
A RUN-BASED ONE-AND-A-HALF-SCAN

CONNECTED-COMPONENT

LABELING ALGORITHM

LIFENG HE

Shaanxi University of Science and Technology

Shaanxi, P. R. China

Aichi Prefectural University
Nagakute, Aichi 480-1198, Japan

helifeng@ist.aichi-pu.ac.jp

YUYAN CHAO

Graduate School of Environmental Management

Nagoya Sangyo University Aichi 488-8711, Japan

fauthor@example.com

KENJI SUZUKI

Department of Radiology, The University of Chicago

Chicago, IL 60637, USA
suzuki@uchicago.edu

This paper presents a run- and label-equivalence-based one-and-a-half-scan algorithm for
labeling connected components in a binary image. Major di®erences between our algorithm and

conventional label-equivalence-based algorithms are: (1) all conventional label-equivalence-

based algorithms scan all pixels in the given image at least twice, whereas our algorithm scans

background pixels once and object pixels twice; (2) all conventional label-equivalence-based
algorithms assign a provisional label to each object pixel in the ¯rst scan and relabel the pixel in

the later scan(s), whereas our algorithm assigns a provisional label to each run in the ¯rst scan,

and after resolving label equivalences between runs, by using the recorded run data, it assigns

each object pixel a ¯nal label directly. That is, in our algorithm, relabeling of object pixels is not
necessary any more. Experimental results demonstrated that our algorithm is highly e±cient on

images with many long runs and/or a small number of object pixels. Moreover, our algorithm is

directly applicable to run-length-encoded images, and we can obtain contours of connected
components e±ciently.

Keywords: Labeling algorithm; connected component; label equivalence; run-length encoding;
raster scan.

1. Introduction

Labeling connected components in a binary image is one of the most funda-

mental operations in computer vision, pattern recognition, and machine

International Journal of Pattern Recognition
and Artificial Intelligence
Vol. 24, No. 4 (2010) 557�579

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218001410008032

557

http://dx.doi.org/10.1142/S0218001410008032

intelligence.4,11,13,29,32,38 For applications to dynamic images, e.g. automatic detec-

tion, robot vision, and automatic tracking, faster labeling algorithms are demanded.

Many labeling algorithms have been proposed for addressing this issue. For ordinary

computer architectures and pixel-based representation images, there are the fol-

lowing two classes of labeling algorithms:

(1) Raster-scan and label-equivalence-based algorithms. There are multi-scan,6,8 two-

scan,5,7,9,15–17,24,30,31,35,42 and four-scan39 algorithms. These algorithms scan an

image in the raster scan direction at least twice (thus, all background pixels and all

object pixels are processed at least twice). At the ¯rst scan, they assign a provi-

sional label to each object pixel, and then relabel the pixel in the later scan(s)

(at least once) by resolving label equivalences between provisional labels.

(2) Searching and label propagation algorithms. These algorithms1,2,12,20,37 ¯rst

search an unlabeled object pixel, label the pixel with a new label; then, in the

later processing, they assign the same label to all object pixels that are connected

to the pixel. Although these algorithms usually use the raster scan to ¯nd an

unlabeled object pixel, for labeling, they all access pixels in an image in an

irregular way, depending on the shapes of connected components in the image.

Therefore, they are essentially not a raster-scan-type algorithm.

Recently, a run- and label-equivalence-based two-scan algorithm has been

proposed.9 In this algorithm, the run data, which are obtained during the ¯rst scan,

are recorded in a queue and used for detecting the connectivity of runs in the later

processing. Because this algorithm resolves connectivity between runs, for a given

image, the number of provisional labels assigned by this algorithm is usually smaller

than that assigned by other conventional label-equivalence-based labeling algor-

ithms. This reduces the computation cost required for resolving label equivalences

and that for checking the provisional labels in the mask. Therefore, it was demon-

strated that this algorithm was very e±cient for various images.

In this paper, we present a run- and label-equivalence-based one-and-a-half-scan

algorithm, which is an improved version of the above run-based two-scan algorithm

(referred to as the previous algorithm hereafter for convenience).

Unlike the previous algorithm, which assigns a provisional label to each object

pixel as do all other conventional label-equivalence-based algorithms, and uses run

data only for assigning provisional labels and resolving label equivalences, our

algorithm assigns a provisional label to each run, and also uses run data for labeling

object pixels directly. Moreover, our algorithm scans background pixels in the given

image only once and does not require relabeling of object pixels. In addition, our

algorithm is applicable to run-length-encoded images directly, and it can produce

contour data of connected components in an image easily and e±ciently.

The rest of the paper is organized as follows: we review the previous algorithm in

the next section, and introduce our algorithm in Sec. 3. In Sec. 4, we show the

experimental results to demonstrate the e±ciency of our algorithm with many long

558 L. He, Y. Chao & K. Suzuki

runs and/or a small number of object pixels. We provide a discussion in Sec. 5 and

give our concluding remarks in Sec. 6.

2. The Previous Algorithm

For an N �M-size binary image, we use p½y�N þ x� to denote the pixel value at

ðx; yÞ in the image, where 0 � x � N � 1 and 0 � y � M � 1. We assume that the

object pixels and background pixels in a given image are represented by 1 and 0,

respectively. As in most labeling algorithms, we assume that all pixels on the edges of

an image are background pixels, and only consider eight-connectivity.

A run is a block of contiguous object pixels in a row. A run from p½s� to p½e� (s � e)

is described by rðs; eÞ. Let rðs; eÞ be the current run in the raster scan. Among the

runs that were scanned before the current run, a run rðu; vÞ (in the row immediately

above the row that rðs; eÞ lies in) such that one of its pixels occurs between p½s�
N � 1� and p½e�N þ 1�, i.e. if u � e�N þ 1 and v � s�N � 1, is connected to

rðs; eÞ with eight-connectivity, as shown in Fig. 1.

The previous algorithm is a two-scan algorithm. In this algorithm, at any point in

the ¯rst scan, all equivalent labels found so far are combined in a set, called equiv-

alent label set, where the smallest label is referred to the representative label. The

corresponding relation of a provisional label and its representative label is recorded in

a table, called the representative table. For convenience, we use SðtÞ for the set of

provisional labels with t as the representative label, and r label½a� to represent the

representative label of provisional label a. In this way, for any provisional label f in

provisional label set SðtÞ, we have r label½f� ¼ t.

