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1. Introduction

Machine learning（ML）is a research area that deals with
construction of data-processing models by learning from data
or examples. Because a huge amount of new data is generated
every day, data now are “big data”, and they are not
something that we can handle manually. For example,
hundreds of millions of images are created and shared in
YouTube or social media. A large number of CT exams is
performed each year : 85 and 63 million CT scans in the U.S.
and Japan, respectively, each of which contains 100-700
images（slices）. ML that can handle such “big data” becomes
a rapidly growing, indispensable area of research in the fields
of medical imaging and computer vision.

ML plays an essential role in the medical imaging field,
including medical image analysis, computer-aided diagnosis
（CAD）[1, 2], and radiomics, because objects such as organs
and lesions in medical images may be too complex to be
represented accurately by a simple equation. Modeling of such
complex objects requires a large number of parameters that
have to be determined by data. For example, a lung nodule is
generally modeled as a solid sphere, but there are nodules of
various shapes and inhomogeneous nodules, such as spiculated
nodules and ground-glass nodules. A polyp in the colon is
modeled as a bulbous object, but there are also colorectal
lesions that exhibit a flat shape [3]. Thus, detection and
diagnostic tasks in medical images essentially require “learning
from examples（or data）” to determine a large number of
parameters in a complex model.

One of the most popular uses of ML in medical image
analysis is the classification of objects such as lesions into
certain classes（e.g., lesions or non-lesions, and malignant or
benign）based on input features（e.g., contrast, area, and
circularity）obtained from segmented objects. This class of ML
is referred to as object- or feature-based ML. The task of ML
is to determine “optimal” boundaries for separating classes in
the multi-dimensional feature space which is formed by the
input features [4].

Recently, a terminology, deep learning emerged and
became very popular in the computer vision field. It started
from an event in 2012. A deep learning approach based on a
convolutional neural network（CNN）[5] won the best-known
worldwide computer-vision competition, ImageNet Classification,
with the error rate smaller by 11% than the 2nd place of
26% [6]. Consequently, MIT Technology Review named it one
of the top 10 breakthrough technologies in 2013. Since then,
researchers in virtually all fields have started actively participating
in the explosively growing field of deep learning [7].

In this paper, the field of machine learning in medical
imaging before and after the introduction of deep learning is
reviewed to make clear 1）what deep learning is exactly, 2）
what was changed before and after the introduction of deep
learning, 3）what is the source of the power of deep learning,
4）advantages and limitations of deep learning, 5）applications
of deep learning, and 6）a prospect for the field of machine
learning in medical imaging.
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2. Machine learning in computer vision and medical
imaging

2.1. Standard ML approaches before deep learning －
Object- or feature-based classifiers

One of the most popular uses of ML algorithms would
probably be classification. In this use, an ML algorithm is
called a classifier. A standard ML approach in the field of
computer vision is illustrated in Fig.1. First, objects in an
image are segmented by using a segmentation technique such
as thresholding, edge-based segmentation, and an active contour
model. Next, features such as contrast, circularity, and size are
extracted from the segmented objects by using a feature
extractor. Then, extracted features are entered as input to an ML
model such as linear discriminant analysis（LDA）[8], quadratic
discriminant analysis（QDA）[8], a multilayer perceptron
（MLP）[9], and a support vector machine（SVM）[10]. The
ML model is trained with sets of input features and known
class labels（i.e., C1, C2, ..., CN for N classes）. The training is
done for determining “optimal” boundaries for separating
classes such as cancer or non-cancer in the multi-dimensional
feature space that is formed by the input features. After
training, the trained ML model determines which class a new
unknown object belongs to.

2.2. ML Approaches after deep learning － Image- or pixel-
based ML
A terminology called deep learning emerged in 2007, and

it became very popular in the computer vision field after 2012
when a deep learning approach based on a CNN [5] won an
overwhelming victory in the best-known computer-vision
ImageNet competition [6]. Deep learning such as deep belief
nets（DBNs）[11] and deep CNNs uses pixel values in images
directly instead of features calculated from segmented objects
as input information ; thus, feature calculation or segmentation
is not required, as shown in Fig.2. Although the development
of segmentation techniques has been studied for a long time,
segmentation of objects is still challenging, especially for
complicated objects, subtle objects, and objects in a complex
background. In addition, defining and extracting relevant
features for a given task is a challenging task, as calculated
features may not have discrimination power sufficient to
classify objects of interest. Because deep learning can avoid
errors caused by inaccurate feature calculation and segmentation
which often occur for subtle or complex objects, the performance
of deep learning is generally higher for such objects than that

