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Machine learning (ML) plays an important role in the medical imaging field, including medical image analysis and computer-
aided diagnosis, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical
pattern recognition essentially require “learning from examples.” One of the most popular uses of ML is classification of objects
such as lesions into certain classes (e.g., abnormal or normal, or lesions or nonlesions) based on input features (e.g., contrast
and circularity) obtained from segmented object candidates. Recently, pixel/voxel-based ML (PML) emerged in medical image
processing/analysis, which use pixel/voxel values in images directly instead of features calculated from segmented objects as input
information; thus, feature calculation or segmentation is not required. Because the PML can avoid errors caused by inaccurate
feature calculation and segmentation which often occur for subtle or complex objects, the performance of the PML can potentially
be higher for such objects than that of common classifiers (i.e., feature-based MLs). In this paper, PMLs are surveyed to make clear
(a) classes of PMLs, (b) similarities and differences within (among) different PMLs and those between PMLs and feature-based

MLs, (c) advantages and limitations of PMLs, and (d) their applications in medical imaging.

1. Introduction

Machine learning (ML) plays an essential role in the med-
ical imaging field, including medical image analysis and
computer-aided diagnosis (CAD) [1, 2], because objects
such as lesions and organs in medical images may be too
complex to be represented accurately by a simple equation;
modeling of such complex objects often requires a number
of parameters which have to be determined by data. For
example, a lung nodule is generally modeled as a solid sphere,
but there are nodules of various shapes and nodules with
internal inhomogeneities, such as spiculated nodules and
ground-glass nodules [3]. A polyp in the colon is modeled
as a bulbous object, but there are also polyps which exhibit
a flat shape [4, 5]. Thus, diagnostic tasks in medical images
essentially require “learning from examples (or data)” to
determine a number of parameters in a complex model.
One of the most popular uses of ML in medical image
analysis is the classification of objects such as lesions into cer-
tain classes (e.g., abnormal or normal, lesions or non-lesions,
and malignant or benign) based on input features (e.g.,
contrast, area, and circularity) obtained from segmented

object candidates (This class of ML is referred to feature-
based ML.). The task of ML here is to determine “optimal”
boundaries for separating classes in the multidimensional
feature space which is formed by the input features [6].
ML algorithms for classification include linear discriminant
analysis [7], quadratic discriminant analysis [7], multilayer
perceptron [8, 9], and support vector machines [10, 11].
Such ML algorithms were applied to lung nodule detection
in chest radiography [12-15] and thoracic CT [16-19],
classification of lung nodules into benign or malignant in
chest radiography [20] and thoracic CT [21, 22], detection
of microcalcifications in mammography [23-26], detection
of masses in mammography [27], classification of masses
into benign or malignant in mammography [28-30], polyp
detection in CT colonography [31-33], determining subjec-
tive similarity measure of mammographic images [34-36],
and detection of aneurysms in brain MRI [37].

Recently, as available computational power increased
dramatically, pixel/voxel-based ML (PML) emerged in medi-
cal image processing/analysis which uses pixel/voxel values in
images directly instead of features calculated from segmented
regions as input information; thus, feature calculation or
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TasBLE 1: Classes of PMLs, their functions, and their applications.
PMLs Functions Applications

Neural filters (including neural edge

Image processin
enhancers) sep 8

Convolution neural networks
(including shift-invariant neural
networks)

Classification

Massive-training artificial neural
networks (MTANNS, including a
mixture of expert MTANNS, a

LAP-MTANN, an MTSVR) segmentation)

Others

Classification (image processing +
scoring), pattern enhancement and
suppression, object detection (pattern
enhancement followed by thresholding or

Image processing or classification

Edge-preserving noise reduction [38, 39]. Edge
enhancement from noisy images [40]. Enhancement
of subjective edges traced by a physician [41].

FP reduction in CAD for lung nodule detection in
CXR [42-44]. FP reduction in CAD for detection of
microcalcifications [45] and masses [46] in
mammography. Face recognition [47]. Character
recognition [48].

FP reduction in CAD for detection of lung nodules
in CXR [57] and CT [17, 52, 63]. Distinction
between benign and malignant lung nodules in CT
[58]. FP reduction in CAD for polyp detection in CT
colonography [53, 59-62]. Bone separation from
soft tissue in CXR [54, 55]. Enhancement of lung
nodules in CT [56].

Segmenting posterior ribs in CXR [64]. Separation
of ribs from soft tissue in CXR [65].

segmentation is not required. Because the PML can avoid
errors caused by inaccurate feature calculation and segmen-
tation which often occur for subtle or complex objects,
the performance of the PML can potentially be higher for
such objects than that of common classifiers (i.e., feature-
based MLs). In this paper, PMLs are surveyed and reviewed
to make clear (a) classes of PMLs, (b) the similarities
and differences within different PMLs and those between
PMLs and feature-based MLs, (c) the advantages and
limitations of PMLs, and (d) their applications in medical
imaging.