In the ¯rst scan, from i ¼ 0, the algorithm scans pixel pðiÞ one by one in the given

image in the raster scan direction. When a new run rðs; eÞ is found, the run data is

recorded. At the same time, the eight-connected area with the current run in the

above row is detected. If there is no run eight-connected with the current run in the

row above the scan row, the current run belongs to a new connected component not

found so far. All pixels in the current run are assigned a new label l, the provisional

label set corresponding to the connected component, i.e. the current run, is estab-

lished as SðlÞ ¼ flg, and the representative label of l is set to itself, i.e. r½l� ¼ l.

Moreover, l increases by 1 for consecutive processing.

e……s

e-N……s-N

pixel in the current run

pixel in the runs connected to the current run

Fig. 1. The range for checking the eight-connectivity of the current run rðs; eÞ and the runs scanned

before the current run.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 559

On the other hand, if there are some runs, say, r1; . . . ; rn, connected to rðs; eÞ in
the row above the scan row, then r1; . . . ; rn, and rðs; eÞ belong to the same connected

component. Suppose that l1; . . . ; ln are the provisional labels assigned to r1; . . . ; rn
respectively, and Sðu1Þ; . . . ;SðunÞ are the equivalent label sets containing l1; . . . ; ln
respectively, then all provisional labels in Sðu1Þ; . . . ;SðunÞ are equivalent labels.

Therefore, Sðu1Þ; . . . ;SðunÞ are merged to SðuÞ, where u is the smallest label among

u1; . . ., and un. Moreover, all object pixels in the current run rðs; eÞ are assigned the

same provisional label that was assigned to the object pixels of the leftmost one of

such runs, i.e. l1. Moreover, after processing rðs; eÞ, the algorithm removes all data of

runs from the queue that end before or at p½e�N�, because such runs cannot be

connected with any coming run, and therefore are useless for further connectivity

detection.

When the ¯rst scan ¯nishes, all provisional labels that were assigned to a con-

nected component in the given image will be combined with a common and unique

representative label. During the second scan, the provisional label of each object pixel

is relabeled by the representative label of that provisional label. If we set r label½0� ¼
0 in advance, where r ¼ r label½l� means that the representative label of the provi-

sional label l is r, this relabeling process can be completed by the following simple

operationa

forði ¼ N; i < N � ðM � 1Þ; iþþÞ
p½i� ¼ r label½p½i��;

end of for

ð1Þ

3. Our Algorithm

As described above, the previous algorithm assigns a provisional label to each object

pixel, and it uses only run data for assigning provisional labels and resolving label

equivalences: after processing run rðs; eÞ, it discards all data of runs that end before

or at p½e�N�, because such runs are not connected to any coming unprocessed run.

Moreover, after resolving label equivalences, the algorithm needs to make another

scan to assign a ¯nal label to each object pixel.

In comparison, our algorithm, in addition to assigning provisional labels and

resolving label equivalences, also uses run data for avoiding relabeling object pixels.

aFrom experimental results, using the operations shown in formula (1) for relabeling, where all pixels are
relabeled consecutively (although the value of background pixels is unchanged), the relabeling is more

e±cient than using the following operations, where only object pixels are relabeled (usually, pixels are

processed intermittently):

forði ¼ N; i < N � ðM � 1Þ; iþþÞ
ifðp½i�Þ

p½i� ¼ r label½p½i��;
end of if

end of for

560 L. He, Y. Chao & K. Suzuki

Because all object pixels of a run obviously belong to the same connected component,

and by labeling, they should be assigned the same label, instead of assigning a

provisional label to each object pixel, we can assign a provisional label to each run.

Thus, after all label equivalences between runs are resolved, all runs belonging to a

connected component will have the same representative label; then, by use of the

recorded run data, all object pixels of a run are assigned the same label of the run

directly without scanning background pixels again. The pseudo code of the ¯rst scan

of our algorithm is shown in Fig. 2, where run½y� indicates the provisional label of the
yth run, resolveðp; qÞ means the merging processing of the equivalent label set SðpÞ
and SðqÞ, the detail of which can be found in Ref. 9. Moreover, n is the variable for

recording run data, l for provisionally labeling on runs, and j for searching the runs

that are connected with the current run.

By initializing n, l and j to 1 (Line 1), from i ¼ N , our algorithm scans pixel p½i�
one by one in the given image in the raster scan direction until i >¼ N � ðM � 1Þ

Fig. 2. The pseudo code of the ¯rst scan of our algorithm.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 561

(Line 2). When a new run rðs; eÞ is found, the run data are recorded by run s½n� ¼ s

and run e½n� ¼ e (from Line 3 to Line 9).

For the current run rðs; eÞ, by increasing j, we pass all recorded runs in the above

row that end before p½s�N � 1� (if any) (which are not connected to rðs; eÞ) (from
Line 10 to Line 12). Then, we check whether the next recorded run, say, rt, ends

before/at p½e�N �. If it does, we assign the current run the same provisional label of

the run (Line 14), and for each other consecutive recorded run run½j� that ends

before/at p½e�N �, we merge the equivalent label set Sðr label½run½j��Þ and

Sðr label½run½n��Þ (from Line 16 to Line 19). Further, we check whether the next

recorded run starts before at p½e�N þ 1�. If it does, we merge the equivalent label

sets Sðr label½run½j��Þ and Sðr label½run½n��Þ (from Line 20 to Line 22). On the other

hand, if rt does not end before/at p½e�N �, we check whether it starts before/at

p½e�N þ 1� (Line 23). If it does, we assign the current run the same provisional label

of the run (Line 24). Otherwise, we assign the current run a new provisional label l

(Line 26), set the representative label of l to itself (Line 27), and increase l by 1 for

provisionally labeling the next run.

After processing the current run, n increases by 1 for recording and processing the

next run (Line 31).

Notice that after processing the current run, the value of j corresponds to the ¯rst

run that ends at/after pðe�N þ 1Þ. Thus, for processing the next current run

rðs 0; e 0Þ, where s 0 > eþ 1, because any recorded run run½j 0� such that j 0 < j ends

before pðe�NÞ, it is impossible to be connected with the run rðs 0; e 0Þ. Therefore, for
detecting runs connected with the run rðs 0; e 0Þ, we can start from the j th run.

