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Artificial Neural Network (MTANN)
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Abstract—When lung nodules overlap with ribs or clavicles in
chest radiographs, it can be difficult for radiologists as well as
computer-aided diagnostic (CAD) schemes to detect these nodules.
In this paper, we developed an image-processing technique for
suppressing the contrast of ribs and clavicles in chest radiographs
by means of a multiresolution massive training artificial neural
network (MTANN). An MTANN is a highly nonlinear filter that can
be trained by use of input chest radiographs and the corresponding
“teaching” images. We employed “bone” images obtained by use
of a dual-energy subtraction technique as the teaching images. For
effective suppression of ribs having various spatial frequencies, we
developed a multiresolution MTANN consisting of multiresolution
decomposition/composition techniques and three MTANNs for
three different-resolution images. After training with input chest
radiographs and the corresponding dual-energy bone images, the
multiresolution MTANN was able to provide “bone-image-like”
images which were similar to the teaching bone images. By sub-
tracting the bone-image-like images from the corresponding chest
radiographs, we were able to produce “soft-tissue-image-like”
images where ribs and clavicles were substantially suppressed.
We used a validation test database consisting of 118 chest radio-
graphs with pulmonary nodules and an independent test database
consisting of 136 digitized screen-film chest radiographs with 136
solitary pulmonary nodules collected from 14 medical institutions
in this study. When our technique was applied to nontraining
chest radiographs, ribs and clavicles in the chest radiographs were
suppressed substantially, while the visibility of nodules and lung
vessels was maintained. Thus, our image-processing technique for
rib suppression by means of a multiresolution MTANN would be
potentially useful for radiologists as well as for CAD schemes in
detection of lung nodules on chest radiographs.

Index Terms—Artificial neural network, chest radiography,
computer-aided diagnosis (CAD), dual-energy subtraction, lung
nodule, rib suppression.

I. INTRODUCTION

CHEST radiography is the most frequently used diagnostic
imaging examination for chest diseases such as lung

cancer, tuberculosis, pneumonia, pneumoconioses, and pul-
monary emphysema. More than 9 million people worldwide die
annually from chest diseases [1]. Lung cancer causes 945 000
deaths [1], and is the leading cause of cancer deaths in the world
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[1] and in countries [2] such as the United States, the United
Kingdom, the Russian Federation, Canada, Poland, and Japan.
In the United States alone, lung cancer is expected to cause
160 440 deaths in 2004 [3]. Chest radiographs have been used for
detection of lung cancer [4]–[6] because some evidence suggests
that early detection of lung cancer may allow a favorable prog-
nosis [7]–[9]. Lung nodules (i.e., potential lung cancers) in chest
radiographs, however, can be overlooked by radiologists in from
12%–90% of cases in which nodules are visible in retrospect
[10], [11]. Many, 82%–95%, of the missed lung cancers were
partly obscured by overlying bones such as ribs and/or a clav-
icle [10], [11]. Therefore, a computer-aided diagnostic (CAD)
scheme [12], [13] for nodule detection on chest radiographs has
been investigated, because the computer prompts indicating nod-
ules could improve radiologists’ detection accuracy [14]–[16].

A major challenge in current CAD schemes [17]–[27] for
nodule detection on chest radiographs is the detection of nod-
ules overlapping with ribs, rib crossings, and clavicles, because
a majority of false positives are caused by these structures [18],
[28]. This results in lowering the sensitivity as well as the speci-
ficity of a CAD scheme. Because nodules overlapping with ribs
and clavicles were reported to be difficult for radiologists to ob-
serve [29], [30], detection of such nodules is important for CAD
schemes. Therefore, the suppression of ribs and clavicles in
chest radiographs would be potentially useful for improving ra-
diologists’ detection accuracy as well as the CAD performance.

Our purpose in this study was to develop an image-processing
technique for suppressing the contrast of ribs in chest radio-
graphs by means of a multiresolution massive training artificial
neural network (MTANN).

II. MATERIALS AND METHODS

A. Massive Training Artificial Neural Network (MTANN)

In the field of image processing, supervised nonlinear
image-processing techniques [31]–[34] based on an artificial
neural network (ANN), called a “neural filter” [32] and a
“neural edge enhancer” [33], [34], have been investigated for
reduction of the quantum mottle (specific noise observed in
medical x-ray images) in angiograms and radiographs [35] and
for supervised detection of left ventricular contours traced by
cardiologists in angiography [36], respectively. By extending
the neural filter and the neural edge enhancer, MTANNs [37]
have been developed to accommodate the task of distinguishing
a specific opacity from other opacities in medical images.
MTANNs have been applied for reduction of false positives in
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Fig. 1. Architecture and training of an MTANN consisting of a linear-output
multilayer ANN model and a massive-subregions training scheme. The pixel
values in the subregion extracted from a chest radiograph are entered as input
to the ANN. Single pixels extracted from teaching images are used as teaching
values for the corresponding subregions.

computerized detection of lung nodules in low-dose computed
tomography (CT) [37], [38] and chest radiography [39], for
distinction between benign and malignant lung nodules in CT
[40]. In our previous studies [37]–[40], the MTANNs aimed at
classification of regions-of-interest into abnormal or normal;
thus, these studies were in the field of pattern recognition,
whereas this paper aims at suppression of ribs in chest radio-
graphs, which would be in the field of image processing.