2. Pixel/Voxel-Based Machine Learning (PML)

2.1. Overview. PMLs have been developed for tasks in
medical image processing/analysis and computer vision.
Table 1 summarizes classes of PMLs, their functions, and
their applications. There are three classes of PMLs: neural
filters [38, 39] (including neural edge enhancers [40, 41]),
convolution neural networks (NNs) [42-48] (including
shift-invariant NNs [49-51]), and massive-training artificial
neural networks (MTANNs) [52-56] (including multiple
MTANNs [17, 38, 39, 52, 57, 58], a mixture of expert
MTANNS [59, 60], a multiresolution MTANN [54], a Lapla-
cian eigenfunction MTANN (LAP-MTANN) [61], and a
massive-training support vector regression (MTSVR) [62]).
The class of neural filters has been used for image-processing
tasks such as edge-preserving noise reduction in radiographs
and other digital pictures [38, 39], edge enhancement from
noisy images [40], and enhancement of subjective edges
traced by a physician in left ventriculograms [41]. The
class of convolution NNs has been applied to classification
tasks such as false-positive (FP) reduction in CAD schemes
for detection of lung nodules in chest radiographs (also
known as chest X-rays; CXRs) [42—44], FP reduction in CAD
schemes for detection of microcalcifications [45] and masses
[46] in mammography, face recognition [47], and character

recognition [48]. The class of MTANNSs has been used for
classification, such as FP reduction in CAD schemes for
detection of lung nodules in CXR [57] and CT [17, 52, 63],
distinction between benign and malignant lung nodules in
CT [58], and FP reduction in a CAD scheme for polyp detec-
tion in CT colonography [53, 59-62]. The MTANNSs have
also been applied to pattern enhancement and suppression
such as separation of bone from soft tissue in CXR [54, 55]
and enhancement of lung nodules in CT [56]. There are
other PML approaches in the literature. An iterative, pixel-
based, supervised, statistical classification method called
iterated contextual pixel classification has been proposed for
segmenting posterior ribs in CXR [64]. A pixel-based, super-
vised regression filtering technique called filter learning has
been proposed for separation of ribs from soft tissue in CXR
[65].

2.2. Neural Filters. In the field of signal/image processing,
supervised nonlinear filters based on a multilayer ANN,
called neural filters, have been studied [38, 39]. The neural
filter employs a linear-output ANN model as a convolution
kernel of a filter. The inputs to the neural filter are an object
pixel value and spatially/spatiotemporally adjacent pixel
values in a subregion (or local window). The output of the
neural filter is a single pixel value. The neural filter is trained
with input images and corresponding “teaching” (desired
or ideal) images. The training is performed by a linear-
output backpropagation algorithm [40] which is a back-
propagation algorithm modified for the linear-output ANN
architecture. The input, output, and teacher (desired output)
for neural filters are summarized in Table 2. Neural filters
can acquire the functions of various linear and nonlinear
filtering through training. Neural filters have been applied
to reduction of the quantum noise in X-ray fluoroscopic
and radiographic images [38, 39]. It was reported that the
performance of the neural filter was superior to that of
well-known nonlinear filters such as an adaptive weighted
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TaBLE 2: Classification of ML algorithms by their input, output, and teacher (desired output).

ML algorithms

Input

Output Teacher

Neural filters

Pixel values in a subregion (local
window) in a given image

Single pixel value (image is formed

by collecting pixels) Desired pixel value

Single pixel value (image is formed

Pixel values in a subregion (local

MTANNs . . Lo
window) in a given image

by collecting pixels; likelihood score Likelihood of being a specific
for the given image is obtained by

pattern at each pixel

use of the scoring method)

Convolution NNs Pixel values in a given image

Shift-invariant NNs

Multilayer perceptron for
character recognition

Pixel values in a given image
Pixel values in a given binary
image (character)

Features extracted from a
segmented object in a given
image

Classifiers (e.g., linear
discriminant analysis, NNs,
support vector machines)

Class to which the given image
belongs

Class to which each pixel belongs

Class to which the given image
belongs

Nominal class label for the given
image
Nominal class label for each pixel

Nominal class label for the given
image

Class to which the segmented object Nominal class label for the
belongs

segmented object

averaging filter [66]. A study [38] showed that adding fea-
tures from the subregion to the input information improved
the performance of the neural filter. Neural filters have
been extended to accommodate the task of enhancement of
edges, and a supervised edge enhancer (detector), called a
neural edge enhancer, was developed [40]. The neural edge
enhancer can acquire the function of a desired edge enhancer
through training. It was reported that the performance of the
neural edge enhancer in the detection of edges from noisy
images was far superior to that of well-known edge detectors
such as the Canny edge detector [67], the Marr-Hildreth
edge detector [68], and the Huckel edge detector [69]. In its
application to the contour extraction of the left ventricular
cavity in digital angiography, it has been reported that the
neural edge enhancer can accurately replicate the subjective
edges traced by a cardiologist [41].

2.3. Massive-Training Artificial Neural Network (MTANN).
An MTANN was developed by extension of neural filters
to accommodate various pattern-recognition tasks [52]. A
two-dimensional (2D) MTANN was first developed for dis-
tinguishing a specific opacity (pattern) from other opacities
(patterns) in 2D images [52]. The 2D MTANN was applied to
reduction of FPs in computerized detection of lung nodules
on 2D CT slices in a slice-by-slice way [17, 52, 63] and
in CXR [57], the separation of ribs from soft tissue in
CXR [54, 55, 70], and the distinction between benign and
malignant lung nodules on 2D CT slices [58]. For processing
of three-dimensional (3D) volume data, a 3D MTANN was
developed by extending the structure of the 2D MTANN, and
it was applied to 3D CT colonography data [53, 59-62].