After the scan, the starting points and end points of all runs are recorded in

run s½ � and run e½ �, respectively, and all runs that belong to a connected com-

ponent will have the same representative label. Then, using the recorded run data,

we assign the representative label corresponding to a run to all object pixels of the

run directly without scanning any background pixels again. This work can be

completed easily by the following operations:

forði ¼ 1; i < n; iþþÞ
forðj ¼ run s½i�; j � run e½i�; jþþÞ
p½j� ¼ r label½run½i��;

end of for

end of for

ð2Þ

Obviously, no relabeling is executed in our algorithm, and background pixels are

scanned only once.

4. Experimental Results

Our algorithm can be implemented similarly as the previous algorithm is done, except

for recording all run data. Because the maximum number of runs in an N �M-size

562 L. He, Y. Chao & K. Suzuki

image is N �M=2, we can use one N �M=2-sized 1D array to record the number of

runs, and two N �M=2-sized 1D arrays to record the starting points and end points

of all runs.

We implemented our algorithm with the C language on a PC-based workstation

(Intel Pentium Duo 930 3.0GHz þ 3.0GHz CPUs, 2GB Memory, Mandriva Linux

OS). All execution times shown in this section were obtained by using one core.

Images used for testing included four types: arti¯cial images, natural images,

texture images and medical images. All images are 512� 512 pixels in size.

The arti¯cial images contain the following four type images:

(1) Specialized-pattern image set

There are stair-like, spiral-like, saw-tooth-like, checker-board-like, and honey-

comb-like connected-component images39;

(2) Ising image set19

190 images are made of samples of the Ising model pð�Þ / expðKP
�½�i; �j�Þ,

whereK ¼ J=kBT , ten samples per value of K, ranging from 0.05 to 0.95 in steps

of 0.05.19 Such set of images can be considered as a parametric modelization of

natural textures and satellite-like imagery. The densities of these images range

from 49% to 92%.

(3) Overlapped-block image set20

This set is composed of images with a random distribution of 50 square blocks of

object pixels, where overlap of blocks is allowed, with block size ranging from

5� 5 to 100� 100 in steps of 5, 10,000 di®erent images for each block size. The

densities of these images range from 0.5% to 75.8%.

(4) Uniform noise image set

41 noise images were generated by thresholding the images containing uniform

random noise, where the value of a pixel is between 0 and 1000, with 41 di®erent

threshold values from 0 to 1000 with a step of 25. Because connected components

in such noise images have complicated geometrical shapes and complex con-

nectivity, severe evaluations of labeling algorithms can be performed with these

images. The densities of these images range from 0.5% to 99.2%.

On the other hand, 50 natural images, including landscape, aerial, ¯ngerprint,

portrait, still-life, snapshot, and text images, which were obtained from the Standard

Image Database (SIDBA) developed by the University of Tokyob and the image

database of the University of Southern California,c were used for realistic testing of

labeling algorithms. In addition, seven texture images, which were downloaded from

the Columbia-Utrecht Re°ectance and Texture Database,d and 25 medical images

obtained from a medical image database of The University of Chicago were used for

bhttp://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm

chttp://sipi.usc.edu/database/

dhttp://www1.cs.columbia.edu/CAVE/software/curet/index.php

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 563

testing. All of these images were transformed into binary images by means of Otsu's

threshold selection method.27

We compared our algorithm with the newest representative labeling algorithms in

each algorithm class as follows: the Contour-Tracing (CT) labeling algorithm pro-

posed in Ref. 2, the Scan plus Array-based Union-Find (SAUF) labeling algorithm

proposed in Ref. 42, the Linear-time Two-Scan (LTS) labeling algorithm proposed in

Ref. 10, the Hybrid Object (HO) labeling algorithm proposed in Ref. 20, and the

Run-based Two-Scan (RTS) labeling algorithm proposed in Ref. 9. The algorithm

classes of the conventional algorithms are summarized in Table 1. The program of

the CT algorithm was downloaded from the authors' website at http://dar.iis.sinica.

deu.tw/Download, and all other codes were provided by their authors, i.e. all

implementations were done by the original authors. All algorithms were implemented

in C language and compiled by GNU C complier version 4.2.3.

The Ising images were used for testing the execution times versus the value of K.

The results are shown in Fig. 3, where for each K, the time is the average of

the running times on the corresponding ten sample images with K, and the

Table 1. The summary of the classes of conventional algorithms used in comparisons.

Algorithm Class Reference

CT Contour-tracing-based algorithm Ref. 2

SAUF Label-equivalence-based two-scan Ref. 42
LTS Label-equivalence-based two-scan Ref. 10

HO Label-propagation-based algorithm Ref. 20

RTS Run- and label-equivalence-based two-scan Ref. 9

0

2

4

6

8

10

12

0.00 0.20 0.40 0.60 0.80 1.00

K

th
e
 e

xe
cu

tio
n
 t
im

e
 [
m

s]

CT SAUF RTS LTS
HO Ours Ours*

Fig. 3. Execution time versus the value of K.

564 L. He, Y. Chao & K. Suzuki

symbol * indicates the results of our algorithm when images are given in a run-

length-encoding format. In our implementation, the run-length encoding is de¯ned as

follows: a row in an image is encoded by: n; s1; e1; . . . ; sn; en, where n is the number of

runs in the row, si (1 � i � n) is the starting pixel location of the i th run in the row,

and ei is the ending pixel location of the i th run in the row. For example, the binary

image shown in Fig. 4 is encoded as 02114411400223550.

The overlapped-block images were used for testing the execution time versus the

block size. The results are shown in Fig. 5, where for each block size, the time is the

average of the running times on the corresponding 10,000 di®erent images.

The noise imageswere used for testing the execution times versus the density (i.e. the

number of object pixels divided by the total number of pixels in the image) in an image,

where the times were obtained by averaging the execution times for 5000 runs.

Specialized-pattern images, natural images, medical images, and texture images

(i.e. all real images) were used for testing the maximum, mean, and minimum

Fig. 4. An example of a 7� 7 binary image: its run-length encoding is 02114411400223550.

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

Size of blocks

E
xe

cu
tio

n
 ti

m
e

[m
s

]

CT SAUF RTS LTS

HO Ours Ours*

Fig. 5. Execution time versus the block size.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 565

execution times of labeling algorithms. The results are shown in Table 2, where

the times were obtained by averaging of the execution times for 5000 runs.

The number of images for which our algorithm was not faster than each of the

conventional algorithms are shown in Table 3. In the case where an image was given

in run-length encoding, our algorithm was the fastest of all.