The architecture and the training method of an MTANN are
shown in Fig. 1. The MTANN can be considered to be a highly
nonlinear filter that can be trained with input images and the
corresponding “teaching” images. The MTANN consists of a
linear-output multilayer ANN model [41], which is capable of
operating on image data directly. The linear-output multilayer
ANN model employs a linear function instead of a sigmoid func-
tion as the activation function of the unit in the output layer be-
cause the characteristics of an ANN were improved significantly
with a linear function when applied to the continuous mapping
of values in image processing [34], [41]. A conventional ANN
hardly outputs values near zero and one because of the character-
istics of a sigmoid function, whereas the linear-output multilayer
ANN outputs values linearly. The training for teaching values
near zero and one converges more slowly than do other values
with the conventional ANN theoretically, whereas these values
are trained evenly with the linear-output multilayer ANN model.
This affects the convergence characteristics and the output
characteristics of ANN models. Therefore, the linear-output
multilayer ANN would be suitable for image processing, where
the teaching values may be continuous values ranging from
zero to one, whereas the conventional ANN is suitable for a
classification task where the teaching values are assigned to
classes (see [34], [41] for theoretical considerations). The pixel
values of original chest radiographs are normalized first such that
a pixel value of zero is zero and a pixel value of the maximum
gray-scale level (1,023) is one. The inputs of the linear-output
multilayer ANN are the pixel values in a subregion extracted
from a chest radiograph. The output is a continuous value, which
corresponds to the center pixel in the subregion, represented by

(1)

where

(2)

is the input vector to the MTANN, is an estimate for
a teaching value, and are the coordinates of the image,

is the output of the linear-output multilayer ANN, and
is a normalized pixel value in an input chest radiograph.

Note that only one unit is employed in the output layer. The
input vector can be rewritten as

(3)

where is an input unit number, and is the number of input
units. Because the activation functions of the units in the input
layer are an identity function, the output of the th unit in the
input layer can be represented by . The output of the th unit
in the hidden layer is represented by

(4)

where is a weight between the th unit in the input layer
and the th unit in the hidden layer, is an offset of the th
unit in the hidden layer, and is a sigmoid function

(5)

The output of the unit in the output layer is represented by

(6)

where is a weight between the th unit in the hidden layer
and the unit in the output layer, is an offset of the unit in
the output layer, is a linear function

(7)

and is a slope parameter. The entire output image is obtained
by scanning of an input chest image with the MTANN.

The MTANN involves training with massive subregion-pixel
pairs, where we call it a massive-subregions training scheme.
Input chest radiographs are divided pixel by pixel into a large
number of overlapping subregions. Single pixels corresponding
to the input subregions are extracted from the teaching images
as teaching values. The MTANN is massively trained by using
each of a large number of the input subregions together with
each of the corresponding teaching single pixels. The training
set of pairs of a subregion and a teaching pixel is represented by

(8)

where is a teaching image, is a training region which
corresponds to the collection of the centers of subregions (or
teaching pixels), is a pixel number in , and is the
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number of pixels in . The error to be minimized by training
is defined by

(9)

The MTANN is trained by a linear-output back-propaga-
tion (BP) algorithm [34], [41] which was derived for the
linear-output multilayer ANN model in the same way as the
BP algorithm [42], [43]. The correction of the weight between
hidden units and output unit can be represented by

(10)

where is a learning rate. Please refer to [34], [41] for the de-
tails and the property of the linear-output BP algorithm. After
training, the MTANN is expected to produce images similar to
the teaching images.

We used a dual-energy subtraction technique [44] to obtain
the teaching images for MTANNs for suppression of ribs in
chest radiographs. The dual-energy subtraction is a technique
for separating bones from soft tissues in chest radiographs by
use of the energy dependence of the x-ray attenuation by dif-
ferent materials; it can produce two tissue-selective images, i.e.,
a “bone” image and a “soft-tissue” image. Chest radiographs are
used as input images to MTANNs, and the corresponding dual-
energy bone images are used as the teaching images. We did
not directly use dual-energy soft-tissue images as the teaching
images, because the MTANNs trained with dual-energy soft-
tissue images produced results that were slightly inferior to the
MTANNs trained with dual-energy bone images (see details in
Section IV).