of common classifiers（i.e., object/feature-based MLs）. Deep
learning has multiple layers（＞4）of nonlinear or quasi-
nonlinear processing to acquire high-level representation of
objects or features in images. Compared to object/feature-based
MLs（or common classifiers）, deep learning skips steps of
segmentation of objects, feature extraction from the segmented
objects, and feature selection for determining “effective
features”, as shown in Fig.3. Deep learning is also called end-
to-end ML, because it enables the entire process to map from

Fig.1 Standard ML approach to classification of objects（i.e., object/feature-based ML）, before the
introduction of deep learning, in the field of computer vision. Features（e.g., contrast, circularity, and
effective diameter）are extracted from a segmented object in an image. Those features are entered
as input to a classifier such as a multilayer perceptron（MLP）and a support vector machine（SVM）.
The output of the classifier is class categories such as cancer or non-cancer.

Fig.2 ML approach after the introduction of deep learning. Pixel
values from an image are directly entered as input to an
image/pixel-based ML model such as a convolutional
neural network（CNN）, a deep belief net（DBN）, and a
massive-training artificial neural network（MTANN）. This
class of ML should be called image/pixel-based ML that
includes deep learning, because the major and essential
difference between ML approaches before and after the
introduction of deep learning is direct training of pixels in
images.

Fig.3 Changes in ML approaches before and after the
introduction of deep learning. Compared to object/feature-
based ML（i.e., a classifier with features）, “deep learning”
（or image/pixel−based ML）skips steps of segmentation
of objects, feature extraction from the segmented objects,
and feature selection for determining “effective features”,
which offers an end-to-end ML approach.
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raw input images to the final classification, eliminating the
need for hand-crafted features. It is interesting to note that
people do not call the use of MLP with deep layers in the
object/feature-based approach deep learning, and call a shallow
CNN with only a few layers still deep learning, which is the
evidence that people are confused by the terminology, deep
learning.

As it is obvious from Figs.1 and 2, the major and
essential difference between ML approaches before and after
deep learning is the use of pixels in images directly as input to
ML models, as opposed to features extracted from segmented
objects. Therefore, the terminology deep learning may mislead
people to the mindset that the power of deep learning comes
from the deepness. A proper terminology for the “deep learning”
that people call right now would be image/pixel-based ML.
The deepness of MLs is still an important attribute that
determines the characteristics or properties of ML models or
applications. When the architecture is deep, it should be called
deep image/pixel-based ML or deep object/feature-based ML.
Fig.4 summarizes the history of ML in the fields of

computer vision and medical imaging. Before the popularity of
“deep learning” in 2012-2013, object/feature-based ML were
dominant in the fields. Before 1980 even when the terminology,
machine learning did not exist, classical classifiers such as
LDA, QDA, and a k-nearest neighbor classifier（k-NN）were
used for classification. In 1986, MLP was proposed by
Rumelhard and Hinton [9]. That created the 2nd neural
network（NN）research boom（the 1st one was in 1960’s）. In
1995, Vapnik proposed an SVM [10] and became the most
popular classifier. Various ML methods were proposed including
random forests by Ho et al. in 1995 [12] and dictionary
learning by Mairal et al. in 2009 [13]. On the other hand,
various image/pixel-based ML techniques were proposed before
the introduction of the terminology, “deep learning”. It started
from Neocognitron by Fukushima in 1980 [14]. In 1989,
LeCun et al. simplified the Neocognitron and proposed
CNN [15]. In 1994, Suzuki et al. applied MLP to cardiac
images in a convolutional way [16]. Two years later, Suzuki

proposed neural filters to reduce noise in images [17], and in
2000, neural edge enhancers [18]. Suzuki et al. proposed
MTANN for classification of patterns in 2003 [19], detection
of an object in 2009 [20], and separation of specific patters
from other patterns in x-ray images in 2006 [21]. Hinton et al.
proposed a DBN in 2006 [11], and he created the terminology,
deep learning a year later. In 2012, a CNN won in the
ImageNet competition [6]. Among them, Neocognitron, MLP,
CNN, neural filters, MTANN, and DBN are capable of deep
architecture. Thus, the “deep learning”, which is image/pixel-
based ML with deep architecture to be accurate, is not new
ML models, but rather it is essentially a collection of earlier
ML work that was re-recognized by a different terminology
recently. Deep learning researchers in the fields of computer
vision and machine learning started saying so very recently.