The generalized architecture of an MTANN which unifies
2D and 3D MTANNSs is shown in Figure 1. The input,
output, and teacher for MTANNS are shown in Table 2. An
MTANN consists of an ML model such as a linear-output
ANN regression model and a support vector regression
model, which is capable of operating on pixel/voxel data
directly [40]. The linear-output ANN regression model
employs a linear function instead of a sigmoid function as

Local window (subregion) R

A x

/ . Object pixel Input image
: I(x, y,zort)
torz | P
yi R

S
[ 11

Machine-learning model
(e.g., linear-output ANN
regression and support
vector regression)

. Output object pixel value O(x, y,z or t)

Machine-learning

model as a
convolution kernel

X

Likelihood map

Scoring for converting
pixels into a single score

| Class

FIGURE 1: Generalized architecture of an MTANN (a class of PML)
consisting of an ML model (e.g., linear-output ANN regression
and support vector regression) with subregion input and single-
pixel output. All pixel values in a subregion extracted from an
input image are entered as input to the ML model. The ML model
outputs a single pixel value for each subregion, the location of which
corresponds to the center pixel in the subregion. Output pixel value
is mapped back to the corresponding pixel in the output image.



the activation function of the unit in the output layer because
the characteristics of an ANN were improved significantly
with a linear function when applied to the continuous
mapping of values in image processing [40]. Note that the
activation functions of the units in the hidden layer are a
sigmoid function for nonlinear processing, and those of the
unit in the input layer are an identity function, as usual.
The pixel/voxel values of the input images/volumes may be
normalized from 0 to 1. The input to the MTANN consists
of pixel/voxel values in a subregion/subvolume, R, extracted
from an input image/volume. The output of the MTANN is
a continuous scalar value, which is associated with the center
voxel in the subregion, and is represented by

O(x, y,z or t)
=ML{I(x—i,y—j,z—kort—k)| (i,j,k) €R},
(1

where x, y, and z or t are the coordinate indices, ML(-)
is the output of the ML model, and I(x,y,zort) is a
pixel/voxel value of the input image/volume. A three-layer
structure may be selected as the structure of the ANN,
because it has been proved that any continuous mapping
can be approximated by a three-layer ANN [71, 72]. The
structure of input units and the number of hidden units
in the ANN may be designed by use of sensitivity-based
unit-pruning methods [73, 74]. Other ML models such as
support vector regression [10, 11] can be used as a core
part of the MTANN. ML regression models rather than
ML classification models would be suited for the MTANN
framework, because the output of the MTANN is continuous
scalar values (as opposed to nominal categories or classes).
The entire output image/volume is obtained by scanning
with the input subvolume of the MTANN on the entire
input image/volume. The input subregion/subvolume and
the scanning with the MTANN can be analogous to the
kernel of a convolution filter and the convolutional operation
of the filter, respectively.

The training of an MTANN is shown in Figure 2. The
MTANN is trained with input images/volumes and the
corresponding “teaching” images/volumes for enhancement
of a specific pattern and suppression of other patterns in
images/volumes. The “teaching” images/volumes are ideal or
desired images for the corresponding input images/volumes.
For enhancement of lesions and suppression of nonlesions,
the teaching volume contains a map for the “likelihood of
being lesions,” represented by

a certain distribution, for a lesion,

0, otherwise.

(2)

To enrich the training samples, a training region, Rr,
extracted from the input images is divided pixel by pixel
into a large number of overlapping subregions. Single pixels
are extracted from the corresponding teaching images as
teaching values. The MTANN is massively trained by use of
each of a large number of input subregions together with
each of the corresponding teaching single pixels, hence the

T(x,y,zort) = {
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FIGURE 2: Training of an MTANN (a class of PML). An input vector
is entered as input to the ML model. An error is calculated by
subtracting of a teaching pixel from an output pixel. The parameters
such as weights between layers in an ANN model are adjusted so
that the error becomes small.

term “massive-training ANN.” The error to be minimized by
training of the MTANN is represented by

E=3S 3

¢ (x,y,z or t) ERy

{T.(x,y,z or t) — Oc(x, y,z or t)}%,

(3)

where ¢ is a training case number, O, is the output of
the MTANN for the cth case, T, is the teaching value for
the MTANN for the cth case, and P is the number of
total training voxels in the training region for the MTANN,
Ry. The expert 3D MTANN is trained by a linear-output
backpropagation (BP) algorithm [40] which was derived for
the linear-output ANN model by use of the generalized delta
rule [8]. After training, the MTANN is expected to output
the highest value when a lesion is located at the center of
the subregion of the MTANN, a lower value as the distance
from the subregion center increases, and zero when the input
subregion contains a nonlesion.

A scoring method is used for combining output pixels
from the trained MTANNs. A score for a given region of
interest (ROI) from the MTANN is defined as

5= 3

(x,y,z or t) ERg

Sfw (%, y,z or £) X O(x, y,z or t), (4)

where fy is a weighting function for combining pixel-based
output responses from the trained MTANN into a single
score, which may often be the same distribution function
used in the teaching images, and with its center correspond-
ing to the center of the region for evaluation, Rg; and O is
the output image of the trained MTANN, where its center
corresponds to the center of Rg. This score represents the
weighted sum of the estimates for the likelihood that the
ROI (e.g., a lesion candidate) contains a lesion near the
center; that is, a higher score would indicate a lesion and
a lower score would indicate a non-lesion. Thresholding is
then performed on the scores for distinction between lesions
and non-lesions.