B. Multiesolution Decomposition and Composition

Ribs in chest radiographs include various spatial-frequency
components. For a single MTANN, suppression of ribs con-
taining such various frequencies is difficult, because the capa-
bility of a single MTANN is limited, i.e., the capability depends
on the size of the subregion of the MTANN. Because the training
of the MTANN takes a substantially long time, it is difficult in
practice to train the MTANN with a large subregion. In order
to overcome this issue, we employed multiresolution decom-
position/composition techniques [45], [46]. The multiresolution
decomposition, illustrated in Fig. 2(a), is a technique for de-
composing an original high-resolution image into different-res-
olution images. First, one obtains a medium-resolution image

from an original high-resolution image by
performing down-sampling with averaging, i.e., four pixels in
the original image are replaced by a pixel having the mean value
for the four pixel values, represented by

(11)

where is a 2-by-2-pixel region. The medium-resolution
image is enlarged by up-sampling with pixel substitution, i.e., a

Fig. 2. Illustrations of (a) a multiresolution decomposition technique and
(b) a multiresolution composition technique. Lower-resolution images are
produced by repeatedly performing down-sampling and subtracting in a
multiresolution decomposition technique. Exactly the same original resolution
image can be obtained from the multiresolution images by performing a
multiresolution composition technique.

pixel in the medium-resolution image is replaced by four pixels
with the same pixel value, as follows:

(12)

Then, a high-resolution difference image is obtained
by subtraction of the enlarged medium-resolution image from
the high-resolution image, represented by

(13)

These procedures are performed repeatedly, producing further
lower-resolution images. Thus, multiresolution images having
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various frequencies are obtained by use of the multiresolution
decomposition technique.

An important property of this technique is that exactly
the same original-resolution image can be obtained
from the multiresolution images, and , by
performing the inverse procedures, called a multiresolution
composition technique as shown in Fig. 2(b), as follows:

(14)

Therefore, we can process multiresolution images indepen-
dently instead of processing original high-resolution images
directly; i.e., with these techniques, the processed original
high-resolution image can be obtained by composing of the
processed multiresolution images. An MTANN only needs
to support a limited spatial frequency rage in each resolution
image instead of the entire spatial frequencies in the original
image.

C. Multiresolution MTANN for Suppressing Ribs

Fig. 3 illustrates the architecture and training of a multireso-
lution MTANN involving multiresolution decomposition/com-
position techniques and MTANNs for different-resolution
images. First, input chest radiographs and the corresponding
teaching bone images are decomposed into sets of different-res-
olution images, and then these sets of images are used for
training three MTANNs in the multiresolution MTANN, as
illustrated in Fig. 3(a). Each MTANN is an expert for a cer-
tain resolution, i.e., a low-resolution MTANN is in charge
of low-frequency components of ribs, a medium-resolu-
tion MTANN is for medium-frequency components, and a
high-resolution MTANN for high-frequency components.
Each resolution MTANN is trained independently with the
corresponding resolution images. After training, the MTANNs
produce different-resolution images, and then these images are
composed to provide a complete high-resolution image by use
of the multiresolution composition technique, as illustrated in
Fig. 3(b). The complete high-resolution image is expected to
be similar to the teaching bone image; therefore, the multires-
olution MTANN would provide a “bone-image-like” image in
which ribs are separated from soft tissues.

The multiple MTANN scheme in our previous studies
[37]–[40] was developed for classification of candidates into
multiple categories; therefore, the output of the multiple
MTANN scheme is a class, i.e., abnormal or normal, whereas
the output of the multiresolution MTANN is a pixel value. In
the multiple-MTANN scheme, MTANNs were combined with
scoring, thresholding, and the logical AND operation, whereas
the multiresolution MTANN does not use any of these. In
the multiresolution MTANN, the input to each of MTANNs
is certain frequency components obtained from the original
images by use of the multiresolution decomposition, whereas
the input of the multiple MTANN scheme is pixel values of the
original images.

In this paper, we focused on the suppression of ribs and
clavicles in lung regions, because most nodules overlapping
with these structures are in the lung regions. For processing
only in the lungs, lung regions are segmented by thresholding.

Fig. 3. Diagrams of (a) a training phase and (b) an execution phase of
a multiresolution MTANN consisting of MTANNs for different-resolution
images. In the training phase, an input chest radiograph and a teaching bone
image are decomposed into multiresolution images by use of a multiresolution
decomposition technique. Each of the multiresolution images is used for each
of the corresponding resolution MTANNs in the multiresolution MTANN.
In the execution phase, the output multiresolution images of the trained
multiresolution MTANN are composed to provide a “bone-image-like” image
by use of a multiresolution composition technique.