2.3. Two “deep learning”（image/pixel-based ML）models
2.3.1. Convolutional neural networks（CNNs）

A CNN can be considered as a simplified version of the
Neocognitron model that was proposed to simulate the human
visual system in 1980 [14]. LeCun et al. has developed a CNN
called LeNet for handwritten ZIP-code recognition [15]. The
LeNet has 5 layers : 1 input layer, 3 hidden layers, and
1 output layer. The input layer has a small 16×16 pixel image.
The 3 hidden layers consist of 2 convolutional layers and
1 fully connected layer. The architecture of a general CNN is
illustrated in Fig.5. The input to the CNN is an image, and the
outputs are class categories such as cancer or non-cancer. The
layers are connected with local shift-invariant inter-connections
（or convolution with a local kernel）. Unlike the Neocognitron,
the CNN has no lateral interconnections or feedback loops ;
and the error back-propagation（BP）algorithm [9] is used for
training. Each unit（neuron）in a subsequent layer is connected
with the units of a local region in the preceding layer, which
offers the shift-invariant property ; in other words, forward
data propagation is similar to a shift-invariant convolution
operation. The data from the units in a certain layer are
convolved with the weight kernel, and the resulting value of

Fig.4 The history of ML in the fields of computer vision and medical imaging. There are two distinct ML
approaches in the fields. Before the popularity of “deep learning” in 2012-2013, object/feature-based
ML were dominant in the fields. After that, image/pixel-based ML including deep learning gained
enthusiastic popularity, but it has indeed a long history.
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the convolution is collected into the corresponding unit in the
subsequent layer. This value is further processed by the unit
through an activation function and produces an output data.
The activation function between two layers is a nonlinear or
quasi-nonlinear function such as a rectified linear function and
a sigmoid function. As layers go deeper（close to the output
layer）, the size of the local region in a layer is reduced in a
pooling layer. In the pooling layer, the pixels in the local
region are sub-sampled with a maximum operation. For
deriving the training algorithm for the CNN, the generalized
delta rule [9] is applied to the architecture of the CNN. For
distinguishing an image containing an object of interest from
an image without it, a class label for the object（1）is assigned
to the corresponding output unit, and zeros to other units. A
softmax function is often used in the output layer called a
softmax layer.

2.3.2. Massive-training artificial neural network（MTANN）
In the field of signal/image processing, supervised

nonlinear filters based on an MLP model（or a multilayer NN）,
called neural filters, were proposed [22, 23]. The neural filter
employs a linear-output-layer NN model as a convolution
kernel of a filter. The inputs to the neural filter are an object
pixel and spatially/spatiotemporally adjacent pixels in a
subregion（or local window, image patch, kernel）. The output
of the neural filter is a single pixel. The neural filter is trained
with input images and corresponding “teaching”（desired or
ideal）images. The class of neural filters is used for image-
processing tasks such as edge-preserving noise reduction in
radiographs and other digital pictures [22, 23], edge enhancement
from noisy images [24], and enhancement of subjective edges
traced by a physician（“semantic segmentation”）in left ven-
triculograms [25].

An MTANN was developed by extending neural filters to
accommodate various pattern-recognition tasks [19], including
classification [19, 21, 26-32], pattern enhancement and
suppression [21], and object detection [20]. In other words,
neural filters are a subclass or a special case of MTANNs. A
two-dimensional（2D）MTANN was first developed for
distinguishing a specific pattern from other patterns in 2D
images [19]. The 2D MTANN was applied to reduction of
false positives（FPs）in CAD for detection of lung nodules on
2D CT slices in a slice-by-slice way [19, 33, 34] and in chest

radiographs（chest x-ray : CXR）[30], the separation of bones
from soft tissue in CXR [21, 35, 36], and the distinction
between benign and malignant lung nodules on 2D CT
slices [26]. For processing of three-dimensional（3D）volume
data, a 3D MTANN was developed by extending the structure
of the 2D MTANN, and it was applied to 3D CT colonography
data [27-29, 31, 32]. Various MTANN architectures were
developed, including multiple MTANNs [19, 22, 23, 26, 30,
33], a mixture of expert MTANNs [27, 28], a multi-resolution
MTANN [21], a Laplacian eigenfunction MTANN [32], and a
massive-training support vector regression（MTSVR）[31].