Table 2. Comparison of execution times [ms] for various kinds of images.

Image Type #CC CT SAUF HO RTS LTS Ours Ours�

Special max. 16,129 7.51 2.28 4.91 2.54 1.60 2.21 1.18

mean 4096 3.89 1.22 1.92 1.44 0.85 1.1 0.59
min. 1 1.18 0.33 0.42 0.85 0.28 0.56 0.24

Natural max. 2660 4.28 3.23 3.37 2.90 2.33 2.65 0.77

mean 847 2.34 2.07 2.04 1.71 1.49 1.27 0.30
min. 19 1.13 1.29 1.13 0.95 0.95 0.26 0.04

Textural max. 1525 3.69 2.87 2.70 2.54 2.03 2.60 1.21

mean 281 2.66 2.57 2.10 1.67 1.56 1.58 0.93
min. 20 1.58 2.37 1.56 1.17 1.14 0.57 0.36

Medical max. 372 2.59 2.28 1.63 1.71 1.47 1.54 0.27
mean 83 1.92 1.89 1.25 1.37 1.23 0.99 0.14

min. 1 1.52 1.54 0.92 1.19 0.93 0.77 0.09

Note: #CC, number of connected components.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Density of an image

E
xe

cu
tio

n
 ti

m
e

[m
s]

CT SAUF RTS LTS

HO Ours Ours*

Fig. 6. Execution time versus the object pixel density in an image.

566 L. He, Y. Chao & K. Suzuki

The results for six representative images are illustrated in Fig. 7, where the object

pixels are displayed in black. The various characteristics of the six images are shown

in Table 4, where No, Nr and Lr are the number of object pixels, the number of runs,

and the average length of runs, respectively.

5. Discussion

5.1. The complexity of our algorithm

To complete labeling, our algorithm performs the following procedures:

(1) Record the start points and the end points of runs and assign provisional labels to

runs in ¯rst scan;

(2) Create an equivalent label set and set the representative label for each new

provisional label;

(3) Resolve label equivalences;

(4) Assign ¯nal labels to object pixels.

For anN �M-pixel image, both the maximum number of runs and the maximum

number of object pixels have an order of OðN �MÞ. Therefore, the orders of

procedures (1) and (4) areOðN �MÞ. In procedure (2), only constant operations are

executed for each new provisional label. Because the order of the maximum number

of provisional labels is OðN �MÞ, the order of procedure (2) is also OðN �MÞ. On

the other hand, the method for resolving label equivalences in our algorithm is

exactly the same as in the LTS algorithm. According to Ref. 10, the order is also

OðN �MÞ. Thus, the order of our algorithm is OðN �MÞ, i.e. the running time of

our algorithm is linear versus the number of pixels in an image.

We used 32� 32, 64� 64, 128� 128, 256� 256, and 512� 512 size uniform noise

images to test the linearity of the algorithms, where for each of 32� 32, 64� 64,

128� 128, and 256� 256 size, 41 noise images were generated in the same way that

the 512� 512 size noise images were introduced above. The maximum and average

execution times versus the number of pixels in an image are shown in Figs. 8(a) and

8(b), respectively. As we see, the maximum and average execution times of each of

these algorithms are linear versus image size.

Table 3. The number of images for which our algorithm was

not faster than each of the conventional algorithms.

Image Type Total CT SAUF HO RTS LTS

Special 5 0 3 2 0 3
Natural 50 0 0 4 0 13

Medical 25 0 0 1 0 1

Textural 7 0 0 0 1 2

Noise 41 0 31 22 28 35
Ising 190 0 0 2 48 154

Block 200,000 0 0 0 0 0

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 567

Table 4. Characteristics of images shown in Fig. 7.

Image No Nr Lr Density

(a) 38,950 17,916 2.17 0.15

(b) 142,232 15,597 9.12 0.54
(c) 159,154 5737 27.74 0.61

(d) 46,326 1370 33.81 0.18

(e) 142,876 20,855 6.84 0.55

(f) 110,266 5336 20.66 0.42

(a) (b) (c)

(d) (e) (f)

Fig. 7. Execution time [ms] of labeling algorithms for the six representative images: (a) a text image;

(b) a ¯ngerprint image; (c) a portrait image; (d) a snapshot image; (e) a texture image; and (f) a medical

image.

568 L. He, Y. Chao & K. Suzuki

5.2. Adapting our algorithm for four-connectivity

Our algorithm can be easily adapted for four-connectivity. The only thing that we

need to do is change the range for checking connectivity. In the case of four-con-

nectivity, for the current run rðs; eÞ, the range for ¯nding the runs connecting with

rðs; eÞ from processed runs is shown in Fig. 9.

Thus, for N �M-size binary images, a processed run rðu; vÞ (in the row im-

mediately above the row that rðs; eÞ lies in) such that one of its pixels occurs between

p½s�N � and p½e�N �, i.e. if u � e�N and v � s�N , is connected to rðs; eÞ with
the four-connectivity.

The work for recording and resolving label equivalences, and relabeling object

pixels can be done exactly the same way as in the case for eight-connectivity.

5.3. Application to run-length-encoding images

Run-length encoding is used in image compression and in image represen-

tation for relatively simple graphic images such as icons, line drawings, and

animations.14,23,28,34,36,40 Run-length-based encoding is also used in signal trans-

mission between fax machines.44,45

e……s

e-N……s-N

pixel in the current run

pixel in the runs connected to the current run

Fig. 9. The range for checking the four-connectivity of the current run rðs; eÞ and the processed runs.

0

2

4

6

8

10

12

0 50000 100000 1500002 00000 250000 300000

Number of pixels in an image

M
a
xi

m
u
m

 e
xe

cu
tio

n
 t
im

e
 [

m
s]

CCL SAUF RTS

LTS HO Our

(a)

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000

Number of pixels in an image
A

ve
ra

g
e
 e

xe
cu

tio
n
 t
im

e
 [

m
s]

CCL SAUF RTS

LTS HO Our

(b)

Fig. 8. Linearity of the execution time versus image size: (a) maximum execution time and (b) average

execution time.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 569

When images are given in run-length-based encoding (compressed) format, con-

ventional pixel-based labeling algorithms require a decoding (decompressing) process

prior to labeling; therefore, the whole running time will increase.