A threshold value is determined by use of a method [47] based
on linear discriminant analysis (LDA), which is a common
method in the fields of computer vision and pattern recog-
nition (often referred as Otsu thresholding). It is expected
that a reasonable threshold value can be determined by use
of LDA, because threshold determination can be considered
as a two-class classification problem in the domain of the
histogram of gray levels, and the linear separation with LDA
would work well in this one dimensional space. This method
automatically selects the lowest point between two classes in
the histogram of gray levels in a chest radiograph (i.e., this
is formulated as LDA). The method involves minimizing the
ratio of between-class variance to the total variance. After the
segmentation, a Gaussian filter is applied for smoothing the
edges of the segmented lung regions to create an image
for masking the outside of the lung regions. The masking image
is normalized to have values from 0 to 1. For suppression of
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ribs in an original chest radiograph, the bone-image-like image
produced by the multiresolution MTANN is subtracted

from the original chest radiograph with the masking
image as follows:

(15)

where is a weighting parameter for determining the con-
trast of ribs. By changing the weighting parameter , one
can obtain processed chest radiographs with different contrast
of ribs. Thus, the multiresolution MTANN would be able to
produce a “soft-tissue-image-like” image where ribs are sup-
pressed; therefore, this image processing may be considered as
a “rib suppression” technique.

D. Database

The database used in our study consisted of 122 posterior-an-
terior chest radiographs acquired with a computed radiography
system with a dual-energy subtraction unit (FCR 9501 ES; Fu-
jifilm Medical Systems, Stamford, CT) at The University of
Chicago Hospitals. The dual-energy subtraction unit employed
a single-shot dual-energy subtraction technique where image ac-
quisition is performed with a single exposure that is detected by
two receptor plates separated by a filter for obtaining images
at two different energy levels [44], [48], [49]. The chest radio-
graphs included 121 abnormal cases with pulmonary nodules
and a “normal” case (i.e., a nodule-free case). The matrix size of
the chest images was 1,760 1,760 pixels (pixel size, 0.2 mm;
gray scale, 10 bits). The absence and presence of nodules in the
chest radiographs were confirmed by use of CT examinations.
Most nodules overlapped with ribs and/or clavicles in chest ra-
diographs. In order to train a multiresolution MTANN, we used
a training set consisting of four chest radiographs and the corre-
sponding dual-energy soft-tissue and bone images. Three of the
four chest radiographs were from nodule cases, and the other
was the normal case. The registration error between the input
images and the teaching images would be minimum because
of the use of the single-shot dual-energy subtraction technique.
We used a test set consisting of 118 nodule cases for testing our
technique. For computational efficiency, the size of the chest ra-
diographs was reduced by a factor of four, i.e., 440 440 pixels.

We used another test set consisting of 136 digitized
screen-film chest radiographs with 136 solitary pulmonary
nodules, which was the Digital Image Database developed
by the Japanese Society of Radiological Technology (JSRT)
[50], a publicly available database. The chest radiographs
were collected from 14 medical institutions. The absence and
presence of nodules in the chest radiographs were confirmed
by CT. The locations of all nodules were confirmed by three
chest radiologists. The chest radiographs were digitized with
a 0.175-mm pixel size, a matrix size of 2,048 2,048, and a
12-bit gray-scale level. The sizes of nodules ranged from 8.9
to 29.1 mm, and the average size was 17.4 mm. The database
contained 64 malignant and 27 benign nodules, which were
confirmed by histologic or cytologic examinations or follow-up
imaging. For computational efficiency, the size of the chest
radiographs was reduced by a factor of four to 512 512 pixels
with a 10-bit gray-scale level by use of averaging.

Fig. 4. Illustrations of (a) input images and (b) the corresponding teaching
bone images used for training a multiresolution MTANN (upper images: a
normal case; lower images: a nodule case).

III. RESULTS

A. Training

We used four chest radiographs and the corresponding dual-
energy bone images in a training set for training a multiresolu-
tion MTANN. One of the important properties of an MTANN
is that it can be trained with a very small number of cases, be-
cause an MTANN is trained with a large number of subregions
extracted from input images, i.e., an MTANN can be trained not
on a case base, but on a subregion base [51]. We used one typ-
ical normal case and three cases with nodules as training cases.
Fig. 4 shows the normal case and an example of a nodule case.