The general architecture of an MTANN is illustrated in
Fig.6. An MTANN consists of an ML model such as linear-
output-layer artificial NN（ANN）regression, support vector
regression [10, 37], and nonlinear Gaussian process regression,
which is capable of operating on pixel data directly [24]. The
core part of the MTANN consists of an input layer, multiple
hidden layers, and an output layer, as illustrated in Fig.6（a）．
The linear-output-layer ANN regression model employs a
linear function instead of a sigmoid function as the activation
function of the unit in the output layer because the
characteristics of an ANN were improved significantly with a
linear function when applied to the continuous mapping of
values in image processing [24]. Note that the activation
functions of the units in the hidden layers are a sigmoid
function for nonlinear processing. The input to the MTANN
consists of pixel values in a subregion（image patch）, R ,
extracted from an input image. The output of the MTANN is a
continuous scalar value, which is associated with the center
pixel in the subregion, represented by

O（x ,y ,z）＝ML{I（x－i ,y－j ,z－k）|（i ,j ,k）∈R }， （1）

where x , y , and z are the coordinate indices, ML（・）is the
output of the ML model, and I（x ,y ,z）is a pixel value of the
input image. The structure of input units and the number of
hidden units in the ANN may be designed by use of sensitivity-
based unit-pruning methods [38, 39]. ML regression models
rather than ML classification models would be suited for the
MTANN framework, because the output of the MTANN are
continuous scalar values（as opposed to nominal categories or
classes）. The entire output image is obtained by scanning with
the input subregion of the MTANN in a convolutional manner

Fig.5 Architecture of a CNN. The layers in the CNN are connected with local shift-invariant inter-
connections（or convolution with a local kernel）. The input and output of the CNN are
images and class labels（e.g., Class A and Class B）, respectively.
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on the entire input image, as illustrated in Fig.6（b）. This
convolution operation offers a shift-invariant property that is
desirable for image classification. The input subregion and the
scanning with the MTANN can be analogous to the kernel of a
convolution filter and the convolutional operation of the filter,
respectively. The output of the MTANN is an image that may
represent a probability map, unlike the class of CNNs. To use
the MTANN as a classifier, a scoring layer is placed in the
end to convert the output probability map into a single score
that represents a likelihood of being a certain class for a given
image. This score represents the weighted sum of the estimates
for the likelihood that the image（e.g., a lesion candidate）
contains an object of interest（e.g., a lesion）near the center, i.
e., a higher score would indicate an object of interest, and a
lower score would indicate other patterns. Thresholding is then
performed on the scores for distinction between classes.

The MTANN is trained with input images and the
corresponding “teaching” desired（or ideal）images for en-
hancement of a specific pattern and suppression of other
patterns in images. For enhancement of objects of interest（e.g.,
lesions）, L , and suppression of other patterns（e.g., non-
lesions）, the teaching image contains a probability map for
objects of interest. To enrich training samples, a training
region, RT, extracted from the input images is divided pixel by
pixel into a large number of overlapping subregions. Single
pixels are extracted from the corresponding teaching images as

teaching values. The MTANN is massively trained by use of
each of a large number of input subregions together with each
of the corresponding teaching single pixels ; hence the term
“massive-training ANN.” The MTANN is trained by a linear-
output-layer BP algorithm [24] which was derived for the
linear-output-layer ANN model by use of the generalized delta
rule [9]. After training, the MTANN is expected to output the
highest value when an object of interest is located at the center
of the subregion of the MTANN, a lower value as the distance
from the subregion center increases, and zero when the input
subregion contains other patterns.
Fig.7 shows the output images of the MTANN trained to

enhance lung nodules and suppress various types of non-
nodules in CAD for CT. Various lung nodules are enhanced in
the MTANN output images, whereas various types of non-
nodules are suppressed. With those nodule-enhanced images,
distinction between nodules and non-nodules is made by using
the scoring method described above. In other words,
classification between a particular pattern and other patterns is
made by enhancement of the particular pattern, which may be
referred to “classification by enhancement.”