Two run-based connected-component-labeling algorithms have been proposed for

run-length-encoding images. One, proposed in Ref. 33, is an improvement of the

propagation-type algorithm proposed in Ref. 32 by use of block sorting and tracing of

runs to realize label propagation for connected runs. It performs a searching step and

a propagation step iteratively on the run data. In the searching step, the image is

scanned until an unlabeled run is found; then the run is assigned a new label. In the

propagation step, the new label propagates to neighbor runs above or below the

current row until all of the runs that belong to the connected component are labeled

by the same one.

The other algorithm, proposed in Ref. 37, is a run-based contour-tracing algor-

ithm. It records run data in the order of raster scanning and performs labeling by

local and global run tracing (contour tracing). In the local run tracking, the next run

for run tracking along the contour is determined. In the global run tracing, the run is

labeled by tracing the contour at each run.

Both of the above two run-based labeling algorithms belong to searching and

label-propagation algorithms; thus, they require preprocessing for formatting run

data. According to the experimental results shown in Ref. 2, the CT algorithm was

faster than the above two algorithms. The experimental results shown in Sec. 4

demonstrated that our algorithm was more e±cient than the CT algorithm.

Therefore, our algorithm should be faster than the above two algorithms.

Regentova et al.3 presented a two-scan label-equivalence-based labeling algorithm

to reduce operations for connected-component detection by processing run-length-

encoded images directly. This algorithm detects connectivity among runs in a similar

way as does our algorithm, and it uses a conventional two-scan algorithm to resolve

label equivalences.e

Our algorithm can be extended easily to labeling of run-length-encoded images

directly and e±ciently, as shown in Sec. 4. The connectivity detection in our algorithm

and in Regentova's algorithm is similar for run-length-encoded images. From the

experimental results shown in Ref. 9, the method for resolving label equivalences used

in our algorithm was faster by at least a factor of 18.5 than that used in any other

conventional two-scan algorithms proposed before Ref. 3 was published. Therefore,

our algorithm should be much faster than Regentova's algorithm.

5.4. Comparison with conventional label-equivalence-based

raster-scan algorithms

There are two main di®erences between our algorithm and conventional label-

equivalence-based raster-scan algorithms: (1) all conventional label-equivalence-

based raster-scan algorithms scan all pixels of the given image at least twice, whereas

eThe paper did not explain which algorithm was used.

570 L. He, Y. Chao & K. Suzuki

our algorithm scans background pixels once, and object pixels twice; (2) all

conventional label-equivalence-based raster-scan algorithms assign a provisional

label to each object pixel in the ¯rst scan and relabel it in the later scan(s) (i.e. the

value of each object pixel is rewritten at least oncef), our algorithm does not assign a

provisional label to any object pixel, but assigns a ¯nal label directly. Thus, no

relabeling is necessary (see Fig. 10).

When the average length of runs in a given image is large, our algorithm will be

more e±cient than conventional label-equivalence-based algorithms because the time

for relabeling of object pixels in conventional label-equivalence-based algorithms is

large, whereas our algorithm does not need to do such work. On the other hand, when

the number of object pixels in a given image is small (i.e. the majority of pixels are

background pixels), our algorithm will also be more e±cient than conventional label-

equivalence-based algorithms, because background pixels are processed at least twice

in conventional label-equivalence-based algorithms, but only once in our algorithm.

However, when the average length of runs is small and the number of object pixels

is large (i.e. there are a large number of short runs in an image), the computation cost

required for assigning labels to object pixels by using the run data shown in formula

(2) (which processes runs one by one, similar to processing of a large number of data

stored in a lot of arrays) will be larger than that of relabeling of object pixels (e.g. all

pixels are processed consecutively in an array, as shown in formula (1)). For such

cases, our algorithm will not be as e±cient as for the other cases discussed above.

The above analyses are consistent with the experimental results shown in Sec. 4.

For the Ising images, on the one hand, the connectivities of connected components in

these images are quite complicated, and on the other hand, because the densities of

all these images are larger than 49%, the average length of runs in each image is

relatively large. Moreover, the densities of Ising images increase with the value of K.

That is, the average length of runs in an Ising image increases with K, as shown in

Fig. 11. Thus, for the images such that the value of K is smaller than 0.7, our

algorithm was a little slower than the LTS algorithm, but faster than the others, and

for the images with K larger than 0.7, our algorithm was the fastest.

(a) (b) (c) (d)

Fig. 10. Labeling results after the ¯rst scan by conventional algorithms and our algorithm: (a) an original

connected component; (b) by the SAUF algorithm and the LTS algorithm (as well as by all conventional

label-equivalence-based algorithms except for the RTS algorithm); (c) by the RTS algorithm; and (d) by

our algorithm.

f In implementation, as explained in footnote a, by using the processing given in formula (2), where the
value of each background pixel is also rewritten in the second scan (although the value of the background

pixels does not change) is more e±cient than rewriting the values of object pixels only. In this case, the

values of all pixels are rewritten once.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 571

For overlapped-block images, when the block size is small, the number of object

pixels is also small (i.e. the number of background pixels is large), on the other hand,

when the block size is large, the average length of runs in an image is also large.g Both

are favorite cases for our algorithm — it was the fastest for all such images.

For the uniform random set given there, when the number of object pixels is small

(i.e. the average density is low) or the average length of runs is large (i.e. the density

is high and the number of runs is small) in an image, our algorithm was faster than

other conventional algorithms. However, for the rest of the set, our algorithm was

not as e±cient as the SAUF algorithm and the LTS algorithm, which is even worse

than the previous algorithm.

It is worth mentioning that: (1) the average execution times of our algorithm for

the various types of real images used in Sec. 4 are smaller than those of other

conventional algorithms; (2) for almost all of the real images used in Sec. 4, i.e. the

images except the arti¯cial images, our algorithm was faster than the SAUF algor-

ithm and the RTS algorithm; (3) for most natural images and textural images, as

well as almost all of the medical images, our algorithm was faster than the LTS

algorithm (see Table 3).

On the other hand, for the images shown in Figs. 7(a), 7(b) and 7(e), which have

many short runs (i.e. many complex connected components) our algorithm was

slower than the LTS algorithm, but for the images shown in Figs. 7(c), 7(d) and 7(f),

which have many long runs (i.e. many simple connected components), our algorithm

was the fastest of all algorithms.