For training of the features in lung regions, 5,000 pairs of
training samples were extracted randomly from manually traced
lung regions in each of the multiresolution images. Training
samples for nodules were extracted from the manually traced
nodule regions which were large enough to cover the nodules.
We combined these training samples and used them for training
a multiresolution MTANN. We determined the size of the
subregions of MTANNs to be nine by nine pixels, so that the
sub-region was sufficient to cover the width of a rib in the low-
resolution image. We used three-layered MTANNs where the
numbers of input, hidden, and output units were 81, 20, and
1, respectively. The learning rate was 0.001. With the parame-
ters above, training of three MTANNs was performed 1 000 000
times, and the training converged with mean absolute errors of
0.081, 0.086, and 0.017.

Fig. 5(a) shows the composed output image, i.e., a
bone-image-like image, of the trained multiresolution MTANN.
Ribs are extracted effectively in the bone-image-like image,
and this image is similar to the dual-energy bone image shown
in Fig. 4(b) (upper image). Ribs in the bone-image-like image
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Fig. 5. Illustrations of (a) the output image, i.e., a bone-image-like image, of
the trained multiresolution MTANN for the upper image in Fig. 4 (a), (b) a
masking image for lung regions, (c) a soft-tissue-image-like image obtained by
use of our technique, and (d) the corresponding dual-energy soft-tissue image.

are relatively noisy compared to the dual-energy bone image.
Delicate parts of small vessels remain in the bone-image-like
image, which causes the noisy opacity. It will be noted that
bones outside the lung regions, such as parts of clavicles and
the spinal column, were not enhanced in the bone-image-like
image, because the training was limited to the lung regions.
Fig. 5(c) shows a soft-tissue-image-like image obtained by
use of a weighting parameter of 1.0 and the masking image
shown in Fig. 5(b). The contrast of ribs is substantially
suppressed in the soft-tissue-image-like image, whereas the
visibility of soft tissues such as lung vessels is maintained.
The soft-tissue-image-like image is very similar to the corre-
sponding dual-energy soft-tissue image shown in Fig. 5(d).

We compared the trained multiresolution MTANN with the
linear filter optimized under the least-mean-square error crite-
rion [52] with the same training images as used for the MTANN.
The linear filter consisted of nine-by-nine inputs with 81
weights , represented by

(16)

where ,
and is a nine-by-nine input region. Fig. 6 shows compar-
isons between the trained multiresolution MTANN and the
optimized linear filter. Ribs are suppressed substantially in the
output image of the trained multiresolution MTANN, while
maintaining the visibility of vessels. The edges of ribs in the
output image of the optimized linear filter appear to be doubled
and blurred. Moreover, vessels almost disappear. It should be

Fig. 6. Comparisons among (a) an original image (region-of-interest; ROI)
extracted from the upper image in Fig. 4 (a), (b) a soft-tissue-image-like image
obtained by use of our technique, (c) a dual-energy soft-tissue image, (d) the
output image of the optimized linear filter, and (e) the output image of a single
MTANN without multiresolution decomposition/composition techniques.

noted that the output images of the optimized linear filter for
other chest images had similar visibility of ribs and vessels.
This result indicated that the capability of the linear filter was
not sufficient for separating ribs in chest radiographs.

Moreover, we investigated the effect of multiresolution de-
composition/composition techniques on the performance of an
MTANN. We trained a single MTANN with the same training
images without the use of multiresolution decomposition/com-
position techniques. The parameters for the single MTANN
were the same as those for the multiresolution MTANN.
Fig. 6(e) shows the output image of the trained single MTANN.
Parts of ribs are suppressed in the output image, whereas some
vessels disappear. This result indicates that the use of multires-
olution decomposition/composition techniques in MTANNs
improved the performance in the suppression of ribs and the
maintenance of soft-tissue opacities.

B. Evaluation

We applied the trained multiresolution MTANN to a valida-
tion test set that included 118 nodule cases. The performance
was evaluated quantitatively by use of a normalized mean ab-
solute error between bone-image-like images and the
corresponding dual-energy bone images , represented by

(17)

where indicates lung regions, is the number of pixels
in , and and are the maximum value and the min-
imum value in in the dual-energy bone image, respectively.
We used bone-image-like images and dual-energy bone images
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Fig. 7. Result for a nontraining chest radiograph with the best average
normalized error (E = 0:061) among 118 nodule cases in a validation
test. Illustrations of (a) an original chest radiograph (nodule is indicated by an
arrow), (b) a soft-tissue-image-like image obtained by use of our technique,
and (c) the corresponding dual-energy soft-tissue image.

