Seven papers have been accepted by RSNA 2025
Seven papers by Mustain Billah, Hanhong He, Jifeng Zu, Fatma Beltaief, Haitian Zhang (alumni), Shogo Kodera (alumni), and Dichao Liu (Researcher) have been accepted by 111th Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA 2025), known as the top clinical conference in medical imaging field, to be held in Chicago, USA, November 30- December 4, 2025.
Conglaturations!
-
November 30, 2025 (Sun) 11:45-12:15
Scientific Poster Sessions -
He Y., Ou Y., Dai P., Yang Y., Jin Z., and Suzuki K.: Orientation-Consistent Patch Sampling Method Based on Centerline for Colon Segmentation in CT
-
November 30, 2025 (Sun) 13:00-14:00
Scientific Poster Sessions -
Zu J., Jin Z., Rahmaniar W., and Suzuki K.: Synthesizing Virtual High-Dose Images from Low-Dose Images Using DD-MNet with Dual-Domain Denoising and Detail Reconstruction in Digital Mammography
-
December 1, 2025 (Mon) 9:00-9:30
Scientific Poster Sessions -
Kodera S., Chavoshian S.M., Oshibe H., Jin Z., and Suzuki K.: Difficulty-Based Active Boosting for Robust Lung Nodule Classification with Multi-Expert MTANN Ensemble
-
December 1, 2025 (Mon) 9:00-9:30
Scientific Poster Sessions -
Zhang H., Rahmaniar W., Yang Y., Nakatani F., Miyake M., and Suzuki K.: Sequence-Aware MTANN for Segmentation of Rare Soft-Tissue Sarcomas in Multi-Sequence MRI with Missing Sequences
-
December 1, 2025 (Mon) 12:15-12:45
Scientific Poster Sessions -
Billah M., Liu D., and Suzuki K.: Small-data AI: Semi-Supervised Contrastive-Learning (SSCL-MTANN) for Classification Between Malignant and Benign Lung Nodules in 3D CT in Small Sample-Size Scenario
-
December 2, 2025 (Tue) 9:00-9:30
Scientific Poster Sessions -
Beltaief F., Rahmaniar W., Jin Z., and Suzuki K.: Knowledge Distillation for Lesion Detection and Classification on DBT for Limited Datasets Using Deep Learning
-
December 2, 2025 (Tue) 15:00-16:00
Science Session -
Liu D., Hori M., Sofue K., Murakami T., and Suzuki K.: Transparent AI for Liver Cancer Diagnosis in MRI with Explanations in LI-RADS Language