Biomedical Artificial
Intelligence Research Unit
En
Biomedical Imaging (BI)
Tracing of vessels is one of the most fundamental techniques in a computer-aided diagnostic (CAD) scheme for vascular systems. A major challenge of methods for tracing vessels is to trace vessels robustly against noise, vessel branching, vessel size changes, and curved vessels, because those factors often lead to errors in tracing. Among them, the robustness against vessel size changes is espec Read more...
We developed a method for extracting the left ventricular (LV) contours from left ventriculograms by means of a neural edge detector (NED) in order to extract the contours which agree with those traced by a cardiologist. The NED is a supervised edge detector based on a linear-output artificial neural network model, which is trained with a modified back-propagation training algorithm. The NED ca Read more...
We developed a supervised nonlinear filter based on an artificial neural network (ANN), called a “neural filter,” for reduction of quantum noise in coronary angiograms. The neural filter can be trained with input images and the corresponding teaching images. To learn the relationship between low-dose and high-dose x-ray images, we created simulated low-dose angiograms from actual high-dose Read more...
We developed a new computer-aided diagnostic (CAD) system for coronary artery stenosis, which can learn physicians’ diagnosis. To realize such a system, we developed a linear-output artificial neural network (LOANN) which is capable of learning of experts’ judgment. Our CAD system consisted of (a) an automated method for tracing vessels, (b) a robust method for determining the edges of the Read more...