Fig. 8. Results for nontraining chest radiographs with about a middle ranking
in average normalized errors (E = 0:078 and 0.080 for the upper case
and the lower case, respectively) among 118 nodule cases in a validation test.
Illustrations of (a) original chest radiographs (nodule is indicated by an arrow),
(b) soft-tissue-image-like images obtained by use of our technique, and (c) the
corresponding dual-energy soft-tissue images.

in this evaluation, because the direct comparison with the output
images of the multiresolution MTANN would be more accu-
rate compared to the use of soft-tissue-image-like images, e.g.,
soft-tissue-image-like images can differ when a weighting pa-
rameter is changed. The result for the 118 chest radiographs was
an average of 0.082 with a standard deviation of 0.014.

Figs. 7–9 show the soft-tissue-image-like images and the
corresponding dual-energy soft-tissue images. Fig. 7 shows
a case with the best value among the 118 nodule cases,
which is 0.061. The contrast of ribs is substantially suppressed
in the soft-tissue-image-like image, while the visibility of
soft tissues such as lung vessels is mostly maintained. The
soft-tissue-image-like image is very similar to the dual-en-
ergy soft-tissue image. Fig. 8 illustrates cases with about a
middle ranking in values, which are 0.078 and 0.080.
In original chest radiographs shown in Fig. 8(a), a nodule

Fig. 9. Result for a nontraining chest radiograph with the worst average
normalized error (E = 0:139) among 118 nodule cases in a validation
test. Illustrations of (a) an original chest radiograph (nodule is indicated by an
arrow), (b) a soft-tissue-image-like image obtained by use of our technique,
and (c) the corresponding dual-energy soft-tissue image.

overlaps completely with an anterior rib and partly with pos-
terior ribs in the upper case, and a nodule overlaps with a
posterior rib in the lower case. In the soft-tissue-image-like
images, the opacities of the overlapping ribs are compen-
sated for substantially, and the true shapes of the nodules are
evident. Thus, the distinction between nodules overlapping
with ribs and other anatomic structures is improved in the
soft-tissue-image-like images. Fig. 9 shows a case with the
worst value, which is 0.139. The ribs are not suppressed
very much in the soft-tissue-image-like image in this case. Our
technique did not work well for this case, probably because the
contrast of ribs in the original chest radiograph of this case was
higher than that in other chest radiographs due to the patient’s
spare frame, i.e., the acquisition condition would be different,
and the clavicles at an acute angle indicated that this case
would be taken for some special purpose. By inclusion of cases
with high rib contrast in training cases, the performance of a
multiresolution MTANN for such cases would be improved.

To investigate the robustness of our technique, we performed
another experiment with an independent test database including
136 nodule cases obtained from 14 medical institutions [50].
These cases were digitized from films and were acquired at var-
ious settings with various systems. We applied the trained mul-
tiresolution MTANN to the independent test database. The per-
formance regarding the nodule visibility was evaluated quan-
titatively by use of a nodule contrast defined by the difference
between an average gray level in a nodule region and a back-
ground gray level , represented by . The nodule
region was determined by two expert chest radiologists by the
following method: One of the two radiologists determined an
initial nodule region, and then the final nodule region was deter-
mined by modifying of the initial nodule region by a consensus
between the two radiologists. The background gray level was
determined as a pixel value at the lower 10% in the histogram of
pixel values in a background region in order to avoid the effect
of noise. The background region was determined as a belt-like
region with a 10 mm width which was obtained by subtracting
the nodule region from the dilated nodule region. To evaluate
how much the contrast of a nodule is maintained, we defined
a nodule contrast ratio represented by , where

is the nodule contrast in an MTANN soft-tissue-image-like
image, and is the nodule contrast in an original chest image.
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Fig. 10. Result for a nontraining chest radiograph with the best nodule
contrast ratio (C = 1:139) among 136 nodule cases in an independent test.
Illustrations of (a) an original chest radiograph (nodule is indicated by an
arrow) and (b) a soft-tissue-image-like image obtained by use of our technique.

Fig. 11. Results for nontraining chest radiographs with about a middle ranking
in the nodule contrast ratio (both C = 0:897) among 136 nodule cases in
an independent test. Illustrations of (a) original chest radiographs (nodule is
indicated by an arrow) and (b) soft-tissue-image-like images obtained by use of
our technique.

Fig. 12. Result for a nontraining chest radiograph with the worst nodule
contrast ratio (C = 0:620) among 136 nodule cases in an independent test.
Illustrations of (a) an original chest radiograph (nodule is indicated by an
arrow) and (b) a soft-tissue-image-like image obtained by use of our technique.