2.4. Convolution Neural Network (NN). A convolution NN
has first been proposed for handwritten ZIP-code recogni-
tion [75]. The architecture of a convolution NN is illustrated
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in Figure 3. The input, output, and teacher for convolution
NN are summarized in Table 2. The convolution NN can be
considered as a simplified version of the Neocognitron model
[76-78] which was proposed to simulate the human visual
system in 1980 [78]. The input and output of the convolution
NN are images and nominal class labels, respectively. The
convolution NN consists of one input layer, several hidden
layers, and one output layer. The layers are connected with
local shift-invariant interconnections (or convolution with a
local kernel). Unlike the neocognitron, the convolution NN
has no lateral interconnections or feedback loops, and the
error BP algorithm [8] is used for training of the convolution
NN. Units (neurons) in any hidden layer are organized in
groups. Each unit in a subsequent layer is connected with
the units of a small region in each group in the preceding
layer. The groups between adjacent layers are interconnected
by weights that are organized in kernels. For obtaining the
shift-invariant responses, connection weights between any
two groups in two layers are constrained to be shift-invariant;
in other words, forward signal propagation is similar to a
shift-invariant convolution operation. The signals from the
units in a certain layer are convolved with the weight kernel,
and the resulting value of the convolution is collected into
the corresponding unit in the subsequent layer. This value is
further processed by the unit through an activation function
and produces an output signal. The activation function
between two layers is a sigmoid function. For deriving the
training algorithm for the convolution NN, the generalized
delta rule [8] is applied to the architecture of the convolution
NN. For distinguishing an ROI containing a lesion from
an ROI containing a non-lesion, a class label (e.g., 1 for
a lesion, 0 for a non-lesion) is assigned to an output
unit.

Variants of the convolution NN have been proposed.
The dual-kernel approach, which employs central kernels
and peripheral kernels in each layer [43], was proposed for
distinction between lung nodules and nonnodules in chest
radiographs [42, 43] and distinction between microcalci-
fications and other anatomic structures in mammograms
[43]. This dual-kernel-based convolution NN has several
output units (instead of one or two output units in the
standard convolution NN) for two-class classification. The
fuzzy association was employed for transformation of output
values from the output units to two classes (i.e., nodules
or nonnodules; microcalcifications or other anatomic struc-
tures). A convolution NN which has subsampling layers has
been developed for face recognition [47]. Some convolution
NNs have one output unit [48, 79], some have two output
units [80], and some have more than two output units
(42, 43, 45, 47] for two-class classification.

Shift-invariant NNs [50, 51] are mostly the same as con-
volution NNs except for the output layer, which outputs
images instead of classes. The shift-invariant NNs were used
for localization (detection) of lesions in images, for example,
detection of microcalcifications in mammograms [50, 51]
and detection of the boundaries of the human corneal
endothelium in photomicrographs [81].

Input layer Hidden layers Output layer

Class A
Class B

FiGURE 3: Architecture of a convolution NN (a class of PML). The
convolution NN can be considered as a simplified version of the
Neocognitron model, which was proposed to simulate the human
visual system. The layers in the convolution NN are connected with
local shift-invariant inter-connections (or convolution with a local
kernel). The input and output of the convolution NN are images
and nominal class labels (e.g., Class A and Class B), respectively.

2.5. Multilayer Perceptron for Character Recognition. A multi-
layer perceptron has been proposed for character recognition
from an optical card reader [82, 83]. The architecture of the
multilayer perceptron for character recognition is shown in
Figure 4. The input, output, and teacher for the multilayer
perceptron for character recognition are summarized in
Table 2. The input and output of the multilayer perceptron
are pixel values in a given binary image that contains a
single character (e.g., a, b, or ¢) and a class to which the
given image belongs, respectively. The number of input
units equals the number of pixels in the given binary image
(e.g., 16 x 16 pixels). The number of output units equals
the number of classes (i.e., 26 for small-letter alphabetic
characters). Each output unit is assigned to one of the classes.
The class to which the given image belongs is determined as
the class of the output unit with the maximum value. In the
teaching data, a class label of 1 is assigned the corresponding
output unit when a training sample belongs to that class;
0 is assigned to the other output units. Characters in given
images are geometrically normalized before they are entered
to the multilayer perceptron, because the architecture is
not designed for being scale-invariant. Because character
recognition with this type of the multilayer perceptron
architecture is not shift-, rotation-, or scale-invariant, a large
number of training samples is generally required. To enrich
training samples, shifting, rotating, and scaling of training
characters are often performed.

This type of multilayer perceptron has been applied to
the classification of microcalcifications in mammography
[23]. In this application, input images are not binary but
gray-scale images. Pixel values in ROIs in mammograms
or those in the Fourier-transformed ROIs were entered
as input to the multilayer perceptron. In that study, the
performance of the multilayer perceptrons based on ROIs in
the spatial domain and the Fourier domain was found to be
comparable.