2.3.3. Comparisons between the two “deep learning” models
CNNs and MTANNs are in the class of image/pixel-based

ML（or “deep learning”）. Both models use pixel values in
images directly as input information, instead of features
calculated from segmented objects ; thus, they can be classified
as end-to-end ML models that do the entire process from input
images to the final classification. Both models can have deep
layers（＞4 layers）. There are major differences between
CNNs and MTANNs in architecture, output, and the required
number of training samples. In CNNs, convolutional operations
are performed within the network, whereas the convolutional
operation is performed outside the network in MTANNs, as
shown in Figs.5 and 6. The output of CNNs is, in principle,
class categories, whereas that of MTANNs is images（continuous
values in a map）. Another major difference is the required
number of training samples. CNNs require a huge number of
training images（e.g., 1,000,000 images）because of a large
number of parameters in the model, whereas MTANNs require
a very small number of training images（e.g., 12 images for
classification between lung nodules and non-nodules in CAD
for detection of lung nodules in CT [19] ; 4 images for
separation of bone components from soft-tissue components in
CXR [21, 35]）.

The performance of well-known CNNs（including AlexNet,
LeNet, deep CNNs, and shallow CNNs）and MTANNs was
extensively compared in focal lesion detection and classification
problems in medical imaging [40]. Comparison experiments
were done for detection of lung nodules and classification of
detected lung nodules into benign and malignant in CT with
the same databases. The experiments demonstrated that the
performance of MTANNs was substantially higher than that of
the best performing CNN under the same condition. With a
larger training dataset used only for CNNs, the performance
gap became less evident even though the margin was still
significant. Specifically, for nodule detection, MTANNs
generated 2.7 FPs per patient at a 100% sensitivity, which was
significantly（p＜0.05）lower than the best performing CNN
model with 22.7 false positives per patient at the same level of

（a）

（b）

Fig.6 Architecture of an MTANN consisting of an ML model
（e.g., linear-output-layer ANN regression）with subregion
（or image patch, local kernel）input and single-pixel
output.（a）Architecture of the core part of the MTANN.
（b）Entire architecture of the MTANN. The entire output
image representing a probability map is obtained by
scanning with the input subregion of the MTANN in a
convolutional manner on the entire input image. A scoring
layer is placed in the end to convert the output probability
map into a single score that represents a likelihood of
being a certain class for the given input image.
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sensitivity. For nodule classification, MTANNs yielded an area
under the receiver-operating-characteristic curve（AUC）of
0.8806, which was significantly（p＜0.05）greater than the best
performing CNN model with an AUC of 0.7755.

3. Applications of ML in medical imaging

3.1. Applications of object/feature-based MLs
There are a large number of papers that reported

applications of object/feature-based ML（common classifiers）
in medical imaging, such as applications to lung nodule
detection in CXR [41-44] and thoracic CT [33, 45-47],
classification of lung nodules into benign or malignant in CXR
[48] and thoracic CT [49, 50], detection of microcalcifications
in mammography [51-54], detection of masses [55] and
classification of masses into benign or malignant [56-58] in
mammography, polyp detection in CT colonography [59-61],
and detection of aneurysms in brain MRI [62]. In addition to
the applications of ML for classification problems, there are
applications of ML for regression problems such as determining
the subjective similarity measure of mammographic images
[63-65].

3.2. Applications of image/pixel-based MLs（“deep learning”）
3.2.1 Classification between lesions and non-lesions

Before the introduction of the term, deep learning, “deep”

CNNs have been used for FP reduction in CAD for lung
nodule detection in CXRs [66-68]. A convolution NN was
trained with 28 CXRs for distinguishing lung nodules from
non-nodules（i.e., FPs produced by an initial CAD scheme）.
The trained CNN reduced 79% of FPs（which is equivalent to
2-3 FPs per patient）, while 80% of true-positive detections
were preserved. CNNs have been applied to FP reduction in
CAD for detection of microcalcifications [69] and masses [70]

in mammography. A CNN was trained with 34 mammograms
for distinguishing microcalcifications from FPs. The trained
CNN reduced 90% of FPs, which resulted in 0.5 FPs per
image, while a true-positive detection rate of 87% was
preserved [69]. Shift-invariant NNs which are almost identical
to CNNs have been used for FP reduction in CAD for
detection of microcalcifications [71, 72]. A shift-invariant NN
was trained to detect microcalcifications in regions-of-interest
（ROIs）. Microcalcifications were detected by thresholding of

the output images of the trained shift-invariant NN. When the
number of detected microcalcifications was greater than a
predetermined number, the ROI was considered as a
microcalcification ROI. With the trained shift-invariant NN,
55% of FPs was removed without any loss of true positives.