An average nodule contrast ratio over 136 nodules was 0.906
with a standard deviation of 0.155. Figs. 10–12 show soft-
tissue-image-like images and the corresponding dual-energy

soft-tissue images. Fig. 10 shows a case with the best value
among the 136 nodule cases, which is 1.139. The contrast of
ribs is suppressed substantially in the soft-tissue-image-like
image, whereas the contrast of a nodule is maintained. Thus,
the visibility of the nodule is improved by suppression of the
ribs around the nodule. Fig. 11 illustrates two cases with about a
middle ranking in values, which are both 0.897. The contrast
of nodules is mostly maintained in the soft-tissue-image-like
images, whereas overlapping ribs are suppressed substantially.
Fig. 12 shows a case with the worst value, which is 0.620.
The ribs are suppressed in the soft-tissue-image-like image,
whereas most parts of the nodule disappear. Our technique did
not work well for this case, probably because this particular
nodule had characteristics similar to those of ribs in terms of
(a) the shape of the nodule, (b) the contrast, (c) the orientation
(which is similar to that of a rib in the right lung), (d) the tex-
ture (which is smooth), and (e) the margin (which is relatively
lighter than its interior).

IV. DISCUSSION

A dual-energy subtraction technique [53], [54] has been used
to address the issue of obscuring bones. Dual-energy chest ra-
diographs can be obtained by either a rapid sequence of two ex-
posures, each at a different energy level [e.g., one at 60–80 kV
and the other at 110–150 kV] [55]–[58], or a single exposure
that is detected by two receptor plates separated by a filter for
obtaining images at two different energy levels [44], [48], [49].
Dual-energy soft-tissue images can improve the detection of
focal soft-tissue opacities, such as lung nodules, that may be
partly obscured by overlying ribs or clavicles [29], [30], [59]. In
spite of the advantages, a very limited number of hospitals use
radiography systems with dual-energy subtraction, because spe-
cialized equipment for obtaining dual-energy X-ray exposures
is required. Also, the radiation dose can be greater than that for
standard chest radiography in some cases. In addition, the sub-
traction of two-energy images causes an increased noise level in
the images. For improvement in the signal-to-noise ratio, in pre-
vious studies, the average skin entrance radiation dose with the
two-exposure dual-energy technique was 119 to 130 mR [60],
[61], and that with the single-exposure dual-energy technique
was 60–100 mR [44], both of which are greater than the 15–20
mR used in standard chest radiography. In a recent study, a 2.4
times higher radiation dose was used for dual-energy radiog-
raphy compared with conventional radiography in order to ob-
tain the same noise level [62]. The major advantages of our tech-
nique compared to a dual-energy subtraction technique are that
our technique requires no additional radiation dose to patients,
but uses only chest radiographs acquired with a standard radiog-
raphy system for producing soft-tissue-image-like images; and
no specialized equipment for generating dual-energy x-ray ex-
posures, but only software, is required.

A current limitation of conventional chest radiography
would be a relatively low sensitivity for detection of early
cancer. Likewise dual-energy soft-tissue images, MTANN
soft-tissue-image-like images have a potential to improve the
sensitivity in detecting early cancer that is partly obscured by
overlying ribs, and a potential to improve the specificity by
differentiating nodules from other abnormalities or normal
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anatomic structures better because of the suppression of ob-
scuring ribs.

We obtained bone-image-like images and soft-tissue-image-
like images by use of our technique that was trained with dual-
energy bone images. We investigated the effect of the direct use
of dual-energy soft-tissue images as the teaching images for a
multiresolution MTANN. In the soft-tissue-image-like images
obtained by use of the multiresolution MTANN trained with
dual-energy soft-tissue images, the contrast of lung vessels was
relatively low, and some details of the soft tissue disappeared.
The use of dual-energy soft-tissue images as the teaching im-
ages was not effective compared to the use of dual-energy bone
images, probably because the pattern variations of soft tissues
are greater than those of ribs. One advantage of training with
dual-energy bone images is that a different contrast of ribs can
be obtained by changes in a weighting parameter in the subtrac-
tion process used for our technique.

Our technique, likewise the dual-energy subtraction tech-
nique, can be sensitive to noise due to subtraction. However,
our technique uses standard-dose chest radiographs as input,
whereas the dual-energy subtraction technique uses two
half-dose chest images and subtracts them. Therefore, our
technique would be advantageous, in theory, in terms of the
quantum noise level. One way of improving the quantum noise
property of both techniques would be to acquire chest images
with a higher radiation dose.

We used a very small number of cases for training the
multiresolution MTANN, and the multiresolution MTANN
produced reliable results for nontraining cases. However, a
multiresolution MTANN would be more robust against vari-
ations among cases if a larger number of cases were used for
training.

A major challenge in current CAD schemes is the detection of
nodules overlapping with ribs and clavicles, because most false
positives are caused by these structures [18], [28], [39]. Conse-
quently, some researchers have investigated CAD schemes for
detection of nodules on dual-energy radiographs [63], [64]. The
distinction between nodules and other anatomic structures such
as ribs and clavicles is improved in soft-tissue-image-like im-
ages with our technique; therefore, these images have the po-
tential to improve the performance of nodule-detection CAD
schemes.