2.6. Non-PML Feature-Based Classifiers. One of most popu-
lar uses of ML algorithms would probably be classification.
In this use, an ML algorithm is called a classifier. A standard
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Max

Class
determination

FIGURE 4: Architecture of a multilayer perceptron for character
recognition. The binary pixel values in an image are entered as
input to the multilayer perceptron. The class to which the given
image belongs is determined as the class of the output unit with
the maximum value.

classification approach based on a multilayer perceptron
is illustrated in Figure 5. The input, output, and teacher
for a classifier with features are summarized in Table 2.
First, target objects are segmented by use of a segmentation
method. Next, features are extracted from the segmented
objects. Then, extracted features are entered as input to an
ML model such as linear discriminant analysis [7], quadratic
discriminant analysis [7], a multilayer perceptron [8, 9], and
a support-vector machine [10, 11]. The ML model is trained
with sets of input features and correct class labels. A class
label of 1 is assigned to the corresponding output unit when a
training sample belongs to that class, and 0 is assigned to the
other output units. After training, the class of the unit with
the maximum value is determined to be the corresponding
class to which an unknown sample belongs. For details of
feature-based classifiers, refer to one of many textbooks in
pattern recognition such as [6-8, 10, 84].

International Journal of Biomedical Imaging

Segmented
y object

| Feature extractor |

G Features

Classifier
(e.g., multilaye
perceptron)

Class B

Class
determination

FiGure 5: Standard classifier approach to classification of an object
(i.e., feature-based ML). Features (e.g., contrast, effective diameter,
and circularity) are extracted from a segmented object in an image.
Those features are entered as input to a classifier such as a multilayer
perceptron. Class determination is made by taking the class of the
output unit with the maximum value.

3. Similarities and Differences

3.1. Within Different PML Algorithms. MTANNs [52] were
developed by extension of neural filters to accommodate var-
ious pattern-recognition tasks. In other words, neural filters
are a subclass or a special case of MTANNS . The applications
and functions of neural filters are limited to noise reduction
[38, 39] and edge enhancement [40, 41], whereas those of
MTANNSs were extended to include classification [52-54, 57—
62], pattern enhancement and suppression [54], and object
detection [56]. The input information to MTANNS, which is
the pixel values in a subregion, is the same as that to neural
filters. However, the output of (thus, teacher for) neural
filters is the desired pixel values in a given image, whereas that
of MTANNS is a map for the likelihood of being a specific
pattern in a given image, as summarized in Table 2.

Both convolution NNs and the perceptron used for char-
acter recognition are in the class of PML. Input information
to the convolution NNs and the perceptron is the pixel
values in a given image, whereas the output of (thus, teacher
for) both algorithms is a nominal class label for the given
image. Thus, the input and output information are the
same for both algorithms. However, the input images for
the perceptron for character recognition are limited to be
binary, although the perceptron itself is capable of processing
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gray-scale images. The major difference between convolution
NNs and the perceptron used for character recognition is
their internal architectures. Units in layers of the perceptron
are fully connected, whereas the connections in the con-
volution NN are spatially (locally) limited. Because of this
architecture, forward signal propagation in the convolution
NN is realized by a convolution operation. This convolution
operation offers a shift-invariant property which is desirable
for image classification. The applications and functions of
the perceptron are limited to character recognition such
as zip code recognition and optical character recognition,
whereas those of convolution NNs are general classification
of images into known classes such as classification of lesion
candidates into lesions or nonlesions [42—46], classification
of faces [47], and classification of characters [48].

Convolution NN, shift-invariant NNs, and MTANNSs
perform convolution operations. In convolution NNs and
shift-invariant NNs, convolution operations are performed
within the network, as shown in Figure 3, whereas the
convolutional operation is performed outside the network in
the MTANN, as shown in Figure 1.

3.2. Between PML Algorithms and Ordinary Classifiers. The
major difference between PMLs and ordinary classifiers (i.e.,
feature-based classifiers) is the input information. Ordinary
classifiers use features extracted from a segmented object
in a given image, whereas PMLs use pixel values in a
given image as the input information. Although the input
information to PMLs can be features (see addition of features
to the input information to neural filters in [38], i.e.),
these features are obtained pixel by pixel (rather than by
object). In other words, features for PMLs are features at
each pixel in a given image, whereas features for ordinary
classifiers are features from a segmented object. In that
sense, feature-based classifiers may be referred to as object-
based classifiers. Because PMLs use pixel/voxel values in
images directly instead of features calculated from segmented
objects as the input information, feature calculation or
segmentation is not required. Although the development
of segmentation techniques has been studied for a long
time, segmentation of objects is still challenging, especially
for complicated objects, subtle objects, and objects in a
complex background. Thus, segmentation errors may occur
for complicated objects. Because, with PMLs, errors caused
by inaccurate feature calculation and segmentation can be
avoided, the performance of PMLs can be higher than that
of ordinary classifiers for some cases, such as complicated
objects.

The output information from ordinary classifiers, con-
volution NNs, and the perceptron used for character recog-
nition is nominal class labels, whereas that from neural
filters, MTANNS, and shift-invariant NNs is images. With
the scoring method in MTANNSs, output images of the
MTANNS are converted to likelihood scores for distinguish-
ing among classes, which allow MTANNS to do classification.
In addition to classification, MTANNS can perform pattern
enhancement and suppression as well as object detection,
whereas the other PMLs cannot.