The class of “deep” MTANNs with 4-7 layers has been
used for classification, such as FP reduction in CAD schemes
for detection of lung nodules in CXR [30] and CT [19, 33, 34],
and FP reduction in a CAD scheme for polyp detection in CT

（a）

（b）

Fig.7 Illustrations of various types of nodules and non-nodules and corresponding output images of the
trained MTANN in CAD for detection of lung nodules in CT.（a）Results for various types of nodules.
（b）Results for various types of non-nodules. Nodules are represented by bright pixels, whereas non-
nodules are almost dark around the centers of ROIs.
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colonography [27-29, 31, 32].
After the introduction of the term, deep learning, a CNN

was used for classification of masses and non-masses in digital
breast tomosynthesis images [73]. The CNN for digital breast
tomosynthesis was trained by using transfer learning from the
CNN for mammography. The CNN achieved an AUC of 0.90
in classification of mass ROIs and non-mass ROIs in digital
breast tomosynthesis images. A CNN was used for FP
reduction in lung nodule detection in PET/CT [74]. The CNN
was used for feature extraction, and classification was done by
SVM with the CNN-extracted and hand-crafted features. With
the FP reduction method, the performance was improved from
a sensitivity of 97.2% with 72.8 FPs/case to a sensitivity of
90.1% with 4.9 FPs/case.

3.2.2. Classification of lesion types
Before the introduction of the term, deep learning, “deep”

MTANNs with seven layers were applied to distinction
between benign and malignant lung nodules in low-dose
screening CT [26], The MTANNs achieved an AUC value of
0.882 in classification between 76 malignant and 413 benign
lung nodules, whereas an AUC value of chest radiologists for
the same task with a subset of the database was 0.56.

After the introduction of the term, deep learning, a CNN
was used for classification between perifissural nodules and
non-perifissural nodules in CT [75]. A pre-trained 2D CNN
was used. The CNN achieved the performance in terms of
AUC of 0.868. A pre-trained CNN was used for classification
between cysts from soft tissue lesions in mammography [76].
The CNN achieved an AUC value of 0.80 in classification
between benign solitary cysts and malignant masses. A CNN
was used for classification of plaque compositions in carotid
ultrasound [77]. CNN’s classification achieved a correlation
value of about 0.90 with the clinical assessment for the
estimation of lipid core, fibrous cap, and calcified tissue areas
in carotid ultrasound. A CNN was used for classifying teeth
types in cone-beam CT [78]. The CNN achieved a classification
accuracy of 88.8% in classification of 7 teeth types in ROIs.

3.2.3. Detection of lesions
A “lesion-enhancement” filter based MTANNs was

developed for enhancement of actual lesions in CAD for
detection of lung nodules in CT [20]. For enhancement of
lesions and suppression of non-lesions in CT images, the
teaching image contains a probability map for a lesion. For
enhancement of a nodule in an input CT image, a 2D Gaussian
distribution was placed at the location of the nodule in the
teaching image, as a model of the lesion probability map. For
testing of the performance, the trained MTANN was applied to
non-training lung CT images. The nodule is enhanced in the
output image of the trained MTANN filter, while normal
structures such as lung vessels are suppressed.

After the introduction of the term, deep learning, deep
CNNs were used for detection of lymph nodes in CT [79].
Detection of lymph nodes is a challenging task, as evidenced
by the fact that object/feature-based ML achieved approximately
50% sensitivity with 3 FPs/volume. By using the deep CNNs,
the performance reached at 70% and 83% sensitivities with
3 FPs/volume in mediastinum and abdomen areas, respectively.