Because the use of a multiresolution MTANN requires
only software, this technique can be utilized on an existing
viewing workstation. The processing time for creating a
soft-tissue-image-like image and a bone-image-like image
from a chest radiograph is very short, i.e., 1.63 s on a PC-based
workstation (CPU: Intel Pentium IV, 3.2 GHz); thus, the soft-
ware can be applied prior to interpretation in every case without
incurring any delay.

Because the fine structures of soft tissues such as small ves-
sels are mostly maintained in soft-tissue-image-like images, the
images could potentially be used for quantitative assessment of
interstitial lung diseases which are characterized by fine pat-
terns. If our technique is applied to anatomic regions other than
the lungs in x-ray images, training with dual-energy images of
these anatomic regions would be required for accurate bone
suppression.

The multiresolution decomposition/composition techniques
with two down/up-sampling steps allowed MTANNs to support
a 28.8-by-28.8 mm square region. The height of a posterior rib
would range roughly from 10 to 20 mm. We reduced the size
of the original chest images by a factor of four before our tech-
nique was applied. Because of this reduction, the pixel size was
changed from 0.2 to 0.8 mm. In order to process original-resolu-
tion chest images with a pixel size of 0.2 mm, we need two more
steps of down/up-sampling to support the height of a rib suffi-
ciently. By use of four steps of down/up-sampling, MTANNs
can support a 28.8-by-28.8 region in
the original-resolution chest images. The number of MTANNs
needs to be increased to be five. We expect that the MTANNs
with original-resolution chest images would produce better im-
ages containing the details of soft tissue because of the use of
higher-resolution images.

We employed a three-layer structure for the structure of the
MTANNs, because it has been proved theoretically that any
continuous mapping can be realized approximately by three-
layer ANNs [65], [66]. The number of hidden units was de-
termined by use of a method for determining the structure of
ANNs [67]. The method is a sensitivity-based pruning method,
i.e., the sensitivity to the training error was calculated when a
certain unit was removed experimentally, and the unit with the
smallest training error was removed. Removing the redundant
hidden units and retraining for recovering the potential loss due
to the removal were performed repeatedly, resulting in a reduced
structure where redundant units were removed. As a result, the
number of hidden units was determined to be 20. Thus, the num-
bers of units in the input, hidden, and output layers were 81, 20,
and 1, respectively.

The training of an MTANN seeks to minimize errors be-
tween output images and teaching bone images. The quality of
the teaching bone images would affect the output image of the
trained MTANN, and thus, the final soft-tissue-image-like im-
ages. A way to improve the quality of the teaching bone images
would be to acquire teaching bone images with a higher radi-
ation dose to reduce quantum noise. The relatively high-dose
bone images should be used only for training. Once training is
completed, the trained MTANN can be applied to standard dose
chest radiographs.

An MTANN is a highly nonlinear complex model. A com-
plex model usually tends to have a poor generalization ability.
If a model (e.g., a standard ANN) is trained with only a small
number of samples, the generalization ability will be lower, i.e.,
the model may fit only the training samples; this is known as
“over-training” (or “over-fitting”) [68]. This issue often occurs
when the number of freedoms (parameters) in a model is greater
than the number of training samples. A study showed that a stan-
dard ANN with 100 parameters required 400–800 training sam-
ples to achieve an adequate performance for nontraining cases
[69]. The number of training samples was 4–8 times greater than
the number of parameters in the ANN. On the other hand, the
results with the independent database in this paper showed that
MTANNs have a high generalization ability, which is consis-
tent with what we experienced in other applications [37]–[40].
In our previous study, we found that a key to the high general-
ization ability of MTANNs is the massive training with a large
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number of subregions extracted from images [70]. In this study,
the number of training samples for each MTANN, which was
7100 (5000 subregions from a normal case and 2100 subregions
from nodule cases), was 4.3 times greater than the number of
parameters of the MTANN, which was 1,661. This is within
the above range (4–8 times) for obtaining an adequate perfor-
mance for nontraining cases. Thus, the number of training sam-
ples might have reached a necessary number for determining the
parameters in the MTANNs adequately.

V. CONCLUSION

We developed an image-processing technique for suppres-
sion of ribs in chest radiographs by means of a multiresolution
MTANN. With our technique, rib components in chest radio-
graphs are suppressed substantially, while soft-tissues such as
lung nodules and lung vessels are maintained. Therefore, our
technique would be potentially useful for radiologists as well as
for CAD schemes in the detection of lung nodules in chest ra-
diographs.
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