4. Applications of PML Algorithms in
Medical Images

4.1. Edge-Preserving Noise Reduction by Use of Neural Filters.
Quantum noise is dominant in low-radiation-dose X-ray
images used in diagnosis. For training a neural filter to
reduce quantum noise in diagnostic X-ray images while
preserving image details such as edges, noisy input images
and corresponding “teaching” images are necessary. When
a high radiation dose is used, X-ray images with little
noise can be acquired and used as the “teaching” images.
A noisy input image can be synthesized by addition of
simulated quantum noise (which is modeled as signal-
dependent noise) to a noiseless original high-radiation-dose
image f,(x, y), represented by

In(xy) = folx, y) +nlo{fo(x p)}, (5)
where n[o{f,(x,y)}] is noise with standard deviation

0{fo(x,¥)} = kny/fo(x, y) and ky is a parameter determin-
ing the amount of noise. A synthesized noisy X-ray image
obtained with this method and a noiseless original high-
radiation-dose X-ray image are illustrated in Figure 6(a).
They are angiograms of coronary arteries. They were used
as the input image and as the teaching image for training of
a neural filter. For sufficient reduction of noise, the input
region of the neural filter consisted of 11 x 11 pixels. For
efficient training of the entire image, 5,000 training pixels
were sampled randomly from the input and teaching images.
The training of the neural filter was performed for 100,000
iterations. The output image of the trained neural filter for
a nontraining case is shown in Figure 6(b). The noise in the
input image is reduced while image details such as the edges
of arteries are maintained. When an averaging filter was used
for noise reduction, the edges of arteries were blurry, as
shown in Figure 6(b).

4.2. Edge Enhancement from Noisy Images by Use of Neural
Edge Enhancer. Although conventional edge enhancers can
very well enhance edges in images with little noise, they do
not work well on noisy images. To address this issue, a neural
edge enhancer has been developed for enhancing edges from
very noisy images [40]. The neural edge enhancer is based
on a neural filter and can be trained with input images and
corresponding “teaching” edge images. Figure 7(a) shows
a way of creating noisy input images and corresponding
“teaching” edge images from a noiseless image for training
of a neural edge enhancer. Simulated quantum noise was
added to original noiseless images to create noisy input
images. A Sobel edge enhancer [85] was applied to the
original noiseless images to create “teaching” edge images.
The key here is that the Sobel edge enhancer works very well
for noiseless images. The neural edge enhancer was trained
with the noisy input images together with the corresponding
teaching edge images. For comparison, the trained neural
edge enhancer and the Sobel edge enhancer were applied
to nontraining noisy images. The resulting nontraining
edge-enhanced images are shown in Figure 7(b). Edges are
enhanced clearly in the output image of the neural edge
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FIGURE 6: Reduction of quantum noise in angiograms by using a supervised NN filter called a “neural filter.” (a) Images used for training of
the neural filter. (b) Result of an application of the trained neural filter to a nontraining image and a comparison result with an averaging

filter.

enhancer while noise is suppressed, whereas the Sobel edge
enhancer enhances not only edges but also noise.

4.3. Bone Separation from Soft Tissue in Chest Radiographs
(CXRs) by Use of MTANNs. CXR is the most frequently
used diagnostic imaging examination for chest diseases such
as lung cancer, tuberculosis, and pneumonia. More than 9
million people worldwide die annually from chest diseases
[86]. Lung cancer causes 945,000 deaths and is the leading
cause of cancer deaths in the world [86] and in countries such
as the United States, the United Kingdom, and Japan [87].
Lung nodules (i.e., potential lung cancers) in CXR, however,
can be overlooked by radiologists in from 12 to 90% of
cases that have nodules visible in retrospect [88, 89]. Studies
showed that 82 to 95% of the missed lung cancers were partly
obscured by overlying bones such as ribs and/or a clavicle
[88, 89]. To address this issue, dual-energy imaging has been

investigated [90, 91]. Dual-energy imaging uses the energy
dependence of the X-ray attenuation by different materials;
it can produce two tissue-selective images, that is, a “bone”
image and a “soft-tissue” image [92-94]. Major drawbacks of
dual-energy imaging, however, are that (a) the radiation dose
can be double, (b) specialized equipment for obtaining dual-
energy X-ray exposures is required, and (c) the subtraction
of two-energy images causes an increased noise level in the
images.

For resolving the above drawbacks with dual-energy
images, MTANNs have been developed as an image-
processing technique for separation of ribs from soft tissue
[54, 70]. The basic idea is to train the MTANN with
soft-tissue and bone images acquired with a dual-energy
radiography system [92, 95, 96]. For separation of ribs from
soft tissue, the MTANN was trained with input CXRs and
the corresponding “teaching” dual-energy bone images, as
illustrated in Figure 8(a). Figure 8(b) shows a nontraining
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FiGure 7: Enhancement of edges from noisy images by use of a supervised edge enhancer called a “neural edge enhancer.” (a) A way to create
noisy input images and corresponding “teaching” edge images from noiseless images for training a neural edge enhancer. (b) Result of an
application of the trained neural edge enhancer to a nontraining image and a comparison result with a Sobel edge enhancer.

original CXR and a soft-tissue image obtained by use of
the trained MTANN. The contrast of ribs is suppressed
substantially in the MTANN soft-tissue image, whereas the
contrast of soft tissue such as lung vessels is maintained.
There is another PML approach called filter learning to do
the same task [64].