When images are given in run-length encoding, conventional raster-scan algo-

rithms require additional time for decoding; thus, they will take more time with

respect to the cases where images are given in a non-run-length-encoded format such

as the PBM format. In comparison, as shown in Sec. 4, when images were given in

run-length encoding, our algorithm was much faster with respect to the case where

0

5

10

15

20

25

0 20 40 60 80 100

K

A
ve

ra
g
e
 le

n
g
th

 o
f
ru

n
s

Fig. 11. The average length of runs versus K in the Ising images.

g
For a B�B overlapped-block image, the average length of runs in the image is equal to or larger than B.

572 L. He, Y. Chao & K. Suzuki

images were given in the PBM format. In fact, when images were given in run-length

encoding, for each image used in Sec. 4, our algorithm was the fastest of all labeling

algorithms, and on average, our algorithm was 4.3 times faster with respect to the

case where the images were given in the PBM format.

However, for labeling N �M-size images, the memory space necessary for the

SAUF algorithm, the RTS algorithm, the LTS algorithm, and our algorithm is

N �M=4, 3�N �M=4þ 2�N=2, 3�N �M=4, and 9�N �M=4, respectively.

Thus, our algorithm requires more memory than the others.

5.5. Comparison with searching and label propagation algorithms

All searching and label-propagation algorithms access an image in an irregular

way. Therefore, they are not suitable for pipeline processing, parallel

implementation,6,18,25,41 or systolic-array implementations.26 Moreover, all such

algorithms usually process the background pixels around object pixels twice, the

other background pixels once, and all object pixels at least twice (maybe more).

In comparison, our algorithm processes an image in the raster-scan order;

therefore, it is suitable for hardware implementation, pipeline processing, and par-

allel implementation. Moreover, our algorithm processes all background pixels only

once and all object pixels exactly twice (i.e. one scan plus direct assignment of the

¯nal labels to object pixels). As demonstrated in the experimental results in Sec. 4,

our algorithm was faster than the CT algorithm for all real images, and the HO

algorithm for almost all of real images.

Moreover, similar to the CT algorithm and the HO algorithm, our algorithm can

also output contour data of connected components in the given image easily during

labeling. For each run, the starting and end pixels of the run are obviously contour

pixels, and an inner object pixel of the run is a contour pixel if and only if its upper or

lower pixel is a background pixel. Obviously, there is no other contour pixel. Thus,

the work for outputting contour pixels in an N �M-size image can be completed

(instead of the processes shown in formula (2)) during labeling of object pixels with

the following processes, where c[] is the output image for contour data:

forði ¼ 1; i < n; iþþÞ
s ¼ run s½i�; e ¼ run e½i�;
l ¼ r label½run½i��;
c½s� ¼ l; c½e� ¼ l;

p½s� ¼ l; p½e� ¼ l;

forðj ¼ sþ 1; j < e; jþþÞ
p½j� ¼ l;

ifðp½j�N � < 1 jj p½jþN� < 1Þ
c½j� ¼ l;

end of if

end of for

end of for

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 573

By the above processing, all and only all contour pixels in each connected com-

ponent will be marked as the same label corresponding to the connected component

in the output contour image c[].

For comparison, we used the noise images, the Ising images, and the overlapped

block images to test the performances of the CT-labeling algorithm, the HO algor-

ithm and our algorithm with outputting contours. The results are shown in

Figs. 12�14, respectively, where CT-con, HO-con and our-con denote the data on

ordinary format images obtained by the CT-labeling algorithm, the HO algorithm

and our algorithm, CT-con*, HO-con* and our-con* for those on run-length-

encoding-format images, respectively.

The results demonstrate that, (1) for the noise images, when images were given in

ordinary format, for images with very low density (close to 0), very high density

(close to 1), and those with density between 0.47 and 0.79, our algorithm was fastest;

for images with density between 0.03 and 0.47, the HO algorithm was fastest; and

other images, the CT algorithm was fastest. On the other hand, when images were

given in run-length-encoding format, the HO algorithm was faster than the CT

algorithm on images with density smaller than 0.74, and our algorithm was much

faster than the other two algorithms for all images; (2) for all Ising images and

overlapped block images, our algorirhm was faster than both the CT algorithm and

the HO algorithm.

0

2

4

6

8

10

12

14

0.0 0.2 0.4 0.6 0.8 1.0

Density of an image

E
xe

cu
tio

n
 t

im
e

 [
m

s]

CT-con CT-con*
HO-con HO-con*
Ours-con Ours-con*

Fig. 12. Execution time with outputting contours for the noise images.

574 L. He, Y. Chao & K. Suzuki

Moreover, for all natural images, medical images, texture images, and the

specialized pattern images used in Sec. 4, the experimental results showed that

our-con algorithm was faster than the CT-con algorithm and the HO-con algorithm.

Moreover, when the images are given in run-length encoding, our-con algorithm was

much faster than the CT-con algorithm and the HO algorithm for all images.

On the other hand, (1) the CT algorithm and the HO algorithm do not require

additional memory, but our algorithm requires three N �M=4-sized and three

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Size of blocks

E
xe

cu
tio

n
 t
im

e
 [
m

s]

CT-con HO-con Our-con

CTcon* HO-con* Our-con*

Fig. 14. Execution time with outputting contours for the overlapped block images.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100
K

E
xe

cu
tio

n
 t
im

e
 [
m

s]

CT-con HO-con Our-con

CT-con* HO-con* Our-con*

Fig. 13. Execution time with outputting contours for the Ising images.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 575

N �M=2-sized 1D arrays for implementation for labeling N �M-size images;

(2) label propagation algorithms usually generate consecutive labels naturally, but

our algorithm, the same as other label-equivalence-based algorithms, needs an

additional processing for generating consecutive labels10; (3) label propagation

algorithms are able to characterize the objects at the same time when being labeled,

whereas all label-equivalence-based labeling algorithms, including our algorithm,

need an additional processing to do this work; (4) our algorithm cannot be used for

labeling with region growing by similarity measures21 (because our algorithm only

checks connectivity at the ends of each run), whereas the work can be easily done

with propagation algorithms (even pixel- and label-equivalence-based algorithms);

(5) to achieve the best performance of our algorithm, we have to use the data

segment for our data structures,h thus, our algorithm is not suitable for the case

where the maximum size of images to be used is unknown.

6. Concluding Remarks

In this paper, we proposed a run- and label-equivalence-based one-and-a-half-scan

labeling algorithm. Experimental results demonstrated that our algorithm was faster

than any other labeling algorithms for images with many long runs or a small number

of object pixels. For images with a lot of short runs, the LTS algorithm was the

fastest. When images were given in run-length encoding, our algorithm was much

faster than any other labeling algorithms.

