Biomedical Artificial
Intelligence Research Unit
En
Cancer Research (CR)
We developed a technique that uses a multiple massive-training artificial neural network scheme (multi-MTANN) to reduce false positives (FPs) in a computer-aided diagnostic (CAD) scheme for nodule detection on chest radiographs. Our database consisted of 91 solitary pulmonary nodules including 64 malignant nodules and 27 benign nodules in 91 chest radiographs. With our CAD scheme based on a dif Read more...
Low-dose helical CT (LDCT) is being applied as a modality for lung cancer screening. It may be difficult, however, for radiologists to distinguish malignant from benign nodules in LDCT. Our purpose in this study was to develop a computer-aided diagnostic (CAD) scheme for distinction between benign and malignant nodules in LDCT by use of a massive-training artificial neural network (MTANN). The Read more...
A CAD Utilizing 3D Massive-Training ANNs for Detection of Flat Lesions in CT Colonography in a Large Multicenter Clinical Trial
We developed a computer-aided diagnostic (CAD) scheme for detection of flat lesions (also called flat polyps or depressed polyps) in CT colonography (CTC) in a large multicenter clinical trial in collaboration with Don C. Rockey, M.D., at the Southwest Medical C Read more...
We extended the capability of a single massive-training artificial neural network (MTANN) and developed a multiple MTANN scheme (multi-MTANN) for further removal of false positives (FPs) in computerized detection of lung nodules in low-dose CT. The multi-MTANN consists of several MTANNs arranged in parallel. Each MTANN is trained by use of the same nodules, but with a different type of non-nodu Read more...
A massive-training artificial neural network (MTANN) is a trainable, highly nonlinear filter consisting of a linear-output multilayer artificial neural network model. For enhancement of nodules and suppression of vessels, we used 10 nodules and 10 non-nodule images as training cases for MTANNs. The MTANN is trained with a large number of input subregions selected from the training cases and the Read more...
– A CAD Utilizing 3D Massive-Training ANNs for Detection of Flat Lesions in CT Colonography in a Large Multicenter Clinical Trial
– Polyp Detection in CT Colonography: Performance of a CAD Scheme Incorporating 3D MTANNs on False-Negative Polyps in a Multicenter Clinical Trial
– Ensemble Training for a Mixture of Expert 3D MTANNs for Eliminating Multiple False-Positive Source Read more...
– Automated CT Liver Volumetry by Use of Three-Dimensional Fast-Marching and Level-Set Segmentation
– Reduction of Quantum Noise in Low-Dose Double-Contrast Radiographs of the Stomach
– Enhanced Digital Chest Radiography: Temporal Subtraction Combined with Virtual Dual-EnergyETechnology for Improved Conspicuity of Growing Cancers and Other Pathologic Changes
– Virtu Read more...
– A CAD Utilizing 3D Massive-Training ANNs for Detection of Flat Lesions in CT Colonography in a Large Multicenter Clinical Trial
– Polyp Detection in CT Colonography: Performance of a CAD Scheme Incorporating 3D MTANNs on False-Negative Polyps in a Multicenter Clinical Trial
– Ensemble Training for a Mixture of Expert 3D MTANNs for Eliminating Multiple False-Positive Source Read more...
– Automated CT Liver Volumetry by Use of Three-Dimensional Fast-Marching and Level-Set Segmentation
– Reduction of Quantum Noise in Low-Dose Double-Contrast Radiographs of the Stomach
– Enhanced Digital Chest Radiography: Temporal Subtraction Combined with Virtual Dual-EnergyETechnology for Improved Conspicuity of Growing Cancers and Other Pathologic Changes
– Virtu Read more...