4.4. Enhancement and Detection of Lesions by Use of MTANNES.
Computer-aided diagnosis (CAD) has been an active area of
study in medical image analysis [1, 2, 97, 98]. Some CAD
schemes employ a filter for enhancement of lesions as a
preprocessing step for improving sensitivity and specificity,
but some do not employ such a filter. The filter enhances
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FIGURE 8: Separation of bones from soft tissue in CXRs by use of an MTANN. (a) Images used for training the MTANN. (b) Result of an

application of the trained MTANN to a nontraining CXR.

objects similar to a model employed in the filter; for example,
a blob-enhancement filter based on the Hessian matrix
enhances sphere-like objects [99]. Actual lesions, however,
often differ from a simple model; for example, a lung
nodule is generally modeled as a solid sphere, but there are
nodules of various shapes and inhomogeneous nodules such
as nodules with spiculation and ground-glass nodules. Thus,
conventional filters often fail to enhance such actual lesions.

To address this issue, a “lesion-enhancement” filter based
on MTANNS has been developed for enhancement of actual
lesions in a CAD scheme for detection of lung nodules in CT
[56]. For enhancement of lesions and suppression of non-
lesions in CT images, the teaching image contains a map
for the “likelihood of being lesions.” For enhancement of a
nodule in an input CT image, a 2D Gaussian distribution
was placed at the location of the nodule in the teaching
image, as a model of the likelihood of being a lesion. For
testing of the performance, the trained MTANN was applied
to nontraining lung CT images. As shown in Figure 9, the
nodule is enhanced in the output image of the trained
MTANN filter, while normal structures such as lung vessels

are suppressed. Note that small remaining regions due to
vessels can easily be separated from nodules by use of their
area information which can be obtained by use of connected-
component labeling [100-102].

4.5. Classification between Lesions and Nonlesions by
Use of Different PML Algorithms

4.5.1. MTANNS. Shift-invariant NNs are mostly the same as
convolution NNs except for the output layer, which outputs
images instead of classes. The shift-invariant NNs can be
used for localization (detection) of objects in images in
addition to classification [50, 51]. A major challenge in CAD
development is to reduce the number of FPs [27, 103-107],
because there are various normal structures similar to lesions
in medical images. To address this issue, an FP-reduction
technique based on an MTANN has been developed for a
CAD scheme for lung nodule detection in CT [52]. For
enhancement of nodules (i.e., true positives) and suppression
of nonnodules (i.e., FPs) on CT images, the teaching
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FIGUrEg 9: Enhancement of a lesion by use of the trained lesion-enhancement MTANN filter for a nontraining case. (a) Original chest CT
image of the segmented lung with a nodule (indicated by an arrow). (b) Output image of the trained lesion-enhancement MTANN filter.
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FiGure 10: Training of an MTANN for distinction between lesions and non-lesions in a CAD scheme for detection of lesions in medical
images. The teaching image for a lesion contains a Gaussian distribution; that for a non-lesion contains zero (completely dark). After the
training, the MTANN expects to enhance lesions and suppress non-lesions.

image contains a distribution of values that represent the
“likelihood of being a nodule.” For example, the teaching
volume contains a 3D Gaussian distribution with standard
deviation or for a lesion and zero (i.e., completely dark)
for non-lesions, as illustrated in Figure 10. This distribution
represents the “likelihood of being a lesion”:

T(x,y,z or t)
(2% + y* + 2% or )

1 .
_ | oo exp{— 202 }, for a lesion,

0, otherwise.

(6)

A 3D Gaussian distribution is used to approximate an
average shape of lesions. The MTANN involves training with
a large number of subvolume-voxel pairs, which is called a
massive-subvolumes training scheme.

A scoring method is used for combining of output voxels
from the trained MTANNS, as illustrated in Figure 11. A
score for a given ROI from the MTANN is defined as

s= 3

(x,y,z or t) ERgp

fw(x, y,z or £) X O(x, y,z or t), (7)
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FIGURE 11: Scoring method for combining pixel-based output responses from the trained MTANN into a single score for each ROL
where scores was done for classification of nodule candidates into

fw(x, ¥,z or ¢)

o~ (+yi or 17)/207 (8)

= fo(x,y,z or t;0) = N
is a 3D Gaussian weighting function with standard deviation
o and with its center corresponding to the center of the
volume for evaluation, Rg, and O is the output image of
the trained MTANN, where its center corresponds to the
center of Rg. The use of the 3D Gaussian weighting function
allows us to combine the responses (outputs) of a trained
MTANN as a 3D distribution. A 3D Gaussian function is
used for scoring, because the output of a trained MTANN is
expected to be similar to the 3D Gaussian distribution used
in the teaching images. This score represents the weighted
sum of the estimates for the likelihood that the ROI (lesion
candidate) contains a lesion near the center; that is, a higher
score would indicate a lesion and a lower score would
indicate a nonlesion. Thresholding is then performed on the
scores for distinction between lesions and non-lesions.

An MTANN was trained with typical nodules and typical
types of FPs (nonnodules) and corresponding teaching
images. The trained MTANN was applied to 57 true positives
(nodules) and 1,726 FPs (nonnodules) produced by a CAD
scheme [52]. Figure 12 shows various types of nodules
and nonnodules and the corresponding output images of
the trained MTANN. Nodules such as a solid nodule, a
part-solid (mixed-ground-glass) nodule, and a non-solid
(ground-glass) nodule are enhanced, whereas nonnodules
such as different-sized lung vessels and soft-tissue opacity
are suppressed around the centers of ROIs. For combining
output pixels into a single score for each nodule candidate, a
scoring method was applied to the output images for distinc-
tion between a nodules and a nonnodule. Thresholding of

nodules or nonnodules. Free-response receiver operating
characteristic (FROC) analysis [108] was carried out for
evaluation of the performance of the trained MTANN. The
FROC curve for the MTANN indicates 80.3% overall sen-
sitivity (100% classification performance) and a reduction
in the FP rate from 0.98 to 0.18 per section, as shown in
Figure 13.

