD [47], and MKD [19], is summarized in Table 2 (the best 
score is shown in bold and the second-best score is underlined)Multi-AD 
consistently outperformed previous methods, achieving the highest 
average AUROC scores of 81.4 % at the image-level and 97.0 % at the 
pixel-level, respectively, across multiple medical datasets.

Multi-AD outperforms the clustering-based methods, such as Patch
Core and SimpleNet, for AD detection on the brain MRI dataset, 
achieving a pixel-level AUROC of 96.8 %. Its performance on the liver 
CT dataset further highlights its effectiveness, with an image-level 
AUROC of 62.6 % and a pixel-level AUROC of 97.6 %. In comparison, 
the next best model, STFPM, achieved 61.8 % at the image-level, while 
SimpleNet achieved 96.8 % pixel-level AUROC. Other methods exhibi
ted greater variability and struggled with image-level anomaly detection 
on the liver CT dataset. Additionally, Multi-AD demonstrates strong 
performance on the retinal OCT dataset, achieving an image-level 
AUROC of 91.8 %.

Fig. 6 shows that Multi-AD consistently produced heatmaps that 
closely match the ground-truth, demonstrating its ability to localize 
anomalies accurately. Multi-AD sharply localized anomalous regions 
with minimal false positives (FP), whereas the clustering-based methods 
(PatchCore, PaDiM, and SimpleNet) produced broader, less focused 
heatmaps at risk of FP. In contrast, the reconstruction-based methods 
(STFPM and RD4AD) often failed to capture subtle or spatially complex 
anomalies.

In particular, both MKD and Multi-AD belong to the distillation- 
based category, which leverages knowledge transfer from teacher to 
student models. Among the two, Multi-AD achieves the best localization 
performance. This indicates that distillation-based approaches can 
effectively capture semantic differences in feature representations, 
making them particularly suitable for medical imaging tasks requiring 
precise localization and low FP rates.

4.2.2. Industrial
A comparison of AUROC scores for Multi-AD against the state-of-the- 

art models on industrial datasets is summarized in Table 3 (the best 
score is shown in bold and the second-best score is underlined). ). Multi- 
AD achieves the highest average AUROC scores of 99.6 % at the image- 
level and 98.4 % at the pixel-level, respectively. Multi-AD consistently 
outperformed state-of-the-art models, achieving the highest image-level 
and pixel-level AUROC in several categories. It outperformed clustering- 
based methods, such as PatchCore, in pixel-level localization, a critical 
aspect for industrial tasks, including the detection of manufacturing 
defects or material inconsistencies.

Fig. 7 shows that Multi-AD consistently provides precise and highly 
localized heatmaps that align well with ground-truth anomalies across 
all datasets. For challenging cases, such as bottles and capsules, Multi- 
AD accurately highlights anomalies with sharp and well-defined heat
maps while avoiding FP in normal regions. It effectively distinguished 
anomalies from the background on grid and leather, while the 
clustering-based methods (PaDiM, PatchCore, and SimpleNet) often 
produced broader and less focused detections. Similarly, Multi-AD 
demonstrated excellent precision for the pill and zipper by tightly 
localizing anomalies. Additionally, Multi-AD generated highly specific 
heatmaps for datasets such as wood and toothbrushes, whereas 
clustering-based methods struggled with background noise and reduced 

localization accuracy. In contrast, the reconstruction-based methods 
(STFPM and RD4AD) showed more diffuse heatmaps, which could lead 
to over-detection.

In particular, MKD and Multi-AD are distillation-based methods that 
produce clearer and more concentrated heatmaps, demonstrating su
perior feature transfer and localization, especially in the texture and 
object categories. This is particularly evident for complex textures, such 
as tiles and leather, as well as small object anomalies, like pills and 
screws, where the distillation-based models outperform the clustering 
and reconstruction approaches.

Fig. 8 illustrates the reliability of Multi-AD in localizing various types 
of industrial anomalies, including scratches, minor defects, and major 
defects. These specific cases were chosen because they represent the 
various challenges of industrial quality control. Scratches, for example, 
are common surface defects that, although often subtle, can cause sig
nificant quality issues in manufactured products. Minor defects are 
equally important because even small imperfections can compromise 
the functionality or safety of industrial components, especially in pre
cision manufacturing. Finally, major defects are included to assess the 
model’s ability to detect more obvious yet diverse anomalies without 
compromising accuracy. Here, Multi-AD demonstrated robustness and 
flexibility by consistently maintaining high detection accuracy across 
various defect types and sizes in industrial environments, thereby 
improving quality control and operational efficiency.

4.3. Ablation study

Compared with the original WideResNet architecture and the abla
tion configuration without the D network, Multi-AD significantly 
improved the model’s performance in detecting subtle and complex 
anomalies. The SE block provided channel-wise attention, enabling the 
network to focus on the most significant features of AD. This was 
particularly relevant in medical imaging, where anomalies could be very 
small or obscured by complex background patterns, and in industrial 
imaging, where defects often varied in size and shape. The SE block 
allowed the model to prioritize the most informative features by reca
librating the feature responses, improving anomaly localization and 
detection accuracy. The network generalization ability was also 
enhanced by the SE block, as the model could better adapt to different 
datasets, enabling robust performance across medical and industrial 
domains, as summarized in Table 4. For example, adding the SE block 
alone (Study 4) improved both image- and pixel-level AUROC compared 
to the baseline (Study 8), with medical and industrial pixel-level AUROC 
increasing from 86.2 % to 90.9 % and 88.3 % to 91.2 %, respectively.