3.2.4 Segmentation of lesions or organs
Neural edge enhancers（predecessor of MTANNs）enhanced

subjective edges traced by a physician（“semantic segmentation”）
in left ventriculograms [25]. Shift-invariant NNs were used for
detection of the boundaries of the human corneal endothelium
in photomicrographs [80]. A CNN was used for segmentation
of the bladder in CT urography [81]. The CNN achieved a
Jaccard index of 76.2% +/− 11.8% for bladder segmentation,
compared with “gold-standard” manual segmentation. A CNN
was used for segmentation of tissues in MR brain images [82].
The CNN achieved average Dice coefficients of 0.82-0.91 in
five different datasets.

3.2.5. Separation of bones from soft tissue in CXR
Studies showed that 82 to 95% of the lung cancers missed

by radiologists in CXR were partly obscured by overlying
bones such as ribs and/or a clavicle [83, 84]. To prevent from
such misses, MTANNs were developed for separation of bones
from soft tissue in CXR [21, 35]. To this end, the MTANN
were trained with input CXRs with overlapping bones and the
corresponding “teaching” dual-energy bone images acquired
with a dual-energy radiography system [85]. Fig.8 shows a
non-training original CXR and a “virtual” dual-energy soft-
tissue image obtained by use of the trained MTANN. The
contrast of ribs is suppressed substantially in the MTANN soft
-tissue image, whereas the contrast of soft tissue such as lung
vessels is maintained. A filter learning in the class of image/
pixel-based ML was developed for suppression of ribs in CXR
[86].

Fig.8 Separation of bone components from soft-tissue
components in CXR by use of an MTANN.（a）Input CXR
with a nodule（indicated by an arrow）.（b）Result of an
application of the trained MTANN.

4. Advantages and limitations of “deep learning”

As described earlier, the major difference between image/
pixel-based ML（e.g., “deep learning”）and object/feature-based
ML（i.e., classifiers）is the direct use of pixel values with the
image/pixel-based ML. In other words, unlike ordinary
classifiers, feature calculation from segmented objects is not
necessary. Because the image/pixel-based ML can avoid errors
caused by inaccurate feature calculation and segmentation, the
performance of the image/pixel-based ML can be higher than
that of ordinary feature-based classifiers. Image/pixel-based
MLs learn pixel data directly, and thus all information on
pixels should not be lost before the pixel data are entered into
the image/pixel-based ML, whereas ordinary feature-based
classifiers learn the features extracted from segmented lesions
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and thus important information can be lost with this indirect
extraction ; also, inaccurate segmentation often occurs for
complicated patterns. In addition, because feature calculation is
not required for the image/pixel-based ML, development and
implementation of segmentation and feature calculation, and
selection of features are unnecessary.

Limitations of “deep learning”（image/pixel-based MLs）
are 1）very high computational cost for training because of the
high dimensionality of input data and 2）a required large
number of training images. Because image/pixel-based MLs
use pixel data in images directly, the number of input
dimensions is generally large. To address the issue of high di-
mension of input data, Laplacian-eigenfunction-based dimen-
sionality reduction of the input vectors to a 3D MTANN was
proposed. With the dimensionality reduction, the training time
was reduced by a factor of 8.5. A CNN requires a huge
number of training images（e.g., 1,000,000）to determine a
large number of parameters in the CNN, whereas an MTANN
requires a small number of training images（e.g., 10）because
of its simpler architecture. With GPU implementation, an
MTANN completes training for a couple of hours, whereas a
deep CNN does in several days.

5. Conclusion

In this paper, ML in medical imaging before and after the
introduction of deep learning is reviewed to make clear 1）
what deep learning is exactly, 2）what was changed before and
after the introduction of deep learning, and 3）what is the
source of the power of deep learning. This review reveals that
object/feature-based ML（i.e., classifiers with features）were
dominant before the introduction of deep learning, and that the
major and essential difference between ML approaches before
and after deep learning is training of image data directly
without object segmentation or feature extraction ; thus, it is
the source of the power of deep learning. There is a long
history of deep learning techniques including Neocognitron,
CNN, neural filters, and MTANN in the class of image/pixel-
based ML, except a new terminology, deep learning. Image/
pixel-based ML including deep learning is a very powerful,
versatile technology with higher performance, which can make
the current state-of-the-art performance level of medical image
analysis to the next level. ML including deep learning in
medical imaging is an explosively growing, promising field. It
is expected that image/pixel-based ML including deep learning
will be the mainstream technology in medical imaging in the
next few decades.
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