For future work, we plan to extend our algorithm to include 3D connected-

component labeling12,17 for some 3D machine vision applications (e.g. Ref. 22), and

to develop an algorithm for parallel architectures.

The dataset used in our test can be downloaded from http://www.aichi-pu.ac.jp/

ist/�helifeng/ and the source codes of our algorithm can be obtained by contacting

The University of Chicago's O±ce of Technology & Intellectual Property (http://

www.ibridgenetwork.org/uctech/).

Acknowledgments

We thank the Managing Editor X. Jiang and the anonymous referees for their

valuable comments that improved this paper greatly. We are grateful to J. Martin-

Herrero for providing the HO program, the Ising image set and source codes for

generating overlapped-block images as well as many other kind help. This paper was

partially supported by the KAYAMORI Foundation of Informational Science

Advancement and the Hibi Science Foundation, Japan.

hThe experimental results showed that, with respect to the use of static allocation, the running time of our
algorithm for an image might be three times longer if we dynamically allocated the memory for our data

structures. However, the CT algorithm and the HO algorithm have no such problem, because it needs no

additional data structures.

576 L. He, Y. Chao & K. Suzuki

References

1. D. H. Ballard, Computer Vision (Englewood, Prentice-Hall, New Jersey: 1982).
2. F. Chang, C. J. Chen and C. J. Lu, A linear-time component-labeling algorithm using

contour tracing technique, Comput. Vis. Imag. Underst. 93 (2004) 206�220.
3. E. Regentova, S. Lati¯, S. Deng and D. Yao, An algorithm with reduced operations for

connected components detection in ITU-T Group 3/4 coded images, IEEE Trans. Patt.
Anal. Mach. Intell. 24(8) (2002) 1039�1047.

4. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison Wesley, 1992).
5. T. Gotoh, Y. Ohta, M. Yoshida and Y. Shirai, Component labeling algorithm for video rate

processing, Proc. SPIE, Advances in Image Processing, Vol. 804 (1987), pp. 217�224.
6. R. M. Haralick, Some neighborhood operations, Real Time/Parallel Computing Image

Analysis (Plenum Press, New York, 1981), pp. 11�35.
7. R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. I (Addison-Wesley,

Reading, MA, 1992), pp. 28�48.
8. A. Hashizume, R. Suzuki, H. Yokouchi et al., An algorithm of automated RBC classi¯-

cation and its evaluation, Bio Med. Engin. 28(1) (1990) 25�32.
9. L. He, Y. Chao and K. Suzuki, A run-based two-scan labeling algorithm, IEEE Trans.

Imag. Process. 17(5) (2008) 749�756.
10. L. He, Y. Chao, K. Suzuki and K. Wu, Fast connected component labeling, Patt. Recogn.

42 (2009) 1977�1987.
11. Y. Huang, T. Chang, Y. Chen and F. E. Sandnes, A back propagation based real-time

license plate recognition system, Int. J. Patt. Recogn. Arti¯. Intell. 22(2) (2008) 233�251.
12. Q. Hu, G. Qian and W. L. Nowinski, Fast connected-component labeling in three-

dimensional binary images based on iterative recursion, Comput. Vis. Imag. Underst. 99
(2005) 414�434.

13. X. Jiang and Y. Chen, Facial Image Processing, Applied Pattern Recognition (2008),
pp. 29�48, http://dx.doi.org/10.1007/978-3-540-76831-9 2.

14. S. D. Kim, J. H. Lee and J. K. Kim, A new chain-coding algorithm for binary images using
run-length codes, Comput. Vis. Graph. Imag. Process. 41(1) (1988) 114�128.

15. M. Komeichi, Y. Ohta, T. Gotoh, T. Mima and M. Yoshida, Video-rate labeling
processor, Proc. SPIE, Vol. 1027, Image Processing II (1988), pp. 69�76.

16. R. Lumia, L. Shapiro and O. Zungia, A new connected components algorithm for virtual
memory computers, Comput. Vis. Graph. Imag. Process. 22(2) (1983) 287�300.

17. R. Lumia, A new three-dimensional connected components algorithm, Comput. Vis.
Graph. Imag. Process. 23(2) (1983) 207�217.

18. M. Manohar and H. K. Ramapriyan, Connected component labeling of binary images on
a mesh connected massively parallel processor, Comput. Vis. Graph. Imag. Process. 45(2)
(1989) 133�149.

19. J. Martin-Herrero, Hybrid cluster identi¯cation, J. Phys. A: Math. Gen. 37 (2004)
9377�9386.

20. J. Martin-Herrero, Hybrid object labelling in digital images, Mach. Vision Appl. 18(1)
(2007) 1�15.

21. J. Martin-Herrero, Comments on \A new operational method for estimating noise in
hyperspectral images", IEEE Geosci. Rem. Sens. Lett. 5(4) (2008) 705�709.

22. J. Martin-Herrero and C. Germain, Microstructure reconstruction of ¯brous C/C com-
posites from X-ray microtomography, Carbon 45(6) (2007) 1242�1253.

23. G. Nagy, S. C. Seth and S. D. Stoddard, Document analysis with an expert system, Proc.
ACM Conf. Document Processing Systems (1988), pp. 169�176.

24. S. Naoi, High-speed labeling method using adaptive variable window size for character
shape feature, IEEE Asian Conf. Computer Vision, Vol. 1 (1995), pp. 408�411.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 577

25. D. Nassimi and S. Sahani, Finding connected components and connected ones on a mesh
connected parallel compute, SIAM J. Comput. 9(4) (1980) 744�757.

26. C. J. Nicol, A systolic approach for real time connected component labeling, Comput.
Vis. Imag. Underst. 61(1) (1995) 17�31.

27. N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst.
Man Cybern. 9 (1979) 62�66.

28. C. S. Partridge, Method of skeletonizing a binary image using compressed run length
data, US Patent 6058219, May 2000 (http://www.patentstorm.us/patents/6058219.
html).

29. C. Ronsen and P. A. Denjiver, Connected Components in Binary Images: The Detection
Problem (Research Studies Press, 1984).