The D network served as an adversarial component to enhance the 
capabilities of the AD model. By distinguishing between normal and 
abnormal patterns, the D network sharpened the model’s ability to 
classify subtle anomalies, thereby reducing the FP rate correctly. Models 
without the D network in the original and modified WideResNet archi
tectures showed performance degradation, especially in complex 
anomaly scenarios. This is evident in the comparison between Study 1 
and Study 3, where removing the D network resulted in a decrease in 
medical and industrial pixel-level AUROC from 97.0% to 93.2% and 
from 98.4% to 95.8%, respectively. Meanwhile, the SE-enhanced 
WideResNet outperformed the original WideResNet without the D 

Table 2 
Comparison of image-level (Il) and pixel-level (Pl) AUROC (%) with state-of-the-art models on medical datasets.

No Dataset Clustering-based Reconstruction-based Distillation-based

PaDiM PatchCore SimpleNet STFPM RD4AD MKD Multi-AD (Ours)

IL PL IL PL IL PL IL PL IL PL IL PL IL PL

1 Brain 79.0 94.4 91.6 96.7 77.7 93.7 83.0 95.6 89.5 96.4 81.5 89.4 89.7 96.8
2 Liver 50.8 90.9 60.3 96.4 52.5 96.8 61.8 91.2 60.4 96.0 60.7 96.1 62.6 97.6
3 Retina 75.8 91.4 91.6 96.5 87.3 94.7 84.8 91.2 87.7 96.2 89.0 86.7 91.8 96.7
Average 68.5 92.2 81.2 96.5 72.5 95.1 76.5 92.7 79.2 96.2 77.1 90.7 81.4 97.0
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Fig. 6. Multi-AD results for medical images.
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network.
In addition, the MFF module significantly enhances the model’s 

ability to localize anomalies at multiple semantic levels, particularly by 
improving pixel-level detection accuracy through the combination of 
contextual information from various depths. This is supported by the 
difference between Study 1 and Study 2, where MFF increased pixel- 
level AUROC from 91.4 % to 97.0 % on medical datasets, and from 
94.0 % to 98.4 % on industrial datasets.

AD tasks in medical and industrial imaging differ significantly in 
feature complexity, anomaly types, and data variability. The SE block 
and the discriminator allowed the model to adapt to these variations, 
ensuring robust performance in both domains. This cross-domain 
robustness is a crucial feature for practical applications in real-world 

scenarios, where models are often required to operate on diverse data
sets without requiring extensive retraining.

5. Discussion

Although robust in their respective frameworks, other AD methods 
often struggle with precise anomaly localization, particularly in complex 
imaging datasets commonly found in medical and industrial applica
tions. Clustering-based methods employ innovative feature extraction 
and matching techniques but sometimes produce broader, less focused 
heatmaps, which can increase the FP rate. This is particularly prob
lematic in medical imaging, where precise delineation of pathological 
regions is critical for accurate diagnosis. Broader heatmaps may include 

Table 3 
Comparison of image-level (Il) and pixel-level (Pl) AUROC (%) with state-of-the-art models on industrial datasets.

Dataset Clustering-based Reconstruction-based Distillation-based

PaDiM PatchCore SimpleNet STFPM RD4AD MKD Multi-AD (Ours)

IL PL IL PL IL PL IL PL IL PL IL PL IL PL

Textures Carpet 96.2 99.1 98.7 99.0 99.7 98.2 98.8 95.8 98.9 98.9 79.3 95.6 99.8 98.9
Grid 94.6 97.3 98.2 98.7 99.7 98.8 99.0 96.6 99.3 99.3 78.0 91.7 99.7 99.1
Leather 97.8 99.2 100 99.3 100 99.2 99.3 98.0 99.4 99.1 95.1 98.0 100 99.4
Tile 86.0 94.1 98.7 95.6 99.8 97.0 97.4 92.1 99.3 95.6 91.6 82.7 99.8 97.3
Wood 91.1 94.9 99.2 95.0 100 94.5 97.2 93.6 99.2 95.3 94.3 84.8 100 96.9