4.5.2. Convolution NNs and Shift-Invariant NNs. Convolu-
tion NN have been used for FP reduction in CAD schemes
for lung nodule detection in CXRs [42—-44]. A convolution
NN was trained with 28 chest radiographs for distinguishing
lung nodules from nonnodules (i.e., FPs produced by an ini-
tial CAD scheme). The trained convolution NN reduced 79%
of FP detections (which is equivalent to 2-3 FPs per patient),
while 80% of true-positive detections were preserved. Con-
volution NNs have been applied to FP reduction in CAD
schemes for detection of microcalcifications [45] and masses
[46] in mammography. A convolution NN was trained
with 34 mammograms for distinguishing microcalcifications
from FPs. The trained convolution NN reduced 90% of FP
detections, which resulted in 0.5 FP detections per image,
while a true-positive detection rate of 87% was preserved
[45].

Shift-invariant NNs have been used for FP reduction in
CAD for detection of microcalcifications [50, 51]. A shift-
invariant NN was trained to detect microcalcifications in
ROIs. Microcalcifications were detected by thresholding of
the output images of the trained shift-invariant NN. When
the number of detected microcalcifications was greater than
a predetermined number, the ROI was considered as a
microcalcification ROI. With the trained shift-invariant NN,
55% of FPs was removed without any loss of true positives.
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FiGgure 12: llustrations of various types of nontraining nodules and nonnodules and corresponding output images of the trained MTANN.
Nodules are represented by bright pixels, whereas nonnodules are almost dark around the centers of ROIs.

5. Advantages and Limitations of
PML Algorithms

As described earlier, the major difference between PMLs and
ordinary classifiers is the direct use of pixel values with PML.
In other words, unlike ordinary classifiers, feature calculation
from segmented objects is not necessary. Because the PML
can avoid errors caused by inaccurate feature calculation and
segmentation, the performance of the PML can potentially
be higher than that of ordinary feature-based classifiers for
some cases. PMLs learn pixel data directly, and thus all
information on pixels should not be lost before the pixel
data are entered into the PML, whereas ordinary feature-
based classifiers learn the features extracted from segmented
lesions and thus important information can be lost with
this indirect extraction; also, inaccurate segmentation often
occurs for complicated patterns. In addition, because feature
calculation is not required for PML, development and

implementation of segmentation and feature calculation,
and selection of features are unnecessary.

Ordinary classifiers such as linear discriminant analysis,
ANNSs, and support vector machines cannot be used for
image processing, detection (localization) of objects, or
enhancement of objects or patterns, whereas MTANNSs can
do those tasks. For example, MTANNS can separate bones
from soft tissue in CXRs [54], and MTANN can enhance and
detect lung nodules on CT images [56].

The characteristics of PMLs which use pixel data directly
should differ from those of ordinary feature-based classifiers.
Therefore, combining an ordinary feature-based classifier
with a PML would yield a higher performance than that
of a classifier alone or a PML alone. Indeed, in previous
studies, both classifier and PML were used successfully for
classification of lesion candidates into lesions and non-
lesions [17, 45, 46, 49-53, 58—63].

A limitation of PMLs is the relatively long time for train-
ing because of the high dimensionality of input data. Because
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FiGure 13: FROC curve indicating the performance of the MTANN
in distinction between 57 true positives (nodules) and 1.726 FPs
(nonnodules).

PMLs use pixel data in images directly, the number of input
dimensions is generally large. For example, a 3D MTANN
for 3D CT data requires 171 dimensions for its input [53,
60]. The ordinary feature-based classifiers are more efficient
than PMLs. In an application of PMLs and feature-based
classifiers to CAD schemes, a feature-based classifier should
be applied first, because the number of lesion candidates that
need to be classified is larger at an earlier stage. After the
number of lesion candidates is reduced by use of the feature-
based classifier, a PML should be applied for further reduc-
tion of FPs. Indeed, previous studies employed this strategy
(17,52, 53, 58-61].

To address the issue of training time for PML, dimen-
sionality reduction methods for PML have been proposed
[61]. With the use of the Laplacian-eigenfunction-based
dimensionality reduction of the input vectors to a 3D
MTANN, the training time was reduced by a factor of
8.5.

6. Conclusion

In this paper, PMLs were surveyed and compared with
each other as well as with other non-PML algorithms (i.e.,
ordinary feature-based classifiers) to make the similarities,
differences, advantages, and limitations clear. The major
difference between PMLs and non-PML algorithms (e.g.,
classifiers) is a need for segmentation and feature calculation
with non-PML algorithms. The major advantage of PMLs
over non-PML algorithms is that no information is lost due
to inaccurate segmentation and feature calculation, which
would result in a higher performance for some cases such as
complicated patterns. With the combination of PMLs with
non-PML algorithms, the performance of a system can be
improved substantially. In addition to a classification task,
MTANNS can be used for enhancement (and suppression)
and detection (i.e., localization) of objects (or patterns) in
images.
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