30. A. Rosenfeld and J. L. Pfalts, Sequential operations in digital picture processing, J. ACM
13(4) (1966) 471�494.

31. A. Rosenfeld, Connectivity in digital pictures, J. ACM 17(1) (1970) 146�160.
32. A. Rosenfeld and A. C. Kak, Digital Picture Processing, Vol. 2, 2nd edn. (Academic

Press, San Diego, CA, 1982).
33. Y. Shima, T. Murakami, M. Koga, H. Yashiro and H. Fujisawa, A high-speed algorithm

for propagation-type labeling based on block sorting of runs in binary images, Proc. 10th
Int. Conf. Patt. Recogn. (1990), pp. 655�658.

34. J. Shin, H. Hwang and S. Chien, Detecting ¯ngerprint minutiae by run length encoding
scheme, Patt. Recogn. 39(6) (2006) 1140�1154.

35. Y. Shirai, Labeling connected regions, in Three-Dimensional Computer Vision (Springer-
Verlag, 1987), pp. 86�89.

36. N. Shiraishi, Image data compression apparatus for compressing both binary image data
and multiple, US Patent 6941023 (http://www.patentstorm.us/patents/6941023-claims.
html), Sept. 2005.

37. K. Shoji and J. Miyamichi, Connected Component Labeling in Binary Images by Run-
Based Contour Tracing, The Transactions of the Institute of Electronics, Information and
Communication Engineers D-II, Vol. J83-D-II, No. 4: 1131�1139 (in Japanese).

38. S. N. Srihari and H. Srinivasan, Comparison of ROC and likelihood decision methods in
automatic ¯ngerprint veri¯cation, Int. J. Patt. Recogn. Artif. Intell. 22(3) (2008) 535�553.

39. K. Suzuki, I. Horiba and N. Sugie, Linear-time connected-component labeling based on
sequential local operations, Comput. Vis. Imag. Underst. 89 (2003) 1�23.

40. T. Tsuiki, T. Aoki and S. Kino, Image processing based on a runlength coding and its
application to an intelligent facsimile, Proc. Conf. Record, GLOBECOM'82,
pp. B6.5.1�B6.5.7, Nov. 1982.

41. K. B.Wang, T. L. Chia and Z. Chen, Parallel execution of a connected component labeling
operation on a linear array architecture, J. Inform. Sci. Engin. 19 (2003) 353�370.

42. K. Wu, E. Otoo and K. Suzuki, Optimizing two-pass connected-component labeling
algorithms, Patt. Anal. Appl. 12 (2009) 117�135.

43. X. D. Yang, Design of fast connected components hardware, Proc. IEEE Conf. Computer
Vision and Pattern Recognition (Ann Arbor, MI, June 1988), pp. 937�944.

44. CCITT Recommendation T.4, Standardization of Group 3 Facsimile Apparatus
for Document Transmission, Terminal Equipment and Protocols for Telematic Services,
Vol. VII.3, Geneva, 1985.

45. CCITT Recommendation T.6, Facsimile Coding Control Functions for Group 4 Facsi-
mile Apparatus, Terminal Equipment and Protocols for Telematic Services, Vol. VII,
Fascicle, VII.3 Geneva, 1985.

578 L. He, Y. Chao & K. Suzuki

Lifeng He received his
B.E. degree from North-
west Institute of Light
Industry, China, in 1982,
the second B.E. degree
from Xian Jiaotong Uni-
versity, China, in 1986,
the M.S. and the Ph.D.
degrees in AI and compu-
ter science from Nagoya
Institute of Technology,

Japan, in 1994 and 1997, respectively. He is an
associate professor in Aichi Prefectural Univer-
sity, Japan and a guest professor in the Shaanxi
University of Science and Technology, China.
From 2006 to 2007, he works in the University of
Chicago (USA) as a research associate.

His research interests include image pro-
cessing, automated reasoning, and arti¯cial
intelligence.

Yuyan Chao received
her B.E. degree from
Northwest Institute of
Light Industry, China, in
1984, and the M.S. and
the Ph.D degrees from
Nagoya University,
Japan, in 1997 and 2000,
respectively. From 2000
to 2002, she was a special
foreign researcher of

Japan Society for the Promotion of Science in
Nagoya Institute of Technology. She is a pro-
fessor in Nagoya Sangyo University, Japan and
a guest professor in the Shaanxi University of
Science and Technology, China.

Her research interests include image proces-
sing, graphic understanding, CAD, and auto-
mated reasoning.

Kenji Suzuki received
his B.S. and M.S. degrees
in engineering from Meijo
University, Japan, in 1991
and 1993, respectively,
and his PhD degree in
engineering from Nagoya
University, Japan, in
2001. From 1993 to 1997,
he worked in Research &
Development Center at

Hitachi Medical Co. as Researcher. From 1997
to 2001, he worked in the Department of Applied
Information Science and Technology at Aichi
Prefectural University, Japan, as a faculty
member. In 2001, he joined the Department of
Radiology at the University of Chicago, as
Research Associate, and then, he was promoted
to Research Associate (Assistant Professor).
Since 2006, he has been Assistant Professor of
Radiology, Graduate Program in Medical Phy-
sics, and Comprehensive Cancer Center. He has
published 190 papers (including 65 peer-reviewed
journal papers). He is an inventor/co-inventor
on 30 patents (including 11 granted patents). He
was awarded 25 grants including an NIH R01
grant. He has been serving as the Editor-in-Chief
and an Associate Editor of eight leading inter-
national journals, including Medical Physics,
International Journal of Biomedical Imaging,
and Algorithms. He has been serving as a referee
for 35 international journals. He has been ser-
ving as an organizer and a program committee
member of 30 international conferences. He has
received numerous international awards, includ-
ing a Paul C. Hodges Award, RSNA Certi¯cate
of Merit Awards, a CRF Young Investigator
Award, a SPIE Honorable Mention Poster
Award, and an IEEE Outstanding Member
Award. He has been a Senior Member of IEEE
since 2004. He has been served as the Senior
Member Upgrade Chair, IEEE since 2008.

A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm 579

	A RUN-BASED ONE-AND-A-HALF-SCAN CONNECTED-COMPONENT LABELING ALGORITHM
	1. Introduction
	2. The Previous Algorithm
	3. Our Algorithm
	4. Experimental Results
	5. Discussion
	5.1. The complexity of our algorithm
	5.2. Adapting our algorithm for four-connectivity
	5.3. Application to run-length-encoding images
	5.4. Comparison with conventional label-equivalence-based raster-scan algorithms
	5.5. Comparison with searching and label propagation algorithms

	6. Concluding Remarks
	Acknowledgments
	References