Objects Bottle 94.8 98.3 100 98.6 100 98.8 98.9 95.1 98.7 98.7 99.4 96.3 100 99.1
Cable 88.8 96.7 99.5 98.4 99.9 97.6 95.5 87.7 95.0 97.4 89.2 82.4 99.6 98.5
Capsule 93.5 98.5 98.1 98.8 97.2 98.9 98.3 92.2 96.3 98.7 80.5 95.9 98.4 98.9
Hazelnut 92.6 98.2 100 98.7 100 97.9 98.5 94.3 98.9 98.6 98.4 94.6 99.8 98.2
Metal Nut 85.6 97.2 100 98.4 100 98.8 97.6 94.5 100 97.3 73.6 86.4 100 98.9
Pill 92.7 95.7 96.6 97.1 99.0 98.6 97.8 96.5 96.6 98.2 82.7 89.6 99.3 98.9
Screw 94.4 98.5 98.1 99.4 98.2 99.3 98.3 93.0 97.0 99.6 83.3 96.0 98.6 99.3
Toothbrush 93.1 98.8 100 98.7 99.7 98.5 98.9 92.2 99.5 99.1 92.2 96.1 99.8 98.9
Transistor 84.5 97.5 100 96.3 100 97.6 82.5 69.5 96.7 92.5 85.6 76.5 98.9 95.1
Zipper 95.9 98.5 98.8 98.8 99.9 98.9 98.5 95.2 98.5 98.2 93.2 93.9 99.8 98.9

Average 92.1 97.5 99.1 98.1 99.5 98.2 97.1 92.4 98.2 97.8 87.8 90.7 99.6 98.4

Fig. 7. Multi-AD results for industrial images.
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non-anomalous regions, thereby misleading the diagnostic process. In 
contrast, Multi-AD’s D networks and SE blocks enable sharper and more 
focused anomaly localization, which is critical in reducing diagnostic 
errors.

Similarly, the reconstruction-based methods, such as STFPM, which 
combine spatial and temporal features for AD, exhibit limitations in 
effectively localizing anomalies in highly textured or complex back
grounds within industrial environments. They perform poorly on subtle 
anomalies or blend seamlessly into the background. Furthermore, 
RD4AD, while designed to be robust across a wide range of settings, does 
not consistently handle the variability and complexity of anomalies. 
With its enhanced feature recalibration and discrimination capabilities, 
Multi-AD significantly outperforms these models, maintaining high 
sensitivity and specificity even under challenging conditions. 
Distillation-based methods, such as MKD, also demonstrate strong per
formance by leveraging teacher–student knowledge transfer; however, 
MKD lacks adversarial refinement and advanced attention mechanisms. 
This can lead to more diffuse anomaly maps and slightly reduced 
localization precision compared to Multi-AD, especially on small or 
ambiguous defects.

In industrial applications, Multi-AD’s ability to achieve excellent 
image-level AUROC scores in multiple categories demonstrates its su
periority in handling a wide range of defect types. This precision is 
beneficial for maintaining high-quality standards and critical for 
ensuring safety and efficiency in manufacturing processes. Interestingly, 
several MVTec AD texture and object categories, such as leather, wood, 
hazelnut, and capsules, exhibit structural patterns and anomalies that 
resemble those in medical images, making them useful for evaluating 
cross-domain generalization and low-contrast anomaly detection.

While other methods have their advantages and specific use cases, 
Multi-AD’s comprehensive approach and enhanced capabilities allow it 
to consistently outperform these methods across a spectrum of 

challenging medical and industrial datasets. This comparative advan
tage results from enhanced backbone integration with KD and D net
works, which improved the performance and reliability of the overall 
AD system.

However, integrating the MFF module and adversarial D network 
increases computational complexity, potentially affecting real-time 
implementation in industrial pipelines or resource-constrained clinical 
settings. Addressing these limitations is an important direction for future 
work to improve the model’s robustness, scalability, and adaptability 
across a wider range of practical settings.

6. Conclusion

This work presented Multi-AD, an unsupervised CNN-based model 
that effectively addressed AD challenges across medical and industrial 
domains. With the incorporation of KD and SE blocks, our approach 
enhanced feature extraction and captured subtle differences between 
normal and abnormal data. Adding a D network further enhanced the 
model’s ability to distinguish anomalies, yielding superior performance 
compared to state-of-the-art models. Through comprehensive experi
ments, Multi-AD demonstrated strong generalization across diverse 
datasets, proving its capabilities in real-world tasks such as early disease 
diagnosis and industrial defect detection. Future work could involve 
exploring additional optimization strategies, such as integrating more 
sophisticated attention mechanisms or refining adversarial learning 
approaches, enhancing the scalability and real-time performance of the 
model in various industrial and medical settings. In addition, future 
research may evaluate the model on a broader range of medical imaging 
data across multiple anatomical regions and modalities to further assess 
its generalizability and clinical applicability.

Fig. 8. Multi-AD results for several cases: scratches, minor defect, and major defect.

Table 4 
AUROC (%) results for several ablation experiments.

Study Squeeze-Excitation (SE) Block Discriminator (D) Network Multi-scale Feature Fusion (MFF) Medical Industrial

IL PL IL PL

1 ✓ ✓ ✓ 81.4 97.0 99.6 98.4
2 ✓ ✓ - 78.6 91.4 93.4 94.0
3 ✓ - ✓ 79.8 93.2 96.2 95.8
4 ✓ - - 77.5 90.9 92.8 91.2
5 - ✓ ✓ 78.7 95.4 95.2 96.8
6 - ✓ - 72.3 89.8 91.9 92.5
7 - - ✓ 73.1 91.4 93.4 95.1
8 - - - 70.9 86.2 89.5 